CN114917916A - 一种高储氧量和高稳定性载氧体及其制备方法 - Google Patents

一种高储氧量和高稳定性载氧体及其制备方法 Download PDF

Info

Publication number
CN114917916A
CN114917916A CN202210597167.5A CN202210597167A CN114917916A CN 114917916 A CN114917916 A CN 114917916A CN 202210597167 A CN202210597167 A CN 202210597167A CN 114917916 A CN114917916 A CN 114917916A
Authority
CN
China
Prior art keywords
carrier
oxygen
oxygen carrier
ceo
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210597167.5A
Other languages
English (en)
Inventor
祝星
刘天柱
朱焘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210597167.5A priority Critical patent/CN114917916A/zh
Publication of CN114917916A publication Critical patent/CN114917916A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种高储氧量和高稳定性载氧体及其制备方法,属于载氧体技术领域。本发明载氧体包括钙钛矿载体和活性组分,载氧体的通式为:x(Ni/CeO2)/La0.8Sr0.2FeO3,其中x为质量分数,0<x≤30%,载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占10~20%。本发明载氧体在化学链甲烷重整反应中,能够显著降低反应温度,中温下(600~800℃)活化甲烷,降低反应能耗的同时防止保护活性组分防止载氧体失活,具有较强的稳定性。

Description

一种高储氧量和高稳定性载氧体及其制备方法
技术领域
本发明涉及一种高储氧量和高稳定性载氧体及其制备方法,属于化学链甲烷重整反应载氧体技术领域。
背景技术
甲烷干重整反应(DRM)同时利用CO2、CH4两种温室气体,其产物合成气(H2和CO)是一种宝贵的中间资源,可作为氢源,用于生产甲醇、氨等。
传统甲烷二氧化碳重整技术反应式为:
Figure BDA0003668349210000011
ΔH=247.3kJ/mol
然而,在DRM反应中,高温(>800℃)反应物完全转化所需的催化剂选择上,这种能源密集型约束给重整催化剂带来了两个挑战:活性相的烧结和由大量副反应引发的碳中毒。
为了克服二氧化碳转化及甲烷干重整存在的问题,采用化学链燃烧技术(chemical looping combustion,CLC)将其耦合用于重整,即化学链干重整(chemicallooping dry reforming,CL-DRM)。CLR技术具有如下优点:(Ⅰ)不需要外部燃料为重整过程提供热量;(Ⅱ)不会产生二氧化碳排放,因为合成气中包含有所有的碳,环境友好;(Ⅲ)每单位燃料进料需要较少的蒸汽和较少的催化剂;(Ⅳ)较少考虑硫污染物,不会形成氮氧化物。
用于化学链干重整的载氧体常常选用晶体结构类似于钙钛氧化物(CaTiO3)的钙钛矿金属氧化物,记为ABO3,钙钛矿结构的高稳定性允许具有不同氧化状态的其他金属部分取代A位和B位阳离子,并由此产生结构缺陷,例如阴离子或阳离子空位。特别是,A位取代基的性质和数量可以稳定B阳离子的异常氧化状态和/或在固体中生成阴离子空位。因此,钙钛矿结构的广泛可变氧非化学计量(还原或氧化,ABO3)可以很容易地去除氧,同时仍然保持原始框架。
然而常用于CL-DRM反应的钙钛矿均需求高温(>800℃),并导致甲烷裂解使得积碳严重,并且未改性的钙钛矿载体氧空位浓度不足,循环反应性能不理想。
发明内容
针对目前CL-DRM反应中钙钛矿型氧化物需求高温且氧空位浓度不足的等问题,本发明提供一种高储氧量和高稳定性载氧体的制备方法,即采用溶胶凝胶法制备钙钛矿氧化物作为载体,将Ni/CeO2纳米颗粒均匀分散于钙钛矿载体表面,利用纳米氧化铈与钙钛矿之间相互作用,有效提高钙钛矿载体的氧空位浓度,进而提升载氧体氧迁移速率及其甲烷活化速率,提高载氧体反应性能。
一种高储氧量和高稳定性载氧体:载氧体包括钙钛矿载体和活性组分,载氧体的通式为:x(Ni/CeO2)/La0.8Sr0.2FeO3,其中x为质量分数,0<x≤30%,载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占10~20%。
所述高储氧量和高稳定性载氧体的制备方法,具体步骤如下:
(1)按照La、Sr和Fe的化学计量比,将硝酸镧、硝酸锶和硝酸铁加入到去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度60~80℃下搅拌30~60min,然后加入乙二醇,搅拌至形成胶状物;
(3)胶状物干燥,然后在空气中匀速升温至温度800~850℃,恒温焙烧2~3h得到钙钛矿载体;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;
(5)将钙钛矿载体加入到前驱体溶液B中,在温度60~80℃下搅拌至去离子水完全蒸发得到固体混合物;或者将钙钛矿载体加入到前驱体溶液B中,逐滴滴加沉淀剂NH3·H2O使体系pH值为9.5~10.0,完全共沉淀后静置老化5~8h,固液分离,依次采用去离子水和乙醇洗涤固体沉淀得到固体混合物;或者将钙钛矿载体加入到前驱体溶液B中,再加入氢氧化钠溶液调节pH值为9.5~10.0,置于温度为100~110℃下水热处理20~24h,冷却至室温,固液分离,依次采用去离子水和乙醇洗涤固体沉淀得到固体混合物;
(6)固体混合物干燥,然后在空气中匀速升温至温度800~850℃,恒温焙烧2~3h得到载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3
所述步骤(2)前驱体溶液A中镧离子、锶离子和铁离子的总摩尔量与柠檬酸的摩尔比为1:1.5~2。
所述步骤(2)中柠檬酸与乙二醇的摩尔比为1:1.5~2。
所述步骤(3)升温速率为2~5℃/min。
所述步骤(6)升温速率为2~5℃/min。
在甲烷还原阶段,化学链甲烷重整载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3在无氧条件下与甲烷反应,化学链甲烷重整载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3中的晶格氧将甲烷部分氧化生成合成气,同时化学链甲烷重整载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3被还原成x(Ni/Ce)/La0.8Sr0.2FeO3;在CO2氧化阶段,被还原后的化学链甲烷重整载氧体(Ni/Ce)/La0.8Sr0.2FeO3与二氧化碳反应,二氧化碳被还原成CO,(Ni/Ce)/La0.8Sr0.2FeO3被氧化成化学链甲烷重整载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3,实现载氧体的循环再生,恢复到与甲烷反应前的结构;
所述载氧体在化学链甲烷重整反应中,载氧体还原阶段的反应温度为600~800℃,载氧体氧化再生阶段的反应温度为600~800℃,载氧体还原阶段通入甲烷和氩气混合气,其中甲烷体积百分数为5%,其流量为30~50mL/min;载氧体氧化再生阶段通入二氧化碳和氩气混合气,其中二氧化碳体积百分数为5%,其流量为30~50mL/min。
本发明氧载体由Ni/CeO2与钙钛矿La0.8Sr0.2FeO3复合而成,通常情况下,Fe2+在LaSrFeO3钙钛矿氧化物中不稳定,由于CeO2-LaFeSrO3相互作用,LaFeSrO3上存在的CeO2纳米颗粒有利于Fe2+的形成,从而形成氧缺陷;而Fe2+物种与Ce3+的共存导致了氧缺陷的进一步形成,Ce与Fe的相互作用有利于氧空位浓度的提高。
本发明的有益效果是:
(1)本发明采用溶胶凝胶法制备钙钛矿氧化物作为载体,将Ni/CeO2纳米颗粒均匀分散于钙钛矿载体表面,构建了具有金属间相互作用的复合氧载体结构,产生晶格畸变并增加氧空位浓度,提高了抗积碳和抗烧结能力,从而获得高的合成气选择性和循环稳定性;
(2)本发明Ni金属的负载显著改善载氧体的反应活性,并降低材料的初始反应温度,使其适用于中温化学链干重整反应,Ni在纳米氧化铈的保护下,并没有出现烧结,复合氧载体多次循环后并未因此失活,仍能表现出优异的CH4活性;
(3)本发明载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3具有较高的CH4转化率(~88%)、CO选择性(~90%)、高的合成气产量且H2/CO比值十分接近理想值(~2),即能够高选择地产生高品质合成气,而且在多次周期性氧化还原循环中还具有优良的反应活性和循环稳定性;
(4)本发明复合载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3不仅能够将甲烷选择性氧化为H2/CO摩尔比十分接近理论值2的高品质合成气,还原的氧载体还能在二氧化碳氧化气氛中再生,同时利用两种温室气体。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:本实施例高储氧量和高稳定性载氧体包括钙钛矿载体和活性组分,载氧体为:10%(Ni/CeO2)/La0.8Sr0.2FeO3,即载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占10%;
一种高储氧量和高稳定性载氧体的制备方法(浸渍法),具体步骤如下:
(1)按照La、Sr和Fe的化学计量比0.8:0.2:1,将硝酸镧、硝酸锶和硝酸铁加入到温度为80℃的去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度80℃下搅拌30min,然后加入乙二醇,搅拌至形成胶状物;其中前驱体溶液A中阳离子(镧离子、锶离子和铁离子)的总摩尔量与柠檬酸的摩尔比为1:1.5,柠檬酸与乙二醇的摩尔比为1:1.5;
(3)胶状物置于温度为100℃干燥12h,然后在空气中以3℃/min的升温速率匀速升温至温度800℃,恒温焙烧3h得到钙钛矿载体,破碎、研磨、过筛至40-60目颗粒;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;其中硝酸镍中镍和硝酸铈中铈的摩尔比为1:9;
(5)将钙钛矿载体加入到前驱体溶液B中,在温度60℃下搅拌至去离子水完全蒸发得到固体混合物;
(6)固体混合物置于温度为100℃下干燥12h,然后在空气中以2℃/min的升温速率匀速升温至温度800℃,恒温焙烧3h得到载氧体10%(Ni/CeO2)/La0.8Sr0.2FeO3
对载氧体10%(Ni/CeO2)/La0.8Sr0.2FeO3进行催化活性测定,氧载体的活性通过比较合成气转化率,储氧量提升率是通过比较Ni/CeO2改性前后氧载体实际晶格氧消耗量测定,稳定性是通过循环测试来获得:在化学链甲烷重整反应中,载氧体还原阶段的反应温度为600-800℃,载氧体氧化再生阶段的反应温度为600-800℃,载氧体还原阶段通入甲烷和氩气混合气,其中甲烷体积百分数为5%,其流量为50mL/min;载氧体氧化再生阶段通入二氧化碳和氩气混合气,其中二氧化碳体积百分数为5%,其流量为40mL/min。
实施例2:本实施例高储氧量和高稳定性载氧体包括钙钛矿载体和活性组分,载氧体为:20%(Ni/CeO2)/La0.8Sr0.2FeO3,即载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占12%;
一种高储氧量和高稳定性载氧体的制备方法(浸渍法),具体步骤如下:
(1)按照La、Sr和Fe的化学计量比0.8:0.2:1,将硝酸镧、硝酸锶和硝酸铁加入到温度为70℃的去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度70℃下搅拌40min,然后加入乙二醇,搅拌至形成胶状物;其中前驱体溶液A中阳离子(镧离子、锶离子和铁离子)的总摩尔量与柠檬酸的摩尔比为1:1.8,柠檬酸与乙二醇的摩尔比为1:1.6;
(3)胶状物置于温度为110℃干燥15h,然后在空气中以4℃/min的升温速率匀速升温至温度820℃,恒温焙烧2.6h得到钙钛矿载体,破碎、研磨、过筛至40-60目颗粒;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;其中硝酸镍中镍和硝酸铈中铈的摩尔比为1.2:8.8;
(5)将钙钛矿载体加入到前驱体溶液B中,在温度70℃下搅拌至去离子水完全蒸发得到固体混合物;
(6)固体混合物置于温度为110℃下干燥12h,然后在空气中以3℃/min的升温速率匀速升温至温度820℃,恒温焙烧3h得到载氧体20%(Ni/CeO2)/La0.8Sr0.2FeO3
对载氧体20%(Ni/CeO2)/La0.8Sr0.2FeO3进行催化活性测定,测定方法同实施例1。
实施例3:本实施例高储氧量和高稳定性载氧体包括钙钛矿载体和活性组分,载氧体为:30%(Ni/CeO2)/La0.8Sr0.2FeO3,即载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占15%;
一种高储氧量和高稳定性载氧体的制备方法(浸渍法),具体步骤如下:
(1)按照La、Sr和Fe的化学计量比0.8:0.2:1,将硝酸镧、硝酸锶和硝酸铁加入到温度为60℃的去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度60℃下搅拌60min,然后加入乙二醇,搅拌至形成胶状物;其中前驱体溶液A中阳离子(镧离子、锶离子和铁离子)的总摩尔量与柠檬酸的摩尔比为1:2,柠檬酸与乙二醇的摩尔比为1:1.6;
(3)胶状物置于温度为120℃干燥10h,然后在空气中以3℃/min的升温速率匀速升温至温度850℃,恒温焙烧2h得到钙钛矿载体,破碎、研磨、过筛至40-60目颗粒;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;其中硝酸镍中镍和硝酸铈中铈的摩尔比为1.5:8.5;
(5)将钙钛矿载体加入到前驱体溶液B中,在温度70℃下搅拌至去离子水完全蒸发得到固体混合物;
(6)固体混合物置于温度为120℃下干燥10h,然后在空气中以5℃/min的升温速率匀速升温至温度850℃,恒温焙烧2h得到载氧体30%(Ni/CeO2)/La0.8Sr0.2FeO3
对载氧体30%(Ni/CeO2)/La0.8Sr0.2FeO3进行催化活性测定,测定方法同实施例1。
实施例4:本实施例高储氧量和高稳定性载氧体包括钙钛矿载体和活性组分,载氧体为:20%(Ni/CeO2)/La0.8Sr0.2FeO3,即载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占10%;
一种高储氧量和高稳定性载氧体的制备方法(共沉淀法),具体步骤如下:
(1)按照La、Sr和Fe的化学计量比0.8:0.2:1,将硝酸镧、硝酸锶和硝酸铁加入到温度为80℃的去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度80℃下搅拌30min,然后加入乙二醇,搅拌至形成胶状物;其中前驱体溶液A中阳离子(镧离子、锶离子和铁离子)的总摩尔量与柠檬酸的摩尔比为1:1.5,柠檬酸与乙二醇的摩尔比为1:1.5;
(3)胶状物置于温度为100℃干燥12h,然后在空气中以3℃/min的升温速率匀速升温至温度800℃,恒温焙烧3h得到钙钛矿载体,破碎、研磨、过筛至40-60目颗粒;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;其中硝酸镍中镍和硝酸铈中铈的摩尔比为1:9;
(5)将钙钛矿载体加入到前驱体溶液B中,逐滴滴加沉淀剂NH3·H2O使体系pH值为9.5~10.0,完全共沉淀后静置老化6h,固液分离,依次采用去离子水和乙醇洗涤固体沉淀得到固体混合物;
(6)固体混合物置于温度为100℃下干燥12h,然后在空气中以2℃/min的升温速率匀速升温至温度800℃,恒温焙烧3h得到载氧体10%(Ni/CeO2)/La0.8Sr0.2FeO3
对载氧体20%(Ni/CeO2)/La0.8Sr0.2FeO3进行催化活性测定,测定方法同实施例1。
实施例5:本实施例高储氧量和高稳定性载氧体包括钙钛矿载体和活性组分,载氧体为:20%(Ni/CeO2)/La0.8Sr0.2FeO3,即载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占10%;
一种高储氧量和高稳定性载氧体的制备方法(水热法),具体步骤如下:
(1)按照La、Sr和Fe的化学计量比0.8:0.2:1,将硝酸镧、硝酸锶和硝酸铁加入到温度为80℃的去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度80℃下搅拌30min,然后加入乙二醇,搅拌至形成胶状物;其中前驱体溶液A中阳离子(镧离子、锶离子和铁离子)的总摩尔量与柠檬酸的摩尔比为1:1.5,柠檬酸与乙二醇的摩尔比为1:1.5;
(3)胶状物置于温度为100℃干燥12h,然后在空气中以3℃/min的升温速率匀速升温至温度800℃,恒温焙烧3h得到钙钛矿载体,破碎、研磨、过筛至40-60目颗粒;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;其中硝酸镍中镍和硝酸铈中铈的摩尔比为1:9;
(5)将钙钛矿载体加入到前驱体溶液B中,再加入氢氧化钠溶液调节pH值为9.5~10.0,置于温度为100~110℃下水热处理22h,冷却至室温,固液分离,依次采用去离子水和乙醇洗涤固体沉淀得到固体混合物;
(6)固体混合物置于温度为100℃下干燥12h,然后在空气中以2℃/min的升温速率匀速升温至温度800℃,恒温焙烧3h得到载氧体10%(Ni/CeO2)/La0.8Sr0.2FeO3
对载氧体20%(Ni/CeO2)/La0.8Sr0.2FeO3进行催化活性测定,测定方法同实施例1;
实施例1~5载氧体催化活性见表1,活性测定是以各物质的转化率及选择性来说明,储氧催化剂的循环稳定性,通常长期的反应测试可得,储氧量提升通过实际晶格氧消耗量结果计算得到;
表1实施例1~5载氧体催化活性
Figure BDA0003668349210000071
从表1可知,实施例2、4、5甲烷转化率较高,浸渍法中活性组分Ni/CeO2纳米颗粒含量为20%时,复合氧载体的甲烷活性优势明显,循环稳定性更好;实施例1~3的催化活性可以看出,当Ni/CeO2负载后,复合氧载体的反应活性有较大提升,活性组分Ni/CeO2纳米颗粒含量为30%时,催化活性比活性组分Ni/CeO2纳米颗粒含量为20%时的催化活性低,Ni/CeO2负载有效提高了氧释放性能,当表面氧被消耗时,位于氧化物亚表面或体相氧可以立即迁移到表面,为甲烷氧化提供更多晶格氧;使得整体反应更趋向于甲烷的部分氧化,甲烷部分氧化得到加强,CO选择性有所提高,但进一步的Ni/CeO2负载会使得氧空位的覆盖,导致氧空位浓度的降低;
从实施例2、4、5的催化活性可知,负载方式的不同会对反应催化性能产生影响,水热法(实施例5)的甲烷转化率达到了92%,储氧量提升达到了52%,循环性能良好,纳米CeO2的负载明显提升氧释放速率,促进CH4的部分氧化,有效提高CO选择性的同时降低了积碳的生成,利用水热法负载的CeO2粒径更小,而纳米CeO2粒径越小,其Ni颗粒分散度更高,且甲烷反应性越强;Ni在纳米氧化铈的保护下,并没有出现烧结,复合氧载体多次循环后并未因此失活,仍能表现出优异的CH4活性;
Ni/CeO2均匀分散在的钙钛矿载体表面,并通过占据空位诱导氧空位的增加,氧空位浓度对决定反应活性起着重要作用;高储氧的复合氧载体x(Ni/CeO2)/La0.8Sr0.2FeO3具有良好的甲烷催化性能、循环稳定性和氧释放能力。
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (6)

1.一种高储氧量和高稳定性载氧体,其特征在于:载氧体包括钙钛矿载体和活性组分,载氧体的通式为:x(Ni/CeO2)/La0.8Sr0.2FeO3,其中x为质量分数,0<x≤30%,载氧体的钙钛矿载体为La0.8Sr0.2FeO3,活性组分为Ni/CeO2纳米颗粒,以Ni/CeO2纳米颗粒中Ni和Ce的总摩尔量为100%计,Ni占10~20%。
2.权利要求1所述高储氧量和高稳定性载氧体的制备方法,其特征在于:具体步骤如下:
(1)按照La、Sr和Fe的化学计量比,将硝酸镧、硝酸锶和硝酸铁加入到去离子水中,搅拌溶解得到前驱体溶液A;
(2)将柠檬酸加入至前驱体溶液A中,在温度60~80℃下搅拌30~60min,然后加入乙二醇,搅拌至形成胶状物;
(3)胶状物干燥,然后在空气中匀速升温至温度800~850℃,恒温焙烧2~3h得到钙钛矿载体;
(4)将硝酸镍和硝酸铈溶解于去离子水中,得到前驱体溶液B;
(5)将钙钛矿载体加入到前驱体溶液B中,在温度60~80℃下搅拌至去离子水完全蒸发得到固体混合物;或者将钙钛矿载体加入到前驱体溶液B中,逐滴滴加沉淀剂NH3·H2O使体系pH值为9.5~10.0,完全共沉淀后静置老化5~8h,固液分离,依次采用去离子水和乙醇洗涤固体沉淀得到固体混合物;或者将钙钛矿载体加入到前驱体溶液B中,再加入氢氧化钠溶液调节pH值为9.5~10.0,置于温度为100~110℃下水热处理20~24h,冷却至室温,固液分离,依次采用去离子水和乙醇洗涤固体沉淀得到固体混合物;
(6)固体混合物干燥,然后在空气中匀速升温至温度800~850℃,恒温焙烧2~3h得到载氧体x(Ni/CeO2)/La0.8Sr0.2FeO3
3.根据权利要求2所述高储氧量和高稳定性载氧体的制备方法,其特征在于:步骤(2)前驱体溶液A中镧离子、锶离子和铁离子的总摩尔量与柠檬酸的摩尔比为1:1.5~2。
4.根据权利要求2所述高储氧量和高稳定性载氧体的制备方法,其特征在于:步骤(2)中柠檬酸与乙二醇的摩尔比为1:1.5~2。
5.根据权利要求2所述高储氧量和高稳定性载氧体的制备方法,其特征在于:步骤(3)升温速率为2~5℃/min。
6.根据权利要求2所述高储氧量和高稳定性载氧体的制备方法,其特征在于:步骤(6)升温速率为2~5℃/min。
CN202210597167.5A 2022-05-30 2022-05-30 一种高储氧量和高稳定性载氧体及其制备方法 Pending CN114917916A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210597167.5A CN114917916A (zh) 2022-05-30 2022-05-30 一种高储氧量和高稳定性载氧体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210597167.5A CN114917916A (zh) 2022-05-30 2022-05-30 一种高储氧量和高稳定性载氧体及其制备方法

Publications (1)

Publication Number Publication Date
CN114917916A true CN114917916A (zh) 2022-08-19

Family

ID=82813385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210597167.5A Pending CN114917916A (zh) 2022-05-30 2022-05-30 一种高储氧量和高稳定性载氧体及其制备方法

Country Status (1)

Country Link
CN (1) CN114917916A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402630A (zh) * 2011-03-31 2013-11-20 日产自动车株式会社 废气净化催化剂、废气净化整体式催化剂以及废气净化催化剂的制造方法
CN113135598A (zh) * 2021-04-23 2021-07-20 西北大学 一种用于甲烷化学链重整制合成气的氧载体及其制备方法和应用
CN113429198A (zh) * 2021-07-28 2021-09-24 东南大学 一种应用于固定床甲烷化学链水蒸气重整的整体式载氧体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402630A (zh) * 2011-03-31 2013-11-20 日产自动车株式会社 废气净化催化剂、废气净化整体式催化剂以及废气净化催化剂的制造方法
CN113135598A (zh) * 2021-04-23 2021-07-20 西北大学 一种用于甲烷化学链重整制合成气的氧载体及其制备方法和应用
CN113429198A (zh) * 2021-07-28 2021-09-24 东南大学 一种应用于固定床甲烷化学链水蒸气重整的整体式载氧体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG HE ET AL.: "La1-xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: Identification of the surface elements and redox cyclic performance", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 44, pages 10272 - 10275 *
YANE ZHENG ET AL.: "Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 202, pages 53 *
赵林洲 等: "Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用", 《化工学报》, vol. 72, no. 8 *

Similar Documents

Publication Publication Date Title
CN108855109B (zh) 一种化学链部分氧化甲烷制合成气氧载体及其制备方法和应用
CN110876938B (zh) 一种钙钛矿型复合金属氧化物载氧体及其制备方法和应用
CN109746022B (zh) 一种用于二氧化碳还原的高分散铜锌催化剂的制备方法及其使用方法
CN109833877B (zh) 一种化学链部分氧化甲烷制合成气催化剂及其制备和应用
KR101994152B1 (ko) 탄소 침적의 감소를 위해, 금속이온이 치환된 페로브스카이트 금속산화물 촉매 및 이의 제조 방법, 그리고 이를 이용한 메탄 개질 반응 방법
CN111087026B (zh) 一种化学链甲烷部分氧化载氧体及其制备方法和应用
CN111111674A (zh) 乙酸自热重整制氢用Ni/La2X2O7催化剂
CN101185885A (zh) 一种用于甲烷或甲醇重整的钙钛矿型催化剂的制备方法
CN113135598B (zh) 一种用于甲烷化学链重整制合成气的氧载体及其制备方法和应用
CN106799228B (zh) 一种甲醇重整制氢气的催化剂及其制备与应用
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN101176841A (zh) 一种用于甲烷或甲醇重整的钙钛矿型催化剂及其应用
CN114405511B (zh) 一种制取合成气并联产co和氢的氧载体及其制备方法和应用
CN114768859A (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN113429198A (zh) 一种应用于固定床甲烷化学链水蒸气重整的整体式载氧体及其制备方法
CN116809070A (zh) 一种低温逆水汽变换的单原子催化剂及其制备方法
CN114917916A (zh) 一种高储氧量和高稳定性载氧体及其制备方法
CN115626666A (zh) 三钙钛矿型复合金属氧化物载氧体及其制备方法和应用
CN115999543A (zh) 一种多壳层结构co-scr脱硝催化剂及其制备方法
CN115646500A (zh) 一种氨分解制氢催化剂及其制备方法与应用
CN114804213A (zh) 一种化学链重整耦合水分解制氢超轻介孔载氧体制备方法
CN112295566B (zh) 一种化学链甲烷重整载氧体及其制备方法和应用
CN113019394B (zh) 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用
CN113731429A (zh) 一种甲醇水蒸气重整制氢铜基催化剂及其制备方法和应用
CN113477263A (zh) 一种将Pd/ZnFexAl2-xO4催化剂用于甲醇重整制氢的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination