CN114931972A - 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用 - Google Patents

一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用 Download PDF

Info

Publication number
CN114931972A
CN114931972A CN202210446248.5A CN202210446248A CN114931972A CN 114931972 A CN114931972 A CN 114931972A CN 202210446248 A CN202210446248 A CN 202210446248A CN 114931972 A CN114931972 A CN 114931972A
Authority
CN
China
Prior art keywords
hbeta
catalyst
preparing
mesoporous beta
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210446248.5A
Other languages
English (en)
Other versions
CN114931972B (zh
Inventor
亢玉红
张啸杞
刘光辉
高勇
李彦军
王爱民
白锦军
马向荣
范晓勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yulin University
Original Assignee
Yulin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yulin University filed Critical Yulin University
Priority to CN202210446248.5A priority Critical patent/CN114931972B/zh
Publication of CN114931972A publication Critical patent/CN114931972A/zh
Application granted granted Critical
Publication of CN114931972B publication Critical patent/CN114931972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,涉及工业应用催化剂制备领域。包括以下步骤:制备硅烷化PHAPTMS气相SiO2;制备中孔Beta前体;制备HBeta固体酸载体;制备Ni/Mo@HBeta催化剂。还公开了一种利用上述方法得到的Ni/Mo@HBeta催化剂及应用。本发明采用硅烷化PHAPTMS气相SiO2作为水热合成的硅源,在低温水热条件下制备中孔Beta前体,然后高温焙烧制备HBeta固体酸载体;针对HBeta固体酸载体结构与耐碱性能,通过改性分级沉积‑沉淀法将负载的非贵金属团簇沉淀物均匀分散于HBeta固体酸载体表面与中孔孔道内,结合氧化‑还原调变方法,制备Ni/Mo@HBeta催化剂,反应活性高,抗杂原子性能优异和耐久性强,在生物衍生油的温和催化加氢转化反应中,可高效的氢化饱和芳环并同时脱除杂原子。

Description

一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及 应用
技术领域
本发明涉及催化剂制备技术领域,特别涉及一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用。
背景技术
通过高效解聚生物质大分子网络结构获取生物衍生油,进一步采用高活性催化剂脱除生物衍生油中的杂原子,主要为O、N和S,氢化饱和芳环并对支链烷烃异构化获取环烷烃和异构链烷烃,是一种重要的低碳能源工艺加工转化途经。
基于能源产业发展大背景和生物质转化工艺路径的实际需求,发展高活性的双功能催化剂,在适宜的催化加氢转化体系内,通过非贵金属与固体酸载体催化性能的协同,在反应过程中高效裂断不同类型的杂原子桥键并脱除杂原子,同时氢化饱和芳环级联直链烷烃异构化是生物质高效清洁转化的技术关键。
因此,亟需研究一种高分散度双金属团簇负载型高活性双功能催化剂,实现生物质的高效清洁转化。
发明内容
为解决上述技术问题,本发明提供了一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用,采用硅烷化PHAPTMS气相SiO2作为水热合成的硅源,在低温水热条件下制备中孔Beta前体,然后以梯次离子交换级联氮气气氛炉高温焙烧制备HBeta固体酸载体;针对HBeta固体酸载体结构与耐碱性能,通过改性分级沉积-沉淀法将负载的非贵金属团簇沉淀物均匀分散于HBeta固体酸载体表面与中孔孔道内,结合氧化-还原调变方法,制备 Ni/Mo@HBeta催化剂。
为实现上述目的,本发明采用下述技术方案:
根据本发明实施例的第一方面,提出了一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法。
在一实施例中,高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,包括以下步骤:
制备硅烷化PHAPTMS气相SiO2
制备中孔Beta前体;
制备HBeta固体酸载体;
制备Ni/Mo@HBeta催化剂。
可选地,制备硅烷化PHAPTMS气相SiO2的步骤包括:
a1、将气相SiO2:H2O:PHAPTMS:CH3OH按照摩尔比为1:60:0.1-0.2:6混合,得原料混合液;
a2、将原料混合液加热至90℃,在回流条件下搅拌,搅拌转速为50rad/min,搅拌时间为8h,然后自然冷却至室温,得到固液混合物,其中升温速率为5℃/min;
a3、将固液混合物离心得到的固体物,在常温下甲醇洗涤3次后真空干燥,得到硅烷化 PHAPTMS气相SiO2,其中,干燥温度为50℃,干燥时间为10h。
可选地,制备中孔Beta前体的步骤包括:
b1、将NaOH:Al2O3:TEABr:硅烷化PHAPTMS气相SiO2按照摩尔比为 12:450-500:3725:4280置于18mL去离子水中,密封并常温搅拌,搅拌速率为200rad/min,搅拌时间为2-3h,得到凝胶体;
b2、将所得凝胶体转移至自生压力水热反应釜内,密封后进行晶化,晶化温度为130~155℃,晶化时间为13~18d,得到混合物,经水洗、离心,得到pH为7的沉淀物;
b3、将所得沉淀物干燥,干燥温度为90℃,干燥时间24h,得到干燥沉淀物,将干燥沉淀物置于氧气气氛炉升温至500-600℃进行焙烧,焙烧时间为4-7h,冷却制室温,得到中孔 Beta前体,其中,升温速率为5-10℃/min。
可选地,准备中孔HBeta固体酸载体的步骤包括:
c1、将中孔Beta前体置于1.0mol L-1的硝酸铵溶液中进行离子交换,35℃下以100rad/min 的转速搅拌1.2h,三次离子交换后离心收集沉淀物;
c2、将所得沉淀物干燥,干燥温度为90℃,干燥时间为24h,置于氧气气氛炉进行焙烧,焙烧温度为500-600℃,焙烧时间为4-7h,冷却制室温,得到HBeta固体酸载体。
可选地,制备Ni/Mo@HBeta催化剂的步骤包括:
d1、将HBeta固体酸载体与去离子水按固液比为1:25混合,置于密闭容器内,在转速为200rad/min的搅拌速率下升温至45-65℃后,加入Ni盐和Mo盐,维持45-65min;
d2、将浓度为2.5wt%-3.5wt%的稀氨水经分液漏斗逐滴滴加到d1步骤中所述密闭容器内至pH为9.5-11,搅拌,搅拌速率为200rad/min,搅拌时间为40-60min,分离沉淀物并干燥,得到Ni/Mo@HBeta前体;
d3、将所得Ni/Mo@HBeta前体置于氧气气氛炉中,升温至200℃维持0.8h,升温速率为2℃/min,切换氧气为氢气,以同样的升温速率升温至480℃后维持3h,然后冷却,得到制备得到Ni/Mo@HBeta催化剂。
可选地,步骤a1中,原料配比中气相SiO2与PHAPTMS的摩尔比为1:0.12;步骤a3 洗涤中固体物与甲醇的固液比为1:30,洗涤时间为15min。
可选地,步骤b1中,中孔Beta制备原料Al2O3与PHAPTMS气相SiO2的摩尔比为480:4280。
可选地,步骤b2中,自生压力水热反应釜中晶化温度为135℃,晶化时间为16d。
可选地,步骤b3中,干燥沉淀物的焙烧的升温速率为8℃/min,焙烧温度为560℃,焙烧时间为5h。
可选地,步骤d1中,步骤d1中,密闭容器温度为55℃,加入Ni盐和Mo盐后继续搅拌50min,Ni和Mo负载量之和为3~13wt%。
可选地,步骤d2中,所述稀氨水浓度为3.0wt%,密闭容器内溶液pH为10.6,搅拌时间为55min。
根据本发明实施例的第二方面,提出了一种高分散度Ni/Mo团簇负载中孔Beta(Ni/Mo@HBeta)催化剂。
根据本发明实施例的第三方面,提出了一种上述催化剂的应用。
在一个实施例中,上述催化剂应用于生物衍生油催化加氢转化为链烷烃和环烷烃。
本发明的有益效果是:
1、本发明采用SiO2为硅源,在低温水热环境下成功制备出孔径为2~50nm的中孔Beta 沸石前体,经离子交换后形成的HBeta具有较高热和水热稳定性,高BET比表面积,结构内贯穿孔道均匀,可接近性酸性位点分布更加均匀。
2、本发明通过改性分级沉积-沉淀法,将负载的Ni和Mo团簇沉淀物均匀分散于HBeta 固体酸载体表面与中孔孔道内,结合氧化-还原调变方法,得到活性Ni和Mo组分以团簇形式存在的高活性Ni/Mo@HBeta双功能催化剂。
3、本发明制得的高活性Ni/Mo@HBeta双功能催化剂,通过优化Ni和Mo团簇间的原子间距,控制d轨道空穴电子优化非贵金属加氢反应活性。在Ni和Mo团簇和中孔HBeta的协同作用下,可使生物衍生油中有机大分子中含杂原子的桥键高效裂解和脱除,反应体系中的芳环高效氢化饱和、链烷烃高效异构化,同时能有效避免Ni/Mo@HBeta双功能催化剂受杂原子作用而中毒失活。
4、本发明制得的Ni/Mo@HBeta双功能催化剂,应用于生物衍生油的温和加氢转化体系,其中生物衍生油中的含氧化合物、含氮化合物、含硫化合物以及芳烃可被完全转化为61.5wt%烷基环烷烃和38.5wt%的链烷烃,生成的烷基环烷烃和链烷烃是特种燃料和高密度燃料的优质基础油。
附图说明
图1为本发明实施例1为10Ni/3Mo@HBeta双功能催化剂的N2-吸附-脱附等温曲线图以及孔径分布图;
图2为本发明实施例1为10Ni/3Mo@HBeta双功能催化剂的SEM图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,包括以下步骤:
1、将10g气相SiO2溶于180ml去离子水,然后加入32.0mL CH3OH和32.4g PHAPTMS,以5℃/min的速率升温至90℃,在回流条件下搅拌,搅拌转速为50rad/min,搅拌时间为8h,然后自然冷却至室温,得到固液混合物,将固液混合物离心得到的固体物,经甲醇洗涤3次后真空干燥,干燥温度为50℃,干燥时间为10h,得到硅烷化PHAPTMS气相SiO2,其中,固体物与甲醇的固液比为1:30,洗涤时间为15min;
2、依次将0.02g NaOH、0.49g NaAlO2、3.73g TEABr、4.28g硅烷化PHAPTMS气相SiO2在常温搅拌条件下加入18mL去离子水中,搅拌速率为200rad/min,搅拌时间为2h,得到凝胶体;将所得凝胶体转移至自生压力水热反应釜内,密封后进行晶化,晶化温度为 135℃,晶化时间为16d,得到混合物,经水洗、离心,得到pH为7的沉淀物;将所得沉淀物干燥,干燥温度为90℃,干燥时间24h,得到干燥沉淀物,将干燥沉淀物置于氧气气氛炉升温至560℃进行焙烧,焙烧时间为5h,冷却至室温,得到中孔Beta前体,其中,升温速率为8℃/min;因不存在具有化学活性的氧化铝,该反应过程中选用偏铝酸钠;
3、将中孔Beta前体置于1.0mol L-1的硝酸铵溶液中进行离子交换,35℃下以100rad/min 的转速搅拌1.2h,三次离子交换后离心收集沉淀物;将所得沉淀物干燥,干燥温度为90℃,干燥时间为24h,得铵型中孔Beta前体;将铵型中孔Beta前体置于氧气气氛马弗炉中,进行焙烧,焙烧温度为560℃,焙烧时间为5h,冷却至室温,得到中孔HBeta固体酸载体;
4、取4g中孔HBeta固体酸载体与100mL去离子水混合,置于密闭容器中,在转速为200rad/min下升温至55℃,加入2.04g Ni(NO3)2·6H2O和0.24g(NH4)6MoO24·4H2O后继续密闭搅拌50min;将浓度为3.0wt%的稀氨水经分液漏斗逐滴滴加至密闭容器内至pH为 10.6,搅拌,搅拌速率为200rad/min,搅拌时间为55min后,分离沉淀物并干燥,得到 Ni/Mo@HBeta前体;将Ni/Mo@HBeta前体置于氧气气氛炉中,以2℃/min的速率升温至 200℃,维持0.8h,切换氧气气氛为氢气气氛,以2℃/min的速率升温至480℃,恒温维持 3h,冷却,得到10Ni/3Mo@HBeta催化剂。
图1为Ni/Mo@HBeta双功能催化剂的N2-吸附-脱附等温曲线图以及孔径分布图,从图1 可知Ni/Mo@HBeta双功能催化剂具有2-5nm的中孔孔道;图2为Ni/Mo@HBeta双功能催化剂的SEM图,从图2可知金属Ni/Mo均匀的分散到了HBeta酸性载体表面,并以高分散度的团簇形式存在,催化剂的分散度越高,原子利用效率越高,催化性能越好。
实施例2
与实施例1不同之处在于:非贵金属盐Ni(NO3)2·6H2O和(NH4)6MoO24·4H2O加入量,分别为0.80g和0.20g,制得双功能催化剂为8Ni/5Mo@HBeta-1。
实施例3
与实施例1不同之处在于:非贵金属盐Ni(NO3)2·6H2O和(NH4)6MoO24·4H2O加入量,分别为0.50g和0.30g,制得双功能催化剂为5Ni/8Mo@HBeta-2。
实施例4
与实施例1不同之处在于:非贵金属盐Ni(NO3)2·6H2O和(NH4)6MoO24·4H2O加入量,分别为0.30g和1.00g,制得双功能催化剂为3Ni/10Mo@HBeta-3。
实施例5
与实施例1不同之处在于,非贵金属盐Ni(NO3)2·6H2O加入量为1.30g,制得双功能催化剂为13Ni@HBeta。
实施例6
与实施例1不同之处在于,非贵金属盐(NH4)6MoO24·4H2O加入量为1.30g,制得双功能催化剂为13Mo@HBeta。
应用例1
将实施例1至6制备的催化剂应用于生物衍生油的模型化合物(4-甲氧基苯酚)的催化加氢转化反应中。
反应条件:在程序式温控高压机械搅拌微型高压反应釜评价催化剂。
以4-甲氧基苯酚为模型化合物,取催化剂0.05g、4-甲氧基苯酚1mL和20mL正己烷依次加入微型高压反应釜中,反应条件为:起始氢压为5Mpa,反应温度为140℃,反应时间为2h。以此来评价实例1至6催化剂的催化加氢转化能力。
加氢产物分析方法:采用Agilent 8890/5977四极杆气相色谱/质谱联用仪对催化加氢转化产物的有机分子组成进行分析,色谱柱为60m×0.25mm×0.25μm的HP-5MS毛细管交联柱,数据图谱库为NIST20图谱库。
在不同时间下,实施例1至6所制得的6种能催化剂,在相同的条件下,对4-甲氧基苯酚进行催化加氢转化性能评价,获得4-甲氧基苯酚的转化率和产物的摩尔产率及如表1所示。
表1
Figure BDA0003615660140000061
通过表1的数据可以看出,在模型化合物4-甲氧基苯酚的催化加氢转化评价中,负载单金属的Ni@HBeta和Mo@HBeta,与负载双金属的Ni/Mo@HBeta相比,Ni/Mo@HBeta可使 4-甲氧基苯酚全部转化为环己烷,金属Mo引入,强化了电子的效率,延长了催化剂的寿命,双金属催化剂更具有优势。就不同负载量比较,负载不同量非贵金属量的Ni和Mo,催化剂 Ni/Mo@HBeta更具有优势,可完全裂断>Car-O桥键,脱除4-甲氧基苯酚中的氧原子,并可将苯环彻底饱和转化为环己烷。
应用例2
将实施例1制得的Ni/Mo@HBeta催化剂应用于生物衍生的油催化加氢转化反应中。
反应条件:在程序式温控高压机械搅拌微型高压反应釜评价催化剂。
取0.1g生物衍生油为反应底物,0.05g的Ni/Mo@HBeta催化剂和20mL正己烷溶剂置于微型高压反应釜中,反应条件为:起始氢压为5Mpa,反应温度为140℃,反应时间为2h。以此来评价实例1的Ni/Mo@HBeta催化剂的催化加氢转化性能。
加氢产物分析方法:采用Agilent 8890/5977四极杆气相色谱/质谱联用仪对催化加氢转化产物的有机分子组成进行分析,色谱柱为60m×0.25mm×0.25μm的HP-5MS毛细管交联柱,数据图谱库为NIST20图谱库。
实施例1制得的Ni/Mo@HBeta催化剂,采用GC/MS定量分析生物衍生油分和高值基础燃料油有机族组分,各族组分含量如表2所示。
表2
Figure BDA0003615660140000071
应用例2说明,Ni/Mo@HBeta催化剂在生物衍生油的催化加氢转化反应中,可将生物衍生油中芳烃、含氧化合物、含氮化合物和含硫化合物全部转化为链烷烃和烷基环烷烃,加氢转化产物是特种燃料和高密度燃料的优质基础油。除此之外,相比于贵金属催化剂,非贵金属Ni和Mo以团簇形式负载于中孔HBeta上,催化剂在价格方面更具有优势。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,包括以下步骤:
制备硅烷化PHAPTMS气相SiO2
制备中孔Beta前体;
制备HBeta固体酸载体;
制备Ni/Mo@HBeta催化剂。
2.根据权利要求1所述的一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,所述制备硅烷化PHAPTMS气相SiO2的步骤包括:
a1、将气相SiO2:H2O:PHAPTMS:CH3OH按照摩尔比为1:60:0.1-0.2:6混合,得原料混合液;
a2、将原料混合液加热至90℃,在回流条件下搅拌,搅拌转速为50rad/min,搅拌时间为8h,然后自然冷却至室温,得到固液混合物,其中升温速率为5℃/min;
a3、将固液混合物离心得到的固体物,在常温下甲醇洗涤3次后真空干燥,得到硅烷化PHAPTMS气相SiO2,其中,干燥温度为50℃,干燥时间为10h。
3.根据权利要求1所述的一种高分散度双金属团簇负载中孔Beta催化剂的制备方法,其特征在于,所述制备中孔Beta前体的步骤包括:
b1、将NaOH:Al2O3:TEABr:硅烷化PHAPTMS气相SiO2按照摩尔比为12:450-500:3725:4280置于18mL去离子水中,密封并常温搅拌,搅拌速率为200rad/min,搅拌时间为2-3h,得到凝胶体;
b2、将所得凝胶体转移至自生压力水热反应釜内,密封后进行晶化,晶化温度为130~155℃,晶化时间为13~18d,得到混合物,经水洗、离心,得到pH为7的沉淀物;
b3、将所得沉淀物干燥,干燥温度为90℃,干燥时间24h,得到干燥沉淀物,将干燥沉淀物置于氧气气氛炉升温至500-600℃进行焙烧,焙烧时间为4-7h,冷却至室温,得到中孔Beta前体,其中,升温速率为5-10℃/min。
4.根据权利要求1所述的一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,所述制备HBeta固体酸载体的步骤包括:
c1、将中孔Beta前体置于1.0mol L-1的硝酸铵溶液中进行离子交换,35℃下以100rad/min的转速搅拌1.2h,三次离子交换后离心收集沉淀物;
c2、将所得沉淀物干燥,干燥温度为90℃,干燥时间为24h,置于氧气气氛炉进行焙烧,焙烧温度为500-600℃,焙烧时间为4-7h,冷却制室温,得到HBeta固体酸载体。
5.根据权利要求1所述的一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,所述制备Ni/Mo@HBeta催化剂的步骤包括:
d1、将HBeta固体酸载体与去离子水按固液比为1:25混合,置于密闭容器内,在转速为200rad/min下升温至45-65℃,加入Ni盐和Mo盐后继续搅拌45-65min;
d2、将稀氨水逐滴滴加到d1步骤中所述密闭容器内至pH为9.5-11,搅拌,搅拌速率为200rad/min,搅拌时间为40-60min,分离沉淀物并干燥,得到Ni/Mo@HBeta前体;
d3、将所得Ni/Mo@HBeta前体置于氧气气氛炉中,升温至200℃维持0.8h,升温速率为2℃/min,然后切换氧气为氢气,以2℃/min的升温速率升温至480℃后维持3h,冷却,得到制备得到Ni/Mo@HBeta催化剂。
6.根据权利要求2所述的一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,步骤a1中,原料配比中气相SiO2与PHAPTMS的摩尔比为1:0.12;步骤a3洗涤中固体物与甲醇的固液比为1:30,洗涤时间为15min。
7.根据权利要求3所述的一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,步骤b1中,Al2O3与硅烷化PHAPTMS气相SiO2的摩尔比为480:4280。
8.根据权利要求3所述的一种高分散度Ni/Mo团簇负载中孔Beta催化剂的制备方法,其特征在于,步骤d1中,Ni和Mo负载量之和为13wt%。
9.一种如权利要求1至8任一项所述的方法制备的Ni/Mo@HBeta催化剂。
10.如权利要求9所述的负载型多级孔固体酸双功能催化剂的应用,其特征在于,所述Ni/Mo@HBeta催化剂应用于生物衍生油催化加氢转化为链烷烃和环烷烃。
CN202210446248.5A 2022-04-26 2022-04-26 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用 Active CN114931972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210446248.5A CN114931972B (zh) 2022-04-26 2022-04-26 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210446248.5A CN114931972B (zh) 2022-04-26 2022-04-26 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN114931972A true CN114931972A (zh) 2022-08-23
CN114931972B CN114931972B (zh) 2023-10-24

Family

ID=82863248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210446248.5A Active CN114931972B (zh) 2022-04-26 2022-04-26 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN114931972B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075459A (ja) * 2002-08-19 2004-03-11 Tokuyama Corp 変性シリカ分散液及びその製造方法
CN107804856A (zh) * 2017-12-13 2018-03-16 山东齐鲁华信高科有限公司 高硅铝比Beta分子筛的直接合成方法
CN108043455A (zh) * 2017-12-06 2018-05-18 浙江海洋大学 用于合成二氧七环的固体酸催化剂及其制备方法和利用固体酸催化剂合成二氧七环的方法
KR20210066563A (ko) * 2019-11-28 2021-06-07 창원대학교 산학협력단 실란커플링제를 이용한 실리카 표면 개질방법
CN113164938A (zh) * 2018-12-03 2021-07-23 古河电气工业株式会社 催化剂结构体及其制造方法、以及使用了该催化剂结构体的烃的制造方法
CN113164934A (zh) * 2018-12-03 2021-07-23 国立大学法人北海道大学 功能性结构体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075459A (ja) * 2002-08-19 2004-03-11 Tokuyama Corp 変性シリカ分散液及びその製造方法
CN108043455A (zh) * 2017-12-06 2018-05-18 浙江海洋大学 用于合成二氧七环的固体酸催化剂及其制备方法和利用固体酸催化剂合成二氧七环的方法
CN107804856A (zh) * 2017-12-13 2018-03-16 山东齐鲁华信高科有限公司 高硅铝比Beta分子筛的直接合成方法
CN113164938A (zh) * 2018-12-03 2021-07-23 古河电气工业株式会社 催化剂结构体及其制造方法、以及使用了该催化剂结构体的烃的制造方法
CN113164934A (zh) * 2018-12-03 2021-07-23 国立大学法人北海道大学 功能性结构体
KR20210066563A (ko) * 2019-11-28 2021-06-07 창원대학교 산학협력단 실란커플링제를 이용한 실리카 표면 개질방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴永进: ""Mo/HBeta催化剂二苯并噻加氢脱硫性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, pages 13 - 15 *

Also Published As

Publication number Publication date
CN114931972B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
Li et al. One-step synthesis of H–β zeolite-enwrapped Co/Al2O3 Fischer–Tropsch catalyst with high spatial selectivity
CN112090443A (zh) 加氢脱氧催化剂及其应用和环己烷的制备方法
CN102698788B (zh) 用于苯酚加氢脱氧的高分散双功能催化剂及其制备方法
CN111013663B (zh) 一种用于催化液体有机氢载体吸氢和放氢的基于过渡金属-硼的催化剂及其制备方法
Sobuś et al. Design of Co, Cu and Fe–BEA zeolite catalysts for selective conversion of lactic acid into acrylic acid
Wang et al. Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural
CN110935473A (zh) 加氢脱氧催化剂及其制备方法与应用
CN114931971B (zh) 一种镍纳米团簇负载晶间中孔沸石催化剂及其制备方法和应用
CN114931972A (zh) 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用
CN112642417B (zh) 一种脱氢催化剂载体的制备方法及其应用
Xu et al. Partial hydrogenation of anisole to cyclohexanone in water medium catalyzed by atomically dispersed Pd anchored in the micropores of zeolite
Wei et al. A novel carbon-based solid acid catalyst with high acidity for the hydration of α-pinene to α-terpineol: Effect of graphite crystallite size and synergistic effect of defects
CN107008489B (zh) 用于木质素加氢解聚的分子筛负载钒基催化剂及其制备方法
CN111298826A (zh) 一种小晶粒的Ni@Silicalite-1封装催化剂及其合成方法和用途
CN112058306B (zh) 一种高活性负载型双功能催化剂、制备方法及其应用
Török et al. Homogeneous and heterogeneous asymmetric reactions. Part 13. Clay-supported noble metal catalysts in enantioselective hydrogenations
CN113244924B (zh) 一种碱金属修饰的金属氧化物催化剂及其制备方法和应用
CN111389453B (zh) 一种液相转化高浓度木质素为环烷烃的方法
CN109529911B (zh) 一种丙烷无氧脱氢用铂锡基介孔催化剂及其制备和应用
CN112439444B (zh) 一种负载型多级孔固体酸双功能催化剂的制备方法及应用
CN112058304A (zh) 一种可调变固体酸性的双功能催化剂、制备方法及其应用
KR102561034B1 (ko) 바이오매스의 액상 개질용 세리아 기반 불균일계 합금 촉매, 그 제조방법, 및 이를 이용하는 고순도 수소 생산 방법
CN115805092B (zh) 一种g-C3N4/Ag/AgCl/ZnO复合光催化剂的制备方法及产品
CN115672343B (zh) 加氢催化剂、其制备方法及应用
CN115282992B (zh) 一种原位合成多级孔zsm-5分子筛负载的非晶态磷化镍催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant