CN114956175B - 一种片状的掺杂铌酸铋钙及其制备方法和应用 - Google Patents

一种片状的掺杂铌酸铋钙及其制备方法和应用 Download PDF

Info

Publication number
CN114956175B
CN114956175B CN202210429436.7A CN202210429436A CN114956175B CN 114956175 B CN114956175 B CN 114956175B CN 202210429436 A CN202210429436 A CN 202210429436A CN 114956175 B CN114956175 B CN 114956175B
Authority
CN
China
Prior art keywords
powder
flaky
calcium niobate
bismuth calcium
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210429436.7A
Other languages
English (en)
Other versions
CN114956175A (zh
Inventor
罗行
罗小刚
晏忠钠
张斗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210429436.7A priority Critical patent/CN114956175B/zh
Publication of CN114956175A publication Critical patent/CN114956175A/zh
Application granted granted Critical
Publication of CN114956175B publication Critical patent/CN114956175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种片状的掺杂铌酸铋钙及其制备方法和应用,将CaCO3粉体、Bi2O3粉体、Nb2O5粉体、Sm2O3粉体和NaCO3粉体,混合获得混合料,将混合料与中性盐球磨获得球磨粉,将球磨粉烧结即得片状的掺杂铌酸铋钙,所述中性盐由NaCl和KCl组成;本发明所制备的Na,Sm共掺杂的铌酸铋钙,其微观形貌为片状,最大尺寸接近45μm,且尺寸均匀,这种大尺寸片状粉体适合用于作为模板晶粒生长法的模板晶粒,尤其适合用于制备同质的铌酸铋钙基织构陶瓷,有利于提高其织构度。另外,这种大尺寸片状粉体也适合用于压电‑光催化降解,大的形变有利于产生压电势,提到其压电催化活性。

Description

一种片状的掺杂铌酸铋钙及其制备方法和应用
技术领域
本发明属于陶瓷粉末制备技术领域,具体涉及一种片状的掺杂铌酸铋钙及其制备方法和应用。
背景技术
铌酸铋钙(CaBi2Nb2O9,简称CBN)是一种典型的铋层状结构压电陶瓷,由萤石结构的铋氧层((Bi2O2)2+)和类钙钛矿结构的((CaNb2O7)2-)层沿c轴交替堆叠而成。铌酸铋钙具有居里温度高(Tc~940℃)、介电常数低、老化率低以及电阻率高等特点,非常适合用于制造在高温环境下服役的电子元器件,如监测航空和航天发动机运行状态的加速度传感器、高级轿车上的压电喷油嘴等。然而,由于具有特殊的二维结构,自发极化被限制a-b平面内,使其具有高的矫顽场、极低的压电系数(5~7pC/N),很难通过人工极化获得压电性能优异的陶瓷体。
为了获得高压电系数的铌酸铋钙陶瓷,模板晶粒生长法(TGG)被用来制备织构化的铌酸铋钙陶瓷。通过使陶瓷的晶粒定向生长,获得一定的织构度,陶瓷的压电性能将获得较大的提升。籽晶作为TGG法的关键原料,严重影响织构陶瓷的织构度。通常,为了获得更高的取向度,具有较大尺寸的片状籽晶更加容易被选择。
目前制备铁电片状籽晶的方法主要有溶胶-凝胶法、水热法、熔盐法等方法。但是溶胶-凝胶法原料成本高、反应时间长且容易残留碳杂质和有机溶剂;而水热法需要施加高温高压、反应时间长且尺寸不均匀。熔盐法通过加入低熔点的中性盐,在加热时中性盐融化形成液相,加快了物质传输,可以降低物质合成温度,有望制备大尺寸的片状晶体。
目前制备铁电片状铌酸铋钙的方法主要采用熔盐法和拓扑微晶转化法结合的拓扑化学熔盐合成法。这种方法首先利用熔盐法合成一种与目标产物晶体结构相似的前驱体,随后通过离子交换和置换等过程获得与前驱体成分不同的最终产物。这种方法可以有效地合成片状的铌酸铋钙,但是其工艺复杂、操作较为困难。
发明内容
针对现有技术的不足,本发明的目的在于提供一种粒度分布集中、大尺寸的具有优异铁电性能的片状的掺杂铌酸铋钙及其一步法制备方法和应用。
为了实现上述目的,本发明采用如下技术方案:
本发明一种片状的掺杂铌酸铋钙的制备方法,将CaCO3粉体、Bi2O3粉体、Nb2O5粉体、Sm2O3粉体和NaCO3粉体,混合获得混合料,将混合料与中性盐球磨获得球磨粉,将球磨粉烧结即得片状的掺杂铌酸铋钙,
所述中性盐由NaCl和KCl组成;
所述片状的掺杂铌酸铋钙,其化学通式为:Ca1-2xSmxNaxBi2Nb2O9,其中,0.005≤x<0.05;
在上述通式中,x表示Sm、Na两种元素的摩尔分数。
本发明所提供的是,Na,Sm共掺杂的铌酸铋钙,由于Na+和Sm3+离子分别为+1价和+3价,两者等摩尔的平均价态与Ca2+价态相同,从而可以构成等价掺杂,由于掺杂前后的价态相同,陶瓷不需产生A位空位或氧空位平衡电荷,空位的减少使得陶瓷保持较高的居里温度;另外由于Na+和Sm3+的离子半径与Ca2+的离子半径存在差异,造成晶格畸变,使得正负电荷中心进一步分离,从而增强压电性能。
另外本发明采用一步熔盐法制备出了大尺寸的Na,Sm共掺杂的铌酸铋钙,本发明中选用中性盐作为熔盐,熔点低,在较低温度就可以形成液相,可以极大的提高物质传输速率,产物物质分布更加均匀。由于在铋层状结构铁电体中,(001)晶面的表面能较低,导致在烧结过程中晶体沿a-b面的生长速率远大于沿c轴的生长速率,使得其晶体形貌呈片状。获得大尺寸且具有优异的铁电性的片状掺杂的铌酸铋钙。
而发明人意外的发现,即使在相同的条件下,采用Na,Sm共掺杂的铌酸铋钙,最终所得的尺寸要大于未经掺杂的铌酸铋钙,因此,在尺寸与掺杂的协同作用下使得大尺寸的片状的掺杂铌酸铋钙大幅优于未掺杂的铌酸铋钙。
而这种高铁电性以及大尺寸的形貌,作为铋层状结构铁电体织构的模板,从而得到取向度较高的陶瓷,使所得陶瓷的压电性能将获得较大的提升
另外,在催化降解方面,大尺寸的片状铌酸铋钙更容易产生形变,从而进一步产生压电势,进一步的提高催化降解的效率。
优选的方案,所述混合料与中性盐的质量比为0.5~2:1,优选为0.8~1.2:1。
将中性盐的范围控制在上述范围内,最终所得片状掺杂铌酸铋钙的尺寸最大。
优选的方案,所述中性盐中,按摩尔比计,NaCl:KCl=0.8:1.2~1。优选为1:1。
优选的方案,所述球磨为湿法球磨,球磨介质为无水乙醇,磨球的材料为氧化锆,其中,球磨介质与磨球的质量比为0.65:1~2,球料比为1~2:1。
优选的方案,所述球磨的转速为300~400r/min,所述球磨的时间为12~24h。
发明人发现,球磨对于形貌具有一定的影响,在上述条件下的湿法球磨,可以使原料与中性盐混合最为均匀,原料粉末更细小,活性更高,从而更有利于热过程中物质的扩散速率,最终得到的材料尺寸越大。
优选的方案,所述烧结的温度为950℃~1100℃,烧结的时间为6~9h。
进一步的优选,所述烧结的温度为1050℃~1100℃,烧结的时间为6~7h。
进一步的优选,所述烧结时的升温速率为3~5℃/min。
在实际操作过程中,将烧结所得的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
优选的方案,所述掺杂铌酸铋钙,其化学通式为:Ca1-2xSmxNaxBi2Nb2O9,其中,0.02≤x<0.03。
在上述范围的掺杂,最终所得掺杂铌酸铋钙的尺寸最大,最终性能最优。
本发明还提供上述制备方法所制备的片状的掺杂铌酸铋钙。
本发明还提供上述制备方法所制备的片状的掺杂铌酸铋钙的应用,将片状的掺杂铌酸铋钙作为铋层状结构铁电体织构的模板。
有益效果
本发明采用熔盐法制备Na,Sm共掺杂的铌酸铋钙,本发明中选用中性盐作为熔盐,熔点低,在较低温度就可以形成液相,可以极大的提高物质传输速率,产物物质分布更加均匀。由于在铋层状结构铁电体中,(001)晶面的表面能较低,导致在烧结过程中晶体沿a-b面的生长速率远大于沿c轴的生长速率,使得其晶体形貌呈片状。获得大尺寸且具有优异铁电性的片状掺杂的铌酸铋钙。
本发明所制备的Na,Sm共掺杂的铌酸铋钙,其微观形貌为片状,片尺寸普遍超过10μm,最大尺寸接近45μm,且尺寸均匀、具有铁电性,这种尺寸均匀的大尺寸片状晶体适合用于作为模板晶粒生长法的模板晶粒,尤其适合用于制备同质的铌酸铋钙基织构陶瓷,有利于提高其织构度。另外,这种大尺寸的片状粉体也适合用于压电-光催化降解,大的形变有利于产生压电势,进一步的提高其压电催化活性。
附图说明
图1实施例1所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的XRD图。
图2实施例1所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的SEM图。
图3实施例2所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的XRD图。
图4实施例2所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的SEM图。
图5实施例3所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的XRD图。
图6实施例3所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的SEM图。
图7实施例4所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的XRD图。
图8实施例4所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的SEM图。
图9实施例4所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的晶粒尺寸分布图。
图10实施例5所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的XRD图。
图11实施例5所制备的Ca0.95Na0.025Sm0.025Bi2Nb2O9粉体的SEM图。
图12对比例1所制备的CaBi2Nb2O9粉体的XRD图。
图13对比例1所制备的CaBi2Nb2O9粉体的SEM图。
图14对比例2所制备的CaBi2Nb2O9粉体的XRD图。
图15对比例2所制备的CaBi2Nb2O9粉体的SEM图。
从上述图中可以看到,本发明所提供的所有XRD图像均与标准PDF卡片(PDF#49-0608)吻合,没有杂质出现。所有实施例的XRD图与固相法的粉体的XRD图像比,(00l)晶面,如(002)、(004、(006)(008)、(0010)、(0014)晶面,所对应的衍射峰强度都有明显提升,这是因为铋层状结构铁电体的a-b面的生长速率远大于沿c轴方向的生长速率,且液态的熔盐为物质传输提供了良好的条件,使得CaBi2Nb2O9能够生长成片状的形貌,而(00l)晶面都是平行于a-b面的晶面,因此这些晶面的强度都得到了不同程度的增强。
SEM图像和粒径分布图:
对比例1中的粉体形貌呈不规则的颗粒状,尺寸为纳米级,且尺寸分布范围较大(400~1200nm)。而对比例2虽然也为熔盐法,但是由于未进行掺杂,虽所得也为片状粉体,但是片状尺寸相对于实施例来说小。
从实施例1-4可以看到,所制得的均为片状,片状尺寸分布较为集中,且随着加热温度升高或保温时间增加,片的尺寸逐渐增大,最大的片尺寸可达45μm。
具体实施方式
实施例1
Ca0.95Na0.025Sm0.025Bi2Nb2O9,烧结条件:950℃、6h
1.按照化学计量比称取掺杂铌酸铋钙的原料,选择中性盐NaCl-KCl(NaCl和KCl的摩尔比为1:1),原料与中性盐的质量比为1:1;
2.将原料和中性盐、锆球、无水乙醇以1:1.5:0.65的质量比置于球磨罐以300r/min的转速球磨24h,然后干燥、筛粉;
3.将干燥后的粉末倒入坩埚以950℃的温度保温6h,升温速率为5℃/min;
4.将合成的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
由图2可以看到所制得的均为片状,片状尺寸分布较为集中,平均尺寸3~6μm,最大约15μm,厚度为300-400nm。
使用全弧光的氙灯作为光源和超声机作为振动源,将50mg的该粉末用于降解200mL的10mg/L罗丹明B水溶液,在30min内可以将溶液变澄清。
实施例2
Ca0.95Na0.025Sm0.025Bi2Nb2O9,烧结条件:1000℃、6h
1.按照化学计量比称取掺杂铌酸铋钙的原料,选择中性盐NaCl-KCl(NaCl和KCl的摩尔比为1:1),原料与中性盐的质量比为1:1;
2.将原料和中性盐、锆球、无水乙醇以1:1.5:0.65的质量比置于球磨罐以300r/min的转速球磨24h,然后干燥、筛粉;
3.将干燥后的粉末倒入坩埚以1000℃的温度保温6h,升温速率为5℃/min;
4.将合成的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
实施例3
Ca0.95Na0.025Sm0.025Bi2Nb2O9,烧结条件:1000℃、9h
1.按照化学计量比称取掺杂铌酸铋钙的原料,选择中性盐NaCl-KCl(NaCl和KCl的摩尔比为1:1),原料与中性盐的质量比为1:1;
2.将原料和中性盐、锆球、无水乙醇以1:1.5:0.65的质量比置于球磨罐以300r/min的转速球磨24h,然后干燥、筛粉;
3.将干燥后的粉末倒入坩埚以1000℃的温度保温9h,升温速率为5℃/min;
4.将合成的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
实施例4
Ca0.95Na0.025Sm0.025Bi2Nb2O9,烧结条件:1050℃、6h
1.按照化学计量比称取掺杂铌酸铋钙的原料,选择中性盐NaCl-KCl(NaCl和KCl的摩尔比为1:1),原料与中性盐的质量比为1:1;
2.将原料和中性盐、锆球、无水乙醇以1:1.5:0.65的质量比置于球磨罐以300r/min的转速球磨24h,然后干燥、筛粉;
3.将干燥后的粉末倒入坩埚以1050℃的温度保温6h,升温速率为5℃/min;
4.将合成的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
使用全弧光的氙灯作为光源和超声机作为振动源,将50mg的该粉末用于降解200mL的10mg/L罗丹明B水溶液,在20min内可以将溶液变澄清。
实施例5
Ca0.95Na0.025Sm0.025Bi2Nb2O9,烧结条件:1100℃、6h
1.按照化学计量比称取掺杂铌酸铋钙的原料,选择中性盐NaCl-KCl(NaCl和KCl的摩尔比为1:1),原料与中性盐的质量比为1:1;
2.将原料和中性盐、锆球、无水乙醇以1:1.5:0.65的质量比置于球磨罐以300r/min的转速球磨24h,然后干燥、筛粉;
3.将干燥后的粉末倒入坩埚以1100℃的温度保温6h,升温速率为5℃/min;
4.将合成的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
图11可以看到所制得的均为片状,片状尺寸分布较为集中,平均尺寸最大约45μm,其降解罗丹明B所需的时间只需15min。
对比例1
固相法制备CaBi2Nb2O9粉体
(1)按照化学计量比称取原料;
(2)将原料、锆球以1:3的质量比置于球磨罐内,加入无水乙醇末过锆球,以300r/min的转速球磨24h,干燥、筛粉;
(3)将干燥后的粉末以5℃/min中的升温速率至925℃保温2h;
(4)将烧结后的粉末倒入球磨罐内球磨,方法与步骤(2)相同,干燥、筛粉,得到CaBi2Nb2O9粉体。
由图13可以看到,对比例1中的粉体形貌呈不规则的颗粒状,尺寸为纳米级,范围较宽。
使用全弧光的氙灯作为光源和超声机作为振动源,将50mg的该粉末用于降解200mL的10mg/L罗丹明B水溶液,在90min才可以将溶液变澄清。
对比例2
(1)CaBi2Nb2O9,烧结条件:950℃、6h
1.按照化学计量比称取掺杂铌酸铋钙的原料,选择中性盐NaCl-KCl(NaCl和KCl的摩尔比为1:1),原料与中性盐的质量比为1:1;
2.将原料和中性盐、锆球、无水乙醇以1:1.5:0.65的质量比置于球磨罐以300r/min的转速球磨24h,然后干燥、筛粉;
3.将干燥后的粉末倒入坩埚以950℃的温度保温6h,升温速率为5℃/min;
4.将合成的样品用去离子水清洗,直到清洗的水的电导率降至3μS/cm,得到所需粉体。
由图15可以看到所制得的均为片状,片状尺寸分布较为集中,平均尺寸最大仅约1-2μm,厚度为300-400nm。
使用全弧光的氙灯作为光源和超声机作为振动源,将50mg的该粉末用于降解200mL的10mg/L罗丹明B水溶液,在60min才可以将溶液变澄清。

Claims (6)

1.一种片状的掺杂铌酸铋钙的制备方法,其特征在于:将CaCO3粉体、Bi2O3粉体、Nb2O5粉体、Sm2O3粉体和NaCO3粉体,混合获得混合料,将混合料与中性盐球磨获得球磨粉,将球磨粉烧结即得片状的掺杂铌酸铋钙,
所述中性盐由NaCl和KCl组成;
所述混合料与中性盐的质量比为0.5~2:1;
所述球磨为湿法球磨,球磨介质为无水乙醇,磨球的材料为氧化锆,其中,球磨介质与磨球的质量比为0.65:1~2;
所述球磨的转速为300~400r/min,所述球磨的时间为12~24h;
所述烧结的温度为1050℃~1100℃,烧结的时间为6~7h;
所述片状的掺杂铌酸铋钙,其化学通式为:Ca1-2xSmxNaxBi2Nb2O9,其中,0.005≤ x<0.05;
在上述通式中,x表示Sm、Na两种元素的摩尔分数;
所述片状的掺杂铌酸铋钙平均片尺寸≥10µm。
2.根据权利要求1所述的一种片状的掺杂铌酸铋钙的制备方法,其特征在于:所述中性盐中,按摩尔比计,NaCl:KCl=0.8:1.2~1。
3.根据权利要求1所述的一种片状的掺杂铌酸铋钙的制备方法,其特征在于:所述烧结时的升温速率为3~5℃/min。
4.根据权利要求1所述的一种片状的掺杂铌酸铋钙的制备方法,其特征在于:所述片状的掺杂铌酸铋钙,其化学通式为:Ca1-2xSmxNaxBi2Nb2O9,其中,0.02≤ x<0.03。
5.根据权利要求1-4任意一项所述的制备方法所制备的片状的掺杂铌酸铋钙。
6.根据权利要求1-4任意一项所述的制备方法所制备的片状的掺杂铌酸铋钙的应用,其特征在于,将片状的掺杂铌酸铋钙作为铋层状结构铁电体织构的模板或用于催化降解。
CN202210429436.7A 2022-04-22 2022-04-22 一种片状的掺杂铌酸铋钙及其制备方法和应用 Active CN114956175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210429436.7A CN114956175B (zh) 2022-04-22 2022-04-22 一种片状的掺杂铌酸铋钙及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210429436.7A CN114956175B (zh) 2022-04-22 2022-04-22 一种片状的掺杂铌酸铋钙及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114956175A CN114956175A (zh) 2022-08-30
CN114956175B true CN114956175B (zh) 2023-09-08

Family

ID=82978647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210429436.7A Active CN114956175B (zh) 2022-04-22 2022-04-22 一种片状的掺杂铌酸铋钙及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114956175B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973764A (zh) * 2010-10-15 2011-02-16 同济大学 一种织构化的铌酸铋钙陶瓷材料及其制备方法
CN104310992A (zh) * 2014-10-20 2015-01-28 江西理工大学 熔盐法合成La2O3-MgO-TiO2系介电陶瓷烧结粉体及其烧结方法
CN105664916A (zh) * 2016-03-04 2016-06-15 苏州格瑞惠农膜材料科技有限公司 一种新型的铌酸铋钙钠光催化材料的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926389B2 (ja) * 2004-06-17 2012-05-09 株式会社豊田中央研究所 結晶配向セラミックス、及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973764A (zh) * 2010-10-15 2011-02-16 同济大学 一种织构化的铌酸铋钙陶瓷材料及其制备方法
CN104310992A (zh) * 2014-10-20 2015-01-28 江西理工大学 熔盐法合成La2O3-MgO-TiO2系介电陶瓷烧结粉体及其烧结方法
CN105664916A (zh) * 2016-03-04 2016-06-15 苏州格瑞惠农膜材料科技有限公司 一种新型的铌酸铋钙钠光催化材料的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effects of (Li0.5Sm0.5)/W co-substitution and sintering temperature on thestructure and electrical properties of ultrahigh Curie temperature piezoceramics, Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9;Changbai Long et al.;《Journal of the European Ceramic Society》;20210120;第3369-3378页 *

Also Published As

Publication number Publication date
CN114956175A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
JP3963962B2 (ja) ペロブスカイト化合物の結晶性セラミック粉体の合成方法
CN101244933B (zh) 一种片状钛酸铋钠模板晶粒制备方法
JP5775867B2 (ja) 方法
Supriya Synthesis mechanisms and effects of BaTiO3 doping on the optical properties of Bi0. 5Na0. 5TiO3 lead-free ceramics
CN111533556B (zh) 一种晶粒取向铌酸锶钠无铅铁电陶瓷的制备方法
CN108530057B (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
CN109678506B (zh) 一种氧化铒透明陶瓷的制备方法
Choy et al. Citrate route to the piezoelectric Pb (Zr, Ti) O3oxide
Ge et al. Size dependence of the polarization and dielectric properties of KNbO 3 nanoparticles
CN108147452A (zh) 一种尺寸可控的低维钛酸锶晶体的合成方法及应用
Supriya Effect of doping and enhanced microstructures of bismuth titanates as aurivillius perovskites
CN114956175B (zh) 一种片状的掺杂铌酸铋钙及其制备方法和应用
CN103449520A (zh) 一种棒状五氧化二铌模板晶粒及其制备方法
JPH062584B2 (ja) チタン酸鉛微結晶及びその製造方法
JPH0214823A (ja) 酸化イットリウムで安定化された酸化ジルコニウムのサブミクロン粉末の製造法
Ohara et al. Hydrothermal synthesis of fibrous lead titanate powders
Kanie et al. Hydrothermal synthesis of sodium and potassium niobates fine particles and their application to lead-free piezoelectric material
CN113955796B (zh) 一种驰豫铁电单晶生长用原料的制备方法
CN107586129B (zh) 一种[100]方向织构化钛酸钡压电陶瓷制备方法
Teixeira et al. Chemical synthesis and epitaxial growth methods for the preparation of ferroelectric ceramics and thin films
CN113480306A (zh) 一种BaTiO3微晶粉体的制备方法
Mandal Rietveld refinement on XRD and TEM study of nanocrystalline PbZrTiO ceramics prepared with a soft chemistry route
Li et al. Synthesis of high aspect ratio (K, Na) NbO 3 plate-like particles and study on the synthesis mechanism
JP2006124251A (ja) 結晶配向セラミックスの製造方法
KR102016916B1 (ko) Llzo 산화물 고체 전해질 분말의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant