CN114956835B - 一种Ti3AlC2包覆镁砂骨料的制备方法 - Google Patents

一种Ti3AlC2包覆镁砂骨料的制备方法 Download PDF

Info

Publication number
CN114956835B
CN114956835B CN202210407388.1A CN202210407388A CN114956835B CN 114956835 B CN114956835 B CN 114956835B CN 202210407388 A CN202210407388 A CN 202210407388A CN 114956835 B CN114956835 B CN 114956835B
Authority
CN
China
Prior art keywords
alc
powder
aggregate
coated
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210407388.1A
Other languages
English (en)
Other versions
CN114956835A (zh
Inventor
苏凯
黄磊
刘新红
田学坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingdingshan Building Energy Efficiency And Green Building Development Center
Zhengzhou University
Original Assignee
Pingdingshan Building Energy Efficiency And Green Building Development Center
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingdingshan Building Energy Efficiency And Green Building Development Center, Zhengzhou University filed Critical Pingdingshan Building Energy Efficiency And Green Building Development Center
Priority to CN202210407388.1A priority Critical patent/CN114956835B/zh
Publication of CN114956835A publication Critical patent/CN114956835A/zh
Application granted granted Critical
Publication of CN114956835B publication Critical patent/CN114956835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种Ti3AlC2包覆镁砂骨料的制备方法,包括以下步骤:(1)将Ti粉、Al粉、碳源预混合;(2)在预混合的粉体中加入无水乙醇,混合后烘干得到前驱体粉体;(3)将催化剂预溶于无水乙醇中,后加入结合剂中;将前驱体粉体加入结合剂‑无水乙醇‑催化剂的混合液中,超声分散;(4)将镁砂骨料浸入步骤(3)所得溶液中,得到包覆好的镁砂骨料;(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下烧结,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料。该方法具有工艺简单、制备周期短、生产成本相对较低等优势,适用于规模化生产和应用。

Description

一种Ti3AlC2包覆镁砂骨料的制备方法
技术领域
本发明涉及耐火材料领域,具体涉及一种Ti3AlC2包覆镁砂骨料的制备方法。
背景技术
随着钢铁工业的发展,国防军工、航空航天、汽车工业等领域对高性能钢材的要求日趋提高。为提高钢的纯净度,低碳和高性能耐火材料的发展势在必行。高性能钢水需要进行降碳、钙处理等,而钢水净化技术对连铸功能元件提出了更高、更苛刻的要求。滑板是炼钢连铸用关键性功能元件之一,其在使用过程中受到强烈的热震、钢水的冲刷磨损以及环境介质的侵蚀,使用条件极为苛刻。因此,滑板必须具有优良的抗热震性,对高温强度、耐磨性、抗水化性和抗侵蚀性等也有较高要求。铝碳质和铝锆碳质滑板是目前钢厂普遍采用的滑板材质,但这两类滑板在浇铸钙处理钢时,抗钙侵蚀性能力差。MgO具有良好的机械性能和抗化学侵蚀性,且MgO不与CaO、FeO等反应生成低共熔物,在一定程度上满足了浇铸钙处理钢的要求。但MgO较大热膨胀系数(13.5×10-6 K-1)致使其抗热震性较差,因此镁质滑板在使用过程中易出现贯穿裂纹、滑动面剥落和掉块、钢水渗透等问题,且镁质滑板高温强度低、耐磨性差,在国内浇铸钙处理钢时使用寿命低。因此,高抗热震性、高强度镁质滑板的开发迫在眉睫,目前国内外在此方面的研究报道较少。
Ti3AlC2是六方层状金属陶瓷,兼具有陶瓷的低密度(4.2 g·cm-3)、低热膨胀系数(8.8×10-6 K-1)、高弹性模量(297 GPa)、耐腐蚀性和抗氧化性,以及金属的良好导热(29W/(m·K))和导电性(3.6×106 s·m-1)、不易受热冲击影响和良好的抗热震性。Ti3AlC2对钢水不润湿,在受到钢水冲击时会触发多重能量吸收机制,如晶粒弯折、晶粒拔出、微裂纹扩散和偏转等,会形成塑性损伤区,使其具有良好的抗热震性和抗钢水/渣侵蚀性。更有意义的是Ti3AlC2又比常用的固体润滑剂石墨、MoS2等有更低的摩擦系数和更优的自润滑性能,独特的层状结构和高温下的塑性变形能力可耗散大量的能量,极大地缓解镁砂骨料高温膨胀产生的热应力作用,这些特性使Ti3AlC2能够部分或全部代替石墨降低碳含量,同时保持优良的抗热震性。
目前制备Ti3AlC2陶瓷的方法主要是放电等离子烧结、热压烧结和微波烧结等,但这些烧结方法均不利于Ti3AlC2在镁砂骨料表面的原位合成。已有报道指出,在含碳材料中引入Ti3AlC2可改善含碳耐火材料的性能,但在基质引入时,不能很好解决占比65-70%的镁砂骨料产生膨胀而导致的开裂问题。采用原位合成Ti3AlC2包覆镁砂骨料的制备方法,与Ti3AlC2直接添加到材料基质中相比,由于Ti3AlC2的层状结构,极大地缓解镁砂骨料高温膨胀产生的热应力,有效提高了镁碳质滑板的抗热震性。Ti3AlC2与冶金熔渣难润湿,有利于提高材料的抗侵蚀性。此外,Ti3AlC2包覆镁砂后,可以防止镁质滑板在磨制过程中MgO与水的反应,进而提高镁质滑板的抗水化性。Ti3AlC2在高温下还可与O2反应在材料生成致密的TiO2和Al2O3层,Al2O3可以进一步与内部的MgO反应生成低热膨胀的尖晶石结构(MgAl2O4),进而提高镁质材料的抗氧化性和抗热震性。这种制备方法工艺简单,生产成本相对较低,适合于规模化生产。
发明内容
本发明的目的是提供一种Ti3AlC2包覆镁砂骨料的制备方法,该方法具有工艺简单、制备周期短、生产成本相对较低等优势,适用于规模化生产和应用。
为实现上述目的,本发明采用的技术方案为:
一种Ti3AlC2包覆镁砂骨料的制备方法,包括以下步骤:
(1)将Ti粉、Al粉、碳源装入球磨罐,于高能球磨机中预混合20-60 min,得到预混合的粉体;
(2)在预混合的粉体中加入无水乙醇,粉体和无水乙醇的质量比为1 : 2-5,继续球磨1-5 h,60-80 ℃烘干得到混合均匀的前驱体粉体;
(3)将催化剂预溶于无水乙醇中,后加入结合剂中,无水乙醇和结合剂的质量比为0.5-4 : 4,在20-60 ℃下搅拌至充分溶解;将前驱体粉体加入结合剂-无水乙醇-催化剂的混合液中,超声搅拌0.5-5 h后静置1-3 h;
(4)将镁砂骨料浸入步骤(3)所得溶液中,继续搅拌30 min后过滤,得到包覆好的镁砂骨料,将其分别在60 ℃、120 ℃和180 ℃下干燥3-12 h;
(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下烧结,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料。
进一步,所述Ti粉、Al粉、碳源的摩尔比MTi: MAl: M碳源=2.9-3.1 : 0.9-1.3 :1.9-2.1。
进一步,所述碳源为炭黑、石墨或活性炭。
进一步,所述Ti粉、Al粉、碳源的纯度不低于99%,粒径为50 nm-100 μm。
进一步,所述高能球磨机采用钢制球磨罐,球磨时转速为100-500 r/min,球料比为5-10 : 1。
进一步,所述催化剂为硝酸铁、硝酸镍、硝酸钴、硝酸铁-硝酸钴、硝酸铁-硝酸镍、硝酸镍-硝酸钴、硝酸铁-乙酸锌、硝酸镍-乙酸锌、硝酸钴-乙酸锌中的一种。
进一步,所述结合剂为酚醛树脂、环氧树脂、沥青和焦油中的一种。
进一步,所述催化剂中的金属离子的总质量为结合剂质量的0.1-1.5%。
进一步,所述步骤(4)进行1-5次。
进一步,所述步骤(5)烧结条件为:升温至1400-1600 ℃保温1-6 h,升温速率保持在1-6 ℃/min。
本发明上述技术方案中,关键点主要如下:
1、在结合剂中添加少量催化剂,催化剂使结合剂形成石墨化程度高的各向异性的小粒度石墨,其性能优于结合剂直接形成的玻璃态无定形碳。
2、控制Ti粉、Al粉和碳源之间的比例,适当改变各成分之间的配比,使Ti3AlC2包覆镁砂骨料的性能达到最优化。
3、控制Ti3AlC2包覆镁砂骨料前驱体的升温速率在1-6 ℃/min,保温1-6 h,升温速率太快会导致镁砂的快速膨胀和酚醛树脂的过快分解,容易造成包覆层的脱落;升温速率太慢致使生产效率下降,达不到节约减排的目标;保温时间为1-6 h能有效生成高纯度、结合良好的Ti3AlC2包覆镁砂骨料。
4、可以通过浸渍-干燥进行1-5次,以此改变包覆层的厚度,进而改变镁砂骨料表面生成Ti3AlC2的含量。
与现有技术相比,本发明的有益效果为:
1、通过发明一种Ti3AlC2包覆镁砂骨料的制备方法,获得了Ti3AlC2包覆、界面结合良好的镁砂骨料,以满足高温工业应用要求。
2、采用原位合成Ti3AlC2包覆镁砂骨料的制备方法,与Ti3AlC2直接引入到材料基质中相比,原位合成的Ti3AlC2与镁砂骨料产生牢固的界面结合,更能发挥镁砂在高温功能材料中的优势。由于Ti3AlC2的层状结构,极大地缓解镁砂骨料高温膨胀产生的热应力,有效提高了镁质滑板的抗热震性。Ti3AlC2与冶金熔渣难润湿,有利于提高材料的抗侵蚀性。Ti3AlC2包覆镁砂后,可以防止镁质滑板在磨制过程中MgO与水的反应,进而提高镁质滑板的抗水化性。Ti3AlC2在高温下还可与O2反应在材料中生成致密的TiO2和Al2O3层,Al2O3可以进一步与内部的MgO反应生成低热膨胀的尖晶石结构(MgAl2O4),进而提高镁质材料的抗氧化性和抗热震性。
3、本发明制备方法操作简单,生产成本相对较低,适合于规模化生产。
附图说明
图1为本发明实施例4制备的Ti3AlC2包覆镁砂骨料的X射线衍射图谱和2θ=30°-70°的局部放大图;
图2为本发明实施例4制备的Ti3AlC2包覆镁砂骨料表面结构的扫描电镜照片和局部放大图。
具体实施方式
下面结合附图和具体的实施例对本发明的技术方案及效果做进一步描述,但本发明的保护范围并不限于此。
下述实施例中,Ti粉、Al粉和碳源均通过市场购买,纯度均不低于99%,粒径处于50nm-100 μm。镁砂骨料可以是电熔镁砂或烧结镁砂,粒径处于75 μm-5 mm。
实施例1
一种Ti3AlC2包覆镁砂骨料的制备方法,包括以下步骤:
(1)将原材料Ti粉、Al粉和炭黑按摩尔比MTi : MAl : M炭黑=3 : 1.1 : 2.1称重,将称好的粉体装入钢制球磨罐,于高能球磨机中预混合30 min,钢球和粉体的质量比为5 :1;
(2)在预混合的粉体中加入无水乙醇,粉体和无水乙醇的质量比为1 : 2,继续球磨2 h后,设置转速为300 r/min,在60 ℃烘干得到混合均匀的前驱体粉体;
(3)将占酚醛树脂质量7.23%的九水硝酸铁预溶于无水乙醇中,后加入酚醛树脂中,无水乙醇和酚醛树脂的质量比为1 : 2,在30 ℃下搅拌至充分溶解;将前驱体粉体加入酚醛树脂-无水乙醇-催化剂混合液中,超声下搅拌1 h后静置3 h;
(4)将镁砂骨料放入混合液中,继续搅拌30 min后过滤掉,得到包覆好的镁砂骨料,将其分别在60 ℃、120 ℃和180 ℃下干燥8 h;
(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下升温至1500 ℃保温2 h,升温速率保持在5 ℃/min,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料。
实施例2
一种Ti3AlC2包覆镁砂骨料的制备方法,包括以下步骤:
(1)将原材料Ti粉、Al粉和石墨按摩尔比MTi : MAl : M石墨=3 : 1.2 : 2.0称重,将称好的粉体装入钢制球磨罐,于高能球磨机中预混合40 min,钢球和粉体的质量比为8 :1;
(2)在预混合的粉体中加入无水乙醇,粉体和无水乙醇的质量比为1 : 2,继续球磨3 h后,设置转速为200 r/min,在70 ℃烘干得到混合均匀的前驱体粉体;
(3)将占沥青质量4.94%的六水硝酸钴预溶于无水乙醇中,后加入沥青中,无水乙醇和沥青的质量比为1 : 4,在50 ℃下搅拌至充分溶解;将前驱体粉体加入沥青-无水乙醇-催化剂混合液中,超声下搅拌2 h后静置1 h;
(4)将镁砂骨料浸入步骤(3)所得溶液中,继续搅拌30 min后过滤掉,得到包覆好的镁砂骨料,将其分别在60 ℃、120 ℃和180 ℃下干燥6 h;
(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下升温至1400 ℃保温3 h,升温速率保持在4 ℃/min,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料。
实施例3
一种Ti3AlC2包覆镁砂骨料的制备方法,包括以下步骤:
(1)将原材料Ti粉、Al粉和活性炭按摩尔比MTi : MAl: M活性炭=3.1 : 1.2 : 2.1称重,将称好的粉体装入钢制球磨罐,于高能球磨机中预混合30 min,钢球和粉体的质量比为10 : 1;
(2)在预混合的粉体中加入无水乙醇,粉体和无水乙醇的质量比为1 : 2,继续球磨3 h后,在60 ℃烘干得到混合均匀的前驱体粉体;
(3)将占焦油质量4.95%的六水硝酸镍预溶于无水乙醇中,后加入焦油中,无水乙醇和焦油的质量比为1 : 4,在50 ℃下搅拌至充分溶解;将前驱体粉体加入焦油-无水乙醇-催化剂混合液中,超声下搅拌2 h后静置3 h;
(4)将镁砂骨料浸入步骤(3)所得溶液中,继续搅拌30 min后过滤掉,得到包覆好的镁砂骨料,将其分别在60 ℃、120 ℃和180 ℃下干燥5 h;
(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下升温至1500 ℃保温2.5h,升温速率保持在3 ℃/min,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料。
实施例4
一种Ti3AlC2包覆镁砂骨料的制备方法,包括以下步骤:
(1)将原材料Ti粉、Al粉和炭黑按摩尔比MTi :MAl :M炭黑=3.0:1.2:2.0称重,将称好的粉体装入钢制球磨罐,于高能球磨机中预混合30 min,钢球和粉体的质量比为10:1;
(2)在预混合的粉体中加入无水乙醇,粉体和无水乙醇的质量比为1 : 2,继续球磨3 h后,在60 ℃烘干得到混合均匀的前驱体粉体;
(3)将摩尔比为1 : 1的九水硝酸铁和二水乙酸锌预溶于无水乙醇中,混合盐占酚醛树脂质量的6.97%,且无水乙醇和酚醛树脂的质量比为1 : 4,在30 ℃下搅拌至充分溶解;将前驱体粉体加入酚醛树脂-无水乙醇-催化剂混合液中,超声下搅拌1 h后静置1 h;
(4)将镁砂骨料浸入步骤(3)所得溶液中,继续搅拌30 min后过滤掉,得到包覆好的镁砂骨料,将其分别在60 ℃、120 ℃和180 ℃下干燥6 h;
(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下升温至1500 ℃保温2 h,升温速率保持在4 ℃/min,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料。
请参阅图1,其是本发明实施例4中Ti3AlC2包覆镁砂骨料的X射线衍射图谱和图谱的局部放大图。由图1可以看出,材料主要有内部的MgO和包裹层Ti3AlC2
请参阅图2,其是本发明实施例4中Ti3AlC2包覆镁砂骨料表面结构的扫描电镜照片和局部放大图。由图2可以看出,包裹层Ti3AlC2在镁砂骨料表面均匀分布,Ti3AlC2呈片层状原位生长。独特的层状结构和高温下的塑性变形能力可耗散大量的能量,极大地缓解镁砂骨料高温膨胀产生的热应力,这些特性使Ti3AlC2能够部分或全部代替石墨降低碳含量,同时有效提高镁质滑板的抗热震性。
综上所述,本发明所制备的Ti3AlC2包覆镁砂骨料至少具有以下优点:原位合成Ti3AlC2与镁砂骨料表面的产生牢固的界面结合,分布均匀,能形成有效的连续相。由于Ti3AlC2在镁砂表面原位生长的层状结构,其高温下的塑性变形能力可耗散大量的能量,极大地缓解镁砂骨料高温膨胀产生的热应力。Ti3AlC2包覆镁砂后,可以防止镁质滑板在磨制过程中MgO与水的反应,进而提高镁质滑板的抗水化性。Ti3AlC2在高温下还可与O2反应在材料中生成致密的TiO2和Al2O3层,Al2O3可以进一步与内部的MgO反应生成低热膨胀的MgAl2O4,进而提高镁质材料的抗氧化性和抗热震性,充分发挥镁质材料的优势。这种制备方法操作简单,生产成本相对较低,适合于规模化生产。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,该制备方法包括以下步骤:
(1)将Ti粉、Al粉、碳源装入球磨罐,于高能球磨机中预混合20-60 min,得到预混合的粉体;
(2)在预混合的粉体中加入无水乙醇,粉体和无水乙醇的质量比为1 : 2-5,继续球磨1-5 h,60-80 ℃烘干得到混合均匀的前驱体粉体;
(3)将催化剂预溶于无水乙醇中,后加入结合剂中,无水乙醇和结合剂的质量比为0.5-4 : 4,在20-60 ℃下搅拌至充分溶解;将前驱体粉体加入结合剂-无水乙醇-催化剂的混合液中,超声搅拌0.5-5 h后静置1-3 h;
(4)将镁砂骨料浸入步骤(3)所得溶液中,继续搅拌30 min后过滤,得到包覆好的镁砂骨料,将其分别在60 ℃、120 ℃和180 ℃下干燥3-12 h;
(5)将包覆好的镁砂骨料放入烧结炉中,于Ar气氛保护下烧结,烧制结束后随炉冷却至室温即可得到Ti3AlC2包覆镁砂骨料;
所述催化剂为硝酸铁、硝酸镍、硝酸钴、硝酸铁-硝酸钴、硝酸铁-硝酸镍、硝酸镍-硝酸钴、硝酸铁-乙酸锌、硝酸镍-乙酸锌、硝酸钴-乙酸锌中的一种;
所述结合剂为酚醛树脂、环氧树脂、沥青和焦油中的一种。
2. 根据权利要求1所述的Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,所述Ti粉、Al粉、碳源的摩尔比MTi : MAl : M碳源=2.9-3.1 : 0.9-1.3 : 1.9-2.1。
3.根据权利要求1所述的Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,所述碳源为炭黑、石墨或活性炭。
4.根据权利要求1所述的Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,所述高能球磨机采用钢制球磨罐,球磨时转速为100-500 r/min,球料比为5-10 : 1。
5.根据权利要求1所述的Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,所述催化剂中的金属离子的总质量为结合剂质量的0.1-1.5%。
6.根据权利要求1所述的Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,所述步骤(4)进行1-5次。
7. 根据权利要求1所述的Ti3AlC2包覆镁砂骨料的制备方法,其特征在于,所述步骤(5)烧结条件为:升温至1400-1600 ℃保温1-6 h,升温速率保持在1-6 ℃/min。
CN202210407388.1A 2022-04-19 2022-04-19 一种Ti3AlC2包覆镁砂骨料的制备方法 Active CN114956835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210407388.1A CN114956835B (zh) 2022-04-19 2022-04-19 一种Ti3AlC2包覆镁砂骨料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210407388.1A CN114956835B (zh) 2022-04-19 2022-04-19 一种Ti3AlC2包覆镁砂骨料的制备方法

Publications (2)

Publication Number Publication Date
CN114956835A CN114956835A (zh) 2022-08-30
CN114956835B true CN114956835B (zh) 2023-03-07

Family

ID=82978280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210407388.1A Active CN114956835B (zh) 2022-04-19 2022-04-19 一种Ti3AlC2包覆镁砂骨料的制备方法

Country Status (1)

Country Link
CN (1) CN114956835B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177607A (ja) * 2017-04-19 2018-11-15 Jfeスチール株式会社 耐火物及びその製造方法
EP3466904A1 (de) * 2017-10-04 2019-04-10 Refractory Intellectual Property GmbH & Co. KG Versatz zur herstellung eines feuerfesten kohlenstoffgebundenen steines, ein verfahren zur herstellung eines feuerfesten kohlenstoffgebundenen steines sowie eine verwendung von ti2alc
CN109860574A (zh) * 2019-03-04 2019-06-07 桑顿新能源科技有限公司 复合正极材料及其制备方法和电池
CN111690858A (zh) * 2019-03-13 2020-09-22 北京交通大学 耐磨自润滑Ti3Al1-xSixC2-Mg基复合材料自身界面调控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177607A (ja) * 2017-04-19 2018-11-15 Jfeスチール株式会社 耐火物及びその製造方法
EP3466904A1 (de) * 2017-10-04 2019-04-10 Refractory Intellectual Property GmbH & Co. KG Versatz zur herstellung eines feuerfesten kohlenstoffgebundenen steines, ein verfahren zur herstellung eines feuerfesten kohlenstoffgebundenen steines sowie eine verwendung von ti2alc
CN110914218A (zh) * 2017-10-04 2020-03-24 里弗雷克特里知识产权两合公司 用于制造碳结合耐火砖的批料、制造碳结合耐火砖的方法和Ti2AlC的用途
CN109860574A (zh) * 2019-03-04 2019-06-07 桑顿新能源科技有限公司 复合正极材料及其制备方法和电池
CN111690858A (zh) * 2019-03-13 2020-09-22 北京交通大学 耐磨自润滑Ti3Al1-xSixC2-Mg基复合材料自身界面调控方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories:Antioxidant or alternative carbon source?;Junfeng Chen等;《Journal of the 《European Ceramic Society》;20181231;第38卷(第9期);第3387-3394页 *

Also Published As

Publication number Publication date
CN114956835A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Yu et al. Enhanced oxidation resistance of low-carbon MgO–C refractories with ternary carbides: a review
CN110240466A (zh) 一种含原位剥离的二维微纳米石墨片酚醛树脂结合的低碳超低碳含碳耐火材料及其制备方法
CN101555150B (zh) 一种含纳米氧化锌的低碳镁碳砖
CN115650742B (zh) 一种含金属Al原位复合含碳耐火材料的制备方法
CN112479684A (zh) 一种电弧炉炉壁热点区用镁碳砖
CN110483023B (zh) 一种微孔化刚玉砖及其制备方法
Chen et al. Improved thermal shock stability and oxidation resistance of low-carbon MgO–C refractories with introduction of SiC whiskers
CN112500177B (zh) 硝酸盐催化氮化反应赛隆纤维结合碳化硅-刚玉复合耐高温材料的制备方法
JPWO2002072477A1 (ja) グラファイト粒子の製造方法とそれを用いた耐火物
CN114956835B (zh) 一种Ti3AlC2包覆镁砂骨料的制备方法
CN112250421A (zh) 一种转炉冲击区用镁碳砖及其制备方法
CN113603459A (zh) 一种无碳不烧镁铝砖及其制备方法
CN117326862A (zh) 一种ZrO2-(Al,Cr)2O3-Mg(Al,Cr)2O4复合耐火材料及其制备方法
CN108484161B (zh) 一种钛酸铝复合材料及其制备方法
CN110615670A (zh) 高性能镁质滑板砖及其制备方法
CN113979761B (zh) 一种三元复合自修复免烧滑板砖及其制备方法
CN112479729B (zh) 一种高强碳化硅-氧化物复合材料及其制备方法
CN106810283B (zh) 一种莫来石-铬轻质浇注料
JP2002316865A (ja) 耐火物原料組成物、その製造方法及びそれを成形してなる耐火物
JP3327884B2 (ja) 粒状黒鉛含有耐火物
CN113213956A (zh) 综合性能优良、价格适中的镁铝尖晶石砖及其制备方法
CN112094124A (zh) 一种用于耐火材料的碳源及其制备方法
CN111718187A (zh) 含纳米碳的高炉出铁沟用浇注料及其制备方法
CN111908931A (zh) 含纳米碳的低碳铝碳化硅碳砖及制备方法
JP3327883B2 (ja) 塊状黒鉛含有耐火物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant