CN114920548A - 一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法 - Google Patents

一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法 Download PDF

Info

Publication number
CN114920548A
CN114920548A CN202210258322.0A CN202210258322A CN114920548A CN 114920548 A CN114920548 A CN 114920548A CN 202210258322 A CN202210258322 A CN 202210258322A CN 114920548 A CN114920548 A CN 114920548A
Authority
CN
China
Prior art keywords
powder
garnet
based transparent
transparent ceramic
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210258322.0A
Other languages
English (en)
Other versions
CN114920548B (zh
Inventor
周天元
郑欣雨
郗晓倩
周春鸣
李明
程欣
李延彬
魏帅
王忠英
邵岑
康健
陈浩
张乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202210258322.0A priority Critical patent/CN114920548B/zh
Publication of CN114920548A publication Critical patent/CN114920548A/zh
Application granted granted Critical
Publication of CN114920548B publication Critical patent/CN114920548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,在硅镁助剂下,采用空气氛围闪烧,无需退火即可制备Cr3+掺杂石榴石基透明陶瓷,其化学式为(RexM1‑x)3(CryAl1‑y)5O12,式中x为Re3+或Re4+掺杂M3+的摩尔比,0≤x≤0.08,y为Cr3+掺杂Al3+的摩尔比,0<y≤0.10,Re为Nd、Ce、Yb、Sm中的一种,M为Y、Lu中的一种;具体包括:浆料配制;球磨、烘干、研磨、过筛、煅烧、成型得到陶瓷坯体,然后将素坯置于闪烧炉中进行空气烧结,最后抛光得到透明陶瓷。该方法能有效稳定Cr3+,降低烧结能耗和成本,还能抑制晶粒生长,所制备得到的透明陶瓷具有良好的光学质量与透过率。

Description

一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法
技术领域
本发明涉及先进陶瓷制备技术领域,具体涉及一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法。
背景技术
单晶、玻璃和透明陶瓷是最常用的固体激光器增益介质。其中,透明陶瓷可通过高温烧结粉体形成一种完全致密化、且具有晶粒的光学超材料,其在性能上能够充分融合单晶和玻璃的优势,发展潜力巨大。
在石榴石基掺杂体系中,Cr3+在可见光波段具有宽的吸收带,其吸收太阳辐射能力强于Ce3+与Nd3+。文献1(张立伟、赵长明等。Cr,Nd:YAG陶瓷作为太阳光抽运材料的可行性研究)中证实:在Cr3+,Nd:YAG陶瓷中,当Cr3+浓度掺杂为1.0at.%时,Cr3+和Nd3+吸收的太阳光能量就已经能够达到太阳参数的38.44%。同时,Cr3+发射带与Nd3+的吸收带高度重合,易于实现Cr敏化太阳光泵浦激光输出;文献2(邓俊勇。可见波段到近红外的光谱调制与能量传递)中证实在所有离子对中,Cr3+—Nd3+离子对之间的能量传递效率是最高的。由于非+3价态的Cr离子均会在Nd3+的发射波段造成宽范围强吸收,因此,想要达到太阳光转化为激光的前提条件就是要稳定Cr离子掺杂的石榴石基陶瓷中的+3价态并保证其优异的光学透过率。
传统的陶瓷烧结方法是指紧密堆积的陶瓷粉体在高温热驱动力的作用下,通过原子扩散排出晶粒间的气孔从而致密化的过程。在高温条件下,原子扩散作用在帮助材料致密化的同时,也会不可避免地导致晶粒长大现象。对于多晶材料,高的密实度意味着更好的力学性能,而晶粒的长大则会造成材料性能的劣化,影响材料的应用。并且,若采用传统真空烧结等方式,尽管Cr的价态能够稳定在+3价,但会不可避免的引入氧空位缺陷,从而产生色心,影响陶瓷的光学质量,若此时退火处理,Cr的价态必将由+3价转化为+4价;其次,若想保证陶瓷的良好的光学质量,则必须添加硅助剂,但是由于电荷补偿,烧结后的陶瓷往往会存在Cr2+,无法获得稳定的Cr3+。并且,传统的烧结方式需要长时间的高温烧结,这也使得传统烧结陶瓷行业成为一种高能耗产业。尽管放电等离子烧结可以迅速烧结且能够抑制Cr3+的氧化问题,但是由于其为真空气氛烧结,在加入硅镁助剂后不可避免会产生Cr2+,也无法获得稳定的Cr3+
因此,本领域迫切需要开发出一种既能够有效稳定Cr3+、降低烧结能耗且能够满足固体激光应用需求的石榴石基基透明陶瓷材料的制备方法。
发明内容
本发明的目的是提供一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,该方法能够有效稳定Cr3+,能缩短烧结时间,降低烧结温度,从而降低烧结能耗和成本,还能抑制晶粒生长,无需退火,所制备得到的Cr3+掺杂石榴石基透明陶瓷可具有良好的光学质量与透过率。
为实现上述目的,本发明提供了一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,在硅镁助剂下,采用空气氛围闪烧,其化学式为(RexM1-x)3(CryAl1-y)5O12,式中x为Re3+或Re4+掺杂M3+的摩尔比,0≤x≤0.08,y为Cr3+掺杂Al3+的摩尔比,0<y≤0.10,Re为Nd、Ce、Yb、Sm中的一种,M为Y、Lu中的一种;
具体包括以下步骤:
(1)浆料配制:按照化学式中各元素的化学计量比分别称取纯度为99.99%以上M2O3粉体、α-Al2O3粉体、Re2O3粉体或ReO2粉体、Cr2O3粉体,称量后置于球磨罐中,加入烧结助剂、分散剂和无水乙醇配制成浆料;
(2)球磨及粉体处理:将装有浆料和磨球的球磨罐置于球磨机中进行球磨得到混合浆料,将混合浆料干燥后研磨过筛后得到混合粉体;
(3)粉体成型:将混合粉体放入磨具中干压成型获得素坯,将素坯置于密封袋中,再进行冷等静压成型;将成型后的素坯置于马弗炉中煅烧后自然降温得到陶瓷坯体;
(4)素坯烧结:将制备好的陶瓷坯体置于烧结炉中,先打开辅助加热电源进行加热,辅助加热电源为感应加热电源,后打开高压直流闪烧电源,在素坯两侧通直流电线性增加电压直至发生闪光现象,控制电流降至900-1000A,持续40-80s,闪烧结束后,在恒流状态下保温5-30min,以2-5℃/min的降温速率降至室温,最后进行抛光处理得到厚度为1-5mm的Cr3+掺杂石榴石基透明陶瓷。
优选的,步骤(4)中,通过辅助加热电源以90-120℃/min加热至1000-1200℃;线性增加电压到300-500V/cm。
优选的,步骤(1)中,所述烧结助剂为MgO与TEOS的混合物,二者之间的质量比为1:(2-5);烧结助剂的添加量为M2O3粉体和α-Al2O3粉体质量总和的0.08-1.25wt.%;所述分散剂为美国Polymer Innovations公司的强聚合分散剂DS005,分散剂的添加量为M2O3粉体和α-Al2O3粉体质量总和的0.05-0.08wt.%;浆料的固含量为20-55%。
优选的,步骤(2)中,磨球为高纯氧化铝球,球磨方式为行星球磨,球磨转速为100~280r/min,球磨时间为7-16h。
优选的,步骤(2)中,干燥温度为60-100℃,干燥时间为8-24h,筛网的目数为80~300目。
优选的,步骤(3)中,干压成型压力为20-90Mpa,压力保持时间10-50s,冷等静压成型压力为120-300Mpa,冷等静压保压时间为5~40min。
优选的,步骤(3)中,煅烧温度为300-1100℃,煅烧时间为3-15h;自然降温至20-60℃。
与现有技术相比,本发明具有以下优点:
(1)本发明所采用的闪速烧结方法,在陶瓷的内部不会产生氧空位以及相应的色心缺陷,采用空气氛围烧结,既能够保证陶瓷在硅镁助剂下的良好光学质量,又能避免Cr2+的出现;另外,本发明无需退火,从而有效避免了陶瓷在烧结过程中Cr3+转化为Cr4+
(2)本发明采用固相反应法制备石榴石基陶瓷,采用闪速烧结实现陶瓷的致密化,缩短烧结时间,并降低烧结温度;同时,快速的加热速率抑制了晶粒的生长并增加了致密化的驱动力,从而有效排除因晶粒生长速度过快而产生的内部气孔,有效避免了晶粒异常长大的问题,能够实现非平衡烧结,保证陶瓷良好的光学质量;
(3)本发明所制备的陶瓷在短时间烧结内晶内与晶间无气孔,晶粒尺寸均匀合理,具有良好的光学质量与透过率;
(4)本发明设备简单,成本较低,并且制备周期短,有利于实现技术和商业推广。
附图说明
图1为本发明实施例一至实施例二制得的YAG基透明陶瓷的的XRD图;
图2为本发明实施例一制得的YAG基透明陶瓷抛光表面SEM图;
图3为本发明实施例二制得的YAG基透明陶瓷的线透过率曲线;
图4为本发明实施例三制得的LuAG透明陶瓷的的XRD图;
图5为本发明实施例三制得的LuAG基透明陶瓷的XPS图;
图6为本发明实施例三制得的LuAG基透明陶瓷的实物照片。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。
实施例一
一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,包括以下步骤:
(1)浆料配制:按照化学式Y3(Cr0.02Al0.98)5O12中各元素的化学计量比分别称取纯度为99.99%以上34.092g Y2O3粉体、25.143gα-Al2O3粉体、0.765g Cr2O3粉体,共计60g,称量后置于球磨罐中,加入烧结助剂、分散剂和无水乙醇配制成浆料;所述烧结助剂为MgO与TEOS的混合物,二者之间的质量比为1:2;烧结助剂的添加量为α-Al2O3粉体质量的0.08wt.%;所述分散剂为美国Polymer Innovations公司的强聚合分散剂DS005,分散剂的添加量为α-Al2O3粉体质量的0.05wt.%;浆料的固含量为20%;
(2)球磨及粉体处理:将装有浆料和磨球的球磨罐置于球磨机中进行球磨得到混合浆料,将混合浆料干燥后研磨过筛后得到混合粉体;磨球为高纯氧化铝球,球磨方式为行星球磨,球磨转速为280r/min,球磨时间为7h;干燥温度为90℃,干燥时间为10h,筛网的目数为80目;
(3)粉体成型:将混合粉体放入磨具中干压成型获得素坯,干压成型压力为20Mpa,压力保持时间50s,将素坯置于密封袋中,再进行冷等静压成型,冷等静压成型压力为120Mpa,冷等静压保压时间为40min;将成型后的素坯置于马弗炉中煅烧后自然降温至20℃得到陶瓷坯体,煅烧温度为300℃,煅烧时间为15h;
(4)素坯烧结:将制备好的陶瓷坯体置于烧结炉中,先打开辅助加热电源进行加热,通过辅助加热电源以90℃/min加热至1000℃,辅助加热电源为感应加热电源,后打开高压直流闪烧电源,在素坯两侧通直流电线性增加电压到300V/cm,直至发生闪光现象,控制电流降至900A,持续40s,闪烧结束后,在恒流状态下保温5min,以2℃/min的降温速率降至室温,最后进行抛光处理得到厚度为2mm的Cr3+掺杂YAG基透明陶瓷。
本实施例所制备的陶瓷的XRD图谱如图1,从图中可以看出,陶瓷为纯YAG相,无其他杂相,纯度较高。图2为本实施例制得的透明陶瓷抛光表面SEM图,图中表明该陶瓷晶粒尺寸均匀,无异常长大的晶粒,拥有良好的致密化效果。
实施例二
一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,包括以下步骤:
(1)浆料配制:按照化学式(Nd0.04Y0.96)3(Cr0.04Al0.96)5O12中各元素的化学计量比分别称取纯度为99.99%以上32.234g Y2O3粉体、24.258gα-Al2O3粉体、2.001g Nd2O3粉体、1.507g Cr2O3粉体,共计60g,称量后置于球磨罐中,加入烧结助剂、分散剂和无水乙醇配制成浆料;所述烧结助剂为MgO与TEOS的混合物,二者之间的质量比为1:3;烧结助剂的添加量为Y2O3粉体和α-Al2O3粉体质量总和的1wt.%;所述分散剂为美国Polymer Innovations公司的强聚合分散剂DS005,分散剂的添加量为Y2O3粉体和α-Al2O3粉体质量总和的0.06wt.%;浆料的固含量为35%;
(2)球磨及粉体处理:将装有浆料和磨球的球磨罐置于球磨机中进行球磨得到混合浆料,将混合浆料干燥后研磨过筛后得到混合粉体;磨球为高纯氧化铝球,球磨方式为行星球磨,球磨转速为190r/min,球磨时间为10h;干燥温度为100℃,干燥时间为8h,筛网的目数为100目;
(3)粉体成型:将混合粉体放入磨具中干压成型获得素坯,干压成型压力为50Mpa,压力保持时间30s,将素坯置于密封袋中,再进行冷等静压成型,冷等静压成型压力为180Mpa,冷等静压保压时间为20min;将成型后的素坯置于马弗炉中煅烧后自然降温至20℃得到陶瓷坯体,煅烧温度为800℃,煅烧时间为6h;
(4)素坯烧结:将制备好的陶瓷坯体置于烧结炉中,先打开辅助加热电源进行加热,通过辅助加热电源以100℃/min加热至1100℃,辅助加热电源为感应加热电源,后打开高压直流闪烧电源,在素坯两侧通直流电线性增加电压到400V/cm,直至发生闪光现象,控制电流降至900A,持续60s,闪烧结束后,在恒流状态下保温10min,以3℃/min的降温速率降至室温,最后进行抛光处理得到厚度为2mm的Cr3+掺杂YAG基透明陶瓷。
本实施例所制备的陶瓷的XRD图谱如图1,从图中可以看出,陶瓷为纯YAG相,无其他杂相,纯度较高。图3为本实施例制得透明陶瓷的线透过率曲线,从图中可以看出,本实施例所制备的陶瓷在1064nm处透过率为84.0%,表明该陶瓷具有较高的光学质量与透过率。
实施例三
一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,包括以下步骤:
(1)浆料配制:按照化学式(Yb0.08Lu0.92)3(Cr0.1Al0.9)5O12中各元素的化学计量比分别称取纯度为99.99%以上38.142g Lu2O3粉体、15.934gα-Al2O3粉体、3.285g Yb2O3粉体、2.639g Cr2O3粉体,共计60g,称量后置于球磨罐中,加入烧结助剂、分散剂和无水乙醇配制成浆料;所述烧结助剂为MgO与TEOS的混合物,二者之间的质量比为1:5;烧结助剂的添加量为Lu2O3粉体和α-Al2O3粉体质量总和的1.25wt.%;所述分散剂为美国PolymerInnovations公司的强聚合分散剂DS005,分散剂的添加量为Lu2O3粉体和α-Al2O3粉体质量总和的0.08wt.%;浆料的固含量为55%;
(2)球磨及粉体处理:将装有浆料和磨球的球磨罐置于球磨机中进行球磨得到混合浆料,将混合浆料干燥后研磨过筛后得到混合粉体;磨球为高纯氧化铝球,球磨方式为行星球磨,球磨转速为100r/min,球磨时间为16h;干燥温度为60℃,干燥时间为24h,筛网的目数为300目;
(3)粉体成型:将混合粉体放入磨具中干压成型获得素坯,干压成型压力为90Mpa,压力保持时间10s,将素坯置于密封袋中,再进行冷等静压成型,冷等静压成型压力为300Mpa,冷等静压保压时间为5min;将成型后的素坯置于马弗炉中煅烧后自然降温至60℃得到陶瓷坯体,煅烧温度为1100℃,煅烧时间为3h;
(4)素坯烧结:将制备好的陶瓷坯体置于烧结炉中,先打开辅助加热电源进行加热,通过辅助加热电源以120℃/min加热至1200℃,辅助加热电源为感应加热电源,后打开高压直流闪烧电源,在素坯两侧通直流电线性增加电压到500V/cm,直至发生闪光现象,控制电流降至1000A,持续80s,闪烧结束后,在恒流状态下保温30min,以5℃/min的降温速率降至室温,最后进行抛光处理得到厚度为2mm的Cr3+掺杂LuAG基透明陶瓷。
本实施例所制备的陶瓷的XRD图谱如图4,从图中可以看出,陶瓷为纯LuAG相,无其他杂相,纯度较高。图5为本实施例制得的透明陶瓷的XPS图谱,图中表明该陶瓷内部Cr离子均为+3价,无非+3价的Cr离子存在。图6为所制得的透明陶瓷的实物照片,从图中可以看出,本实施例制得的透明陶瓷的光学质量良好,具有很高的透过率。

Claims (7)

1.一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,在硅镁助剂下,采用空气氛围闪烧,其化学式为(RexM1-x)3(CryAl1-y)5O12,式中x为Re3+或Re4+掺杂M3+的摩尔比,0≤x≤0.08,y为Cr3+掺杂Al3+的摩尔比,0<y≤0.10,Re为Nd、Ce、Yb、Sm中的一种,M为Y、Lu中的一种;
具体包括以下步骤:
(1)浆料配制:按照化学式中各元素的化学计量比分别称取纯度为99.99%以上M2O3粉体、α-Al2O3粉体、Re2O3粉体或ReO2粉体、Cr2O3粉体,称量后置于球磨罐中,加入烧结助剂、分散剂和无水乙醇配制成浆料;
(2)球磨及粉体处理:将装有浆料和磨球的球磨罐置于球磨机中进行球磨得到混合浆料,将混合浆料干燥后研磨过筛后得到混合粉体;
(3)粉体成型:将混合粉体放入磨具中干压成型获得素坯,将素坯置于密封袋中,再进行冷等静压成型;将成型后的素坯置于马弗炉中煅烧后自然降温得到陶瓷坯体;
(4)素坯烧结:将制备好的陶瓷坯体置于烧结炉中,先打开辅助加热电源进行加热,辅助加热电源为感应加热电源,后打开高压直流闪烧电源,在素坯两侧通直流电线性增加电压直至发生闪光现象,控制电流降至900-1000A,持续40-80s,闪烧结束后,在恒流状态下保温5-30min,以2-5℃/min的降温速率降至室温,最后进行抛光处理得到厚度为1-5mm的Cr3+掺杂石榴石基透明陶瓷。
2.根据权利要求1所述的一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,步骤(4)中,通过辅助加热电源以90-120℃/min加热至1000-1200℃;线性增加电压到300-500V/cm。
3.根据权利要求1或2所述的一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,步骤(1)中,所述烧结助剂为MgO与TEOS的混合物,二者之间的质量比为1:(2-5);烧结助剂的添加量为M2O3粉体和α-Al2O3粉体质量总和的0.08-1.25wt.%;所述分散剂为美国Polymer Innovations公司的强聚合分散剂DS005,分散剂的添加量为M2O3粉体和α-Al2O3粉体质量总和的0.05-0.08wt.%;浆料的固含量为20-55%。
4.根据权利要求1或2所述的一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,步骤(2)中,磨球为高纯氧化铝球,球磨方式为行星球磨,球磨转速为100~280r/min,球磨时间为7-16h。
5.根据权利要求1或2所述的一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,步骤(2)中,干燥温度为60-100℃,干燥时间为8-24h,筛网的目数为80~300目。
6.根据权利要求1或2所述的一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,步骤(3)中,干压成型压力为20-90Mpa,压力保持时间10-50s,冷等静压成型压力为120-300Mpa,冷等静压保压时间为5~40min。
7.根据权利要求1或2所述的一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法,其特征在于,步骤(3)中,煅烧温度为300-1100℃,煅烧时间为3-15h;自然降温至20-60℃。
CN202210258322.0A 2022-03-16 2022-03-16 一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法 Active CN114920548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210258322.0A CN114920548B (zh) 2022-03-16 2022-03-16 一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210258322.0A CN114920548B (zh) 2022-03-16 2022-03-16 一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法

Publications (2)

Publication Number Publication Date
CN114920548A true CN114920548A (zh) 2022-08-19
CN114920548B CN114920548B (zh) 2023-05-16

Family

ID=82804929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210258322.0A Active CN114920548B (zh) 2022-03-16 2022-03-16 一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN114920548B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784723A (zh) * 2022-12-27 2023-03-14 江苏师范大学 一种超细晶高透明双相氧化铝透明陶瓷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557013A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN107473728A (zh) * 2017-09-08 2017-12-15 江苏师范大学 一种非硅助剂下真空烧结yag基透明陶瓷的制备方法
CN110128115A (zh) * 2019-05-23 2019-08-16 西南交通大学 一种闪烧制备氧化物共晶陶瓷的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557013A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN107473728A (zh) * 2017-09-08 2017-12-15 江苏师范大学 一种非硅助剂下真空烧结yag基透明陶瓷的制备方法
CN110128115A (zh) * 2019-05-23 2019-08-16 西南交通大学 一种闪烧制备氧化物共晶陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TIANYUAN ZHOU ET AL.: "Sintering additives regulated Cr ion charge state in Cr doped YAG transparent ceramics", 《CERAMICS INTERNATIONAL》 *
YINGSHUANG SHAN ET AL.: "One-order-higher Cr4+ conversion efficiency in Cr4+:YAG transparent ceramics for a high-frequency passively Q-switched laser", 《PHOTONICS RESEARCH》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784723A (zh) * 2022-12-27 2023-03-14 江苏师范大学 一种超细晶高透明双相氧化铝透明陶瓷的制备方法
CN115784723B (zh) * 2022-12-27 2024-03-26 江苏师范大学 一种超细晶高透明双相氧化铝透明陶瓷的制备方法

Also Published As

Publication number Publication date
CN114920548B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Ikesue et al. Synthesis of Nd3+, Cr3+‐codoped YAG ceramics for high‐efficiency solid‐state lasers
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN100360469C (zh) 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
CN100564310C (zh) 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
Liu et al. Solid-state reactive sintering of Nd: YAG transparent ceramics: the effect of Y2O3 powders pretreatment
CN104529449A (zh) 一种采用两步烧结制备氧化钇基透明陶瓷的方法
Yu et al. Fabrication of Nd: YAG transparent ceramics using powders synthesized by citrate sol-gel method
CN107129293A (zh) 一种Mg助剂体系YAG基透明陶瓷的制备方法
CN107200575A (zh) 一种Ca助剂体系YAG基透明陶瓷的制备方法
CN110240468B (zh) 荧光陶瓷及其制备方法
CN103508729A (zh) 水基流延成型制备钇铝石榴石基透明陶瓷的方法
CN111995397A (zh) 一种荧光陶瓷及其制备方法与应用
CN114573346B (zh) 一种热光伏用稀土高熵铝酸盐陶瓷选择性发射体及其制备方法及应用
CN108751991B (zh) 一种激光烧结制备Tb:Lu2O3陶瓷的方法
CN114920548B (zh) 一种闪烧制备Cr3+掺杂石榴石基透明陶瓷的方法
CN113773081A (zh) 一种透明陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN104876587B (zh) 一种替代蓝宝石用防紫晕透明陶瓷面板的制备方法
CN107324805A (zh) 一种多组分石榴石基激光透明陶瓷材料及其制备方法
CN110590353B (zh) 一种提升yag基透明陶瓷掺杂离子固溶度的方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
Li et al. Densification and optical properties of transparent Ho: YAG ceramics
CN103482970A (zh) 一种激光透明陶瓷及其制备方法
CN112209714A (zh) 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术
CN102409391B (zh) 一种钇铝石榴石单晶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant