CN114864893A - 一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用 - Google Patents

一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN114864893A
CN114864893A CN202210458926.XA CN202210458926A CN114864893A CN 114864893 A CN114864893 A CN 114864893A CN 202210458926 A CN202210458926 A CN 202210458926A CN 114864893 A CN114864893 A CN 114864893A
Authority
CN
China
Prior art keywords
carbon
coo
porous
cos
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210458926.XA
Other languages
English (en)
Other versions
CN114864893B (zh
Inventor
温鸣
隋然
昝广涛
李维娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202210458926.XA priority Critical patent/CN114864893B/zh
Publication of CN114864893A publication Critical patent/CN114864893A/zh
Application granted granted Critical
Publication of CN114864893B publication Critical patent/CN114864893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/30Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明将性能良好的金属硫化物异质结和双层碳骨架结构结合,提供了一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用,该复合材料包括:3D开放骨架结构的海海绵状碳和还原氧化石墨烯组成的双层碳骨架以及CoS2/CoO多孔异质结纳米颗粒,且CoS2/CoO多孔异质结纳米颗粒封装于双层碳骨架中。该复合材料具有良好的导电性、稳定的电极结构和良好的储能性能,可作为高性能钠离子电池负极材料。该复合材料的制备方法工艺简单、条件温和,产物形貌稳定、纯度高,且产物处理方便简洁,适合于中等规模工业生产,且对其他碳基纳米复合材料的制备具有一定的普适性。

Description

一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法 和应用
技术领域
本发明属于复合材料技术领域,具体涉及一种双碳封装的CoS2/CoO多孔异质结复合材料、该复合材料的制备方法及其在钠离子电池负极材料中的应用。
背景技术
随着生态环境的恶化和化石能源的减少,社会对生态友好型和可持续的能源的需求日益迫切。锂离子电池由于其循环寿命长、能量密度高,被认为是近年来最重要的可持续存储设备。锂离子电池虽然应用广泛,但存在成本高、资源有限等问题,这些问题制约了锂离子电池的发展。钠离子电池是最有前景的储能设备之一,也是最有希望替代锂离子电池的储能设备之一。钠离子电池由于钠资源丰富、成本低廉而受到研究者的广泛关注。然而,钠离子电池的大规模应用仍然存在一些问题。Na和Li属于同一主族,Na的嵌入/脱出机理与Li的相似,但由于Na+半径较大(比Li+大43%),很难嵌入电极。与正极材料相比,负极材料的发展稍显滞后,负极材料的研究成为钠离子电池发展的迫切任务。
常见的钠离子电池负极材料主要有碳材料、金属氧、硫化物和合金等。与其它材料相比,金属硫化物具有较高的理论容量和较低的氧化还原电位,从而具有成为钠离子电池负极的应用前景。但是金属硫化物作为钠离子电池负极材料存在一些缺陷,例如:金属硫化物较低的导电性以及其在钠化、脱钠化过程中存在较为严重的体积膨胀现象,有待于进一步改进。
发明内容
特别构筑的双层碳骨架结构(双碳结构)包含内部起支撑作用的3D开放骨架结构的海海绵状硬碳和外部起保护作用的还原氧化石墨烯。其中,海海绵状硬碳具有良好的导电性,能够有效促进电荷在电极材料内部的快速分布,避免电荷聚集导致电压升高,还能够帮助电解液在电极内扩散,改善电极材料的阻抗。还原氧化石墨烯具有独特的二维(2D)薄层蜂窝结构和优异的电学性能,还原氧化石墨烯应用于钠离子电池负极材料能够抑制体积膨胀,稳定电极结构。通过构筑异质结能够增强金属硫化物的本征导电性。
为解决现有技术的问题,本发明将性能良好的金属硫化物异质结和双层碳骨架结构结合起来,充分利用它们的优点,提供了一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法。
本发明的具体技术方案如下:
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料,其特征在于,包括:3D开放骨架结构的海海绵状碳和还原氧化石墨烯组成的双层碳骨架以及CoS2/CoO多孔异质结纳米颗粒。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料,还可以具有这样的技术特征,CoS2/CoO多孔异质结纳米颗粒封装于双层碳骨架中。
本发明还提供了一种上述双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于,包括如下步骤:步骤S1,通过超声喷雾热解法制备得到3D开放骨架结构的海海绵状碳;步骤S2,通过调控表面亲疏水性法在3D开放骨架结构的海海绵状碳的碳骨架上生长小尺寸的Co-ZIFs纳米颗粒,得到中间体一;步骤S3,通过气相原位硫化法原位硫化中间体一的Co-ZIFs纳米颗粒,在碳骨架的还原作用下,得到中间体二;步骤S4,通过吸附组装法使表面带有负电荷的中间体二吸附组装带正电荷的氨基化氧化石墨烯,得到中间体三;步骤S5,将中间体三在惰性气体中退火得到双碳封装的CoS2/CoO多孔异质结复合材料。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,还可以具有这样的技术特征,其中,步骤S2中调控表面亲疏水性法制备中间体一的具体过程为:将3D开放骨架结构的海海绵状碳分散于第一溶剂中,加入表面活性剂搅拌均匀,加入钴源和有机物配体进行搅拌反应,用第一溶剂洗涤反应产物,干燥得到中间体一。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,还可以具有这样的技术特征,其中,步骤S3中气相原位硫化法制备中间体二的具体过程为:将中间体一和过量硫源放置在管式炉中,在惰性气体保护下程序升温至预置温度进行反应,用能较好溶解硫的洗液洗涤管内的反应产物,干燥得到中间体二。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,还可以具有这样的技术特征,其中,步骤S4中吸附组装法制备中间体三的具体过程为:将中间体二分散于第二溶剂中,逐滴加入分散良好的所述氨基化氧化石墨烯的溶液,搅拌反应后用洗液洗涤反应产物,干燥得到中间体三。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,还可以具有这样的技术特征,其中,调控表面亲疏水性法制备中间体一的具体过程中:第一溶剂为甲醇,3D开放骨架结构的海海绵状碳分散于甲醇的浓度为0.25~2mg/mL;表面活性剂为聚乙烯吡咯烷酮,浓度为1~20mg/mL;钴源为六水合硝酸钴,浓度为5~10mg/mL;有机物配体为2-甲基咪唑,浓度为10~20mg/mL;搅拌反应的反应时间为1~4h。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,还可以具有这样的技术特征,其中,气相原位硫化法制备中间体二的具体过程中:硫源为升华硫粉,惰性气体为氮气或氩气,反应时间为1~4h,洗液为二硫化碳。
本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,还可以具有这样的技术特征,其中,吸附组装法制备中间体三的具体过程中:第二溶剂为去离子水,中间体二和氨基化氧化石墨烯的质量比为2:1~8:1,搅拌反应的反应时间为2~4h,洗液为去离子水。
本发明还提供了上述双碳封装的CoS2/CoO多孔异质结复合材料在钠离子电池负极材料中的应用。
发明的作用与效果
由于本发明是将高储钠活性的CoS2/CoO多孔异质结和双层碳骨架结构结合,制备出具有夹层结构的双碳封装的CoS2/CoO多孔异质结复合材料。夹层结构中,CoS2/CoO多孔异质结能够在缓解体积膨胀的同时贡献高的储钠容量,双层碳骨架结构具有加速化学反应动力学和增强结构稳定性的作用,这种夹层结构大大提高了SIB负极材料的比容量和循环稳定性。
因此本发明提供的双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法,具有如下优势:
1.双碳封装的CoS2/CoO多孔异质结复合材料具有良好的导电性和储能性能,作为高性能钠离子电池负极材料能够稳定电极结构;
2.该制备方法中原料均为廉价的市售化学试剂,原料储量丰富,工业成本低;
3.该制备方法工艺简单、条件温,产物形貌稳定、纯度高,且产物处理方便简洁,适合于中等规模工业生产;
4.该制备方法对制备其他碳基纳米复合材料具有一定的普适性。
附图说明
图1是本发明实施例一中产物的微观结构张照片;
图2是本发明实施例一中产物的XRD谱图和高分辨XPS谱图;
图3是本发明实施例二中中间体一(OFC@Co-ZIFs)的SEM照片;
图4是本发明实施例三中双碳封装的CoS2/CoO多孔异质结复合材料的SEM照片。
具体实施方式
以下通过实施例说明本发明的具体步骤,但不受实施例限制。
在本发明中使用的术语,除非另有说明,一般具有本领域普通技术人员通常理解的含义。
在以下实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。
下述实施例中所采用的试剂为普通商业途径购得,未注明的实验操作及实验条件参考本领域的常规操作及常规条件。
下述实施例中所采用的试剂纯度均不低于化学纯。
以下结合附图来说明本发明的具体实施方式。
<实施例一>
本实施例提供了一种双碳封装的CoS2/CoO多孔异质结复合材料,其制备步骤如下:
步骤S1,配制1.5mol/L的氯乙酸钠水溶液150mL,超声20min使溶液分散均匀,加入自制的超声喷雾器中,溶液在超声波的驱动下被雾化成细小的水雾,由1.5L/min的氮气吹入700℃的管式炉中,反应2h后用乙醇收集管壁的黑色粉体产物,用75vol%乙醇水溶液洗涤5次,干燥得到3D开放骨架结构的海海绵状碳(OFC);
步骤S2,将10mg OFC溶于20mL甲醇中,超声分散20min,在高速搅拌下,加入100mg聚乙烯吡咯烷酮(PVP,(C6H9NO)n),搅拌1h,然后加入0.1456g六水合硝酸钴(Co(NO3)2·6H2O),搅拌1h,最后加入0.328g 2-甲基咪唑,反应4h,用甲醇洗涤3次后,于真空干燥箱中烘干得到中间体一(OFC@Co-ZIFs);
步骤S3,将OFC@Co-ZIFs与过量升华硫粉放入管式炉中,在N2的保护下,首先以5℃/min的升温速率升温至200℃,保温2h稳定结构,继续以2℃/min的速率升温至400℃,反应2h,反应产物冷却至室温,用二硫化碳(CS2)洗涤3次,于真空干燥箱中烘干制得中间体二(OFC@CoS2/CoO);
步骤S4,将OFC@CoS2/CoO超声分散于去离子水中,制得水分散液,浓度为1mg/mL,将氨基化氧化石墨烯粉末配置成0.5mg/L GO溶液,在温和搅拌下,等量的GO溶液逐滴加入到水分散液中,温和搅拌4h,用去离子水洗涤多次后,真空干燥制得中间体三(OFC@CoS2/CoO@GO);
步骤S5,取适量的OFC@CoS2/CoO@GO放置在管式炉中,在500℃,氩气保护下,退火1h,即得双碳封装的CoS2/CoO多孔异质结复合材料。
图1是本发明实施例一中各步骤产物的微观结构张照片。其中,图1(a)是本实施例中步骤S1的产物OFC的SEM照片;图1(b)是本实施例中步骤S2的产物OFC@Co-ZIFs的SEM照片;图1(c)是本实施例中步骤S3的产物OFC@CoS2/CoO的SEM照片;图1(d)是本实施例中步骤S5的产物双碳封装的CoS2/CoO多孔异质结复合材料的SEM和TEM照片。
图2是本发明实施例一产物的XRD谱图和高分辨XPS谱图。
对本实施例制得的双碳封装的CoS2/CoO多孔异质结复合材料进行结构分析,结果如图2所示,图(2a)是OFC@CoS2/CoO和双碳封装的CoS2/CoO多孔异质结复合材料的XRD图谱,图(2b)、图(2c)和图(2d)分别是CoS2/CoO多孔异质结复合材料的主要元素C1s、Co2p和S2p元素的高分辨XPS谱图。通过对Co2p图谱分峰,表明本实施例制得的双碳封装的CoS2/CoO多孔异质结复合材料的结构和其理论结构一致。
<实施例二>
本实施例提供了不同OFC添加量制备的双碳封装的CoS2/CoO多孔异质结复合材料,其制备步骤如下:
步骤S1,配制1.5mol/L的氯乙酸钠水溶液150mL,超声20min使溶液分散均匀,加入自制的超声喷雾器中,溶液在超声波的驱动下被雾化成细小的水雾,由1.5L/min的氮气吹入700℃的管式炉中,反应2h后用乙醇收集管壁的黑色粉体产物,用75vol%乙醇水溶液洗涤5次,干燥得到OFC;
步骤S2,将10mg、15mg和20mg的OFC分别溶于3份20mL甲醇中,超声分散20min,在高速搅拌下,各自加入100mg PVP,搅拌1h,然后各自加入0.1456g六水合硝酸钴,搅拌1h,最后各自加入0.328g 2-甲基咪唑,反应4h,分别用甲醇洗涤3次后,于真空干燥箱中烘干得到3种不同OFC量的OFC@Co-ZIFs;
步骤S3,将3种OFC@Co-ZIFs分别与过量升华硫粉放入管式炉中,在N2的保护下,首先以5℃/min的升温速率升温至200℃,保温2h稳定结构,继续以2℃/min的速率升温至400℃,反应2h,反应产物冷却至室温,用二硫化碳(CS2)洗涤3次,于真空干燥箱中烘干制得3种不同OFC量的OFC@CoS2/CoO;
步骤S4,将3种OFC@CoS2/CoO分别超声分散于去离子水中,制得3份水分散液,浓度均为1mg/mL,将氨基化氧化石墨烯粉末配置成0.5mg/L GO溶液,在温和搅拌下,与每份水分散液等量的GO溶液逐滴加入到3份水分散液中,温和搅拌4h,用去离子水洗涤多次后,真空干燥制得3种不同OFC量的OFC@CoS2/CoO@GO;
步骤S5,将3种OFC@CoS2/CoO@GO分别取适量放置在管式炉中,在500℃,在氩气保护下,退火1h,即得3种不同OFC量的双碳封装的CoS2/CoO多孔异质结复合材料。
图3是本发明实施例二中中间体一(OFC@Co-ZIFs)的SEM照片。其中图3(a)、3(b)和3(c)分别是10mg、15mg和20mg OFC制备的OFC@Co-ZIFs的SEM照片,由图3(a)、3(b)和3(c)所示,不同添加量的OFC制备的OFC@Co-ZIFs的形貌相似,但OFC和ZIFs比例存在明显差异。
<实施例三>
本实施例提供了不同中间体二(OFC@CoS2/CoO)与氨基化氧化石墨烯质量比制备的双碳封装的CoS2/CoO多孔异质结复合材料,其制备步骤如下:
步骤S1,配制1.5mol/L的氯乙酸钠水溶液150mL,超声20min使溶液分散均匀,加入自制的超声喷雾器中,溶液在超声波的驱动下被雾化成细小的水雾,由1.5L/min的氮气吹入700℃的管式炉中,反应2h后用乙醇收集管壁的黑色粉体产物,用75vol%乙醇水溶液洗涤5次,干燥得到OFC;
步骤S2,将10mg OFC溶于20mL甲醇中,超声分散20min,在高速搅拌下,加入100mg聚乙烯吡咯烷酮(PVP,(C6H9NO)n),搅拌1h,然后加入0.1456g六水合硝酸钴(Co(NO3)2·6H2O),搅拌1h,最后加入0.328g 2-甲基咪唑,反应4h,用甲醇洗涤3次后,于真空干燥箱中烘干得到中间体一(OFC@Co-ZIFs);
步骤S3,将OFC@Co-ZIFs与过量升华硫粉放入管式炉中,在N2的保护下,首先以5℃/min的升温速率升温至200℃,保温2h稳定结构,继续以2℃/min的速率升温至400℃,反应2h,反应产物冷却至室温,用二硫化碳(CS2)洗涤3次,于真空干燥箱中烘干制得中间体二(OFC@CoS2/CoO);
步骤S4,取3份中间体二(OFC@CoS2/CoO)分别超声分散于去离子水中,制得3份水分散液,浓度均为1mg/mL,将氨基化氧化石墨烯粉末配置成0.5mg/L GO溶液,在温和搅拌下,按照中间体二的水分散液与GO溶液体积比为4:1、2:1和1:1,取适量的GO溶液(此时中间体二和氨基化氧化石墨烯的质量比分别为8:1、4:1和2:1),在温和搅拌下,逐滴加入到3份水分散液中,温和搅拌4h,用去离子水洗涤多次后,真空干燥制得3份中间体三(OFC@CoS2/CoO@GO);
步骤S5,将3份OFC@CoS2/CoO@GO分别取适量放置在管式炉中,在500℃,在氩气保护下,退火1h,即得3份双碳封装的CoS2/CoO多孔异质结复合材料。
图4是本发明实施例三中双碳封装的CoS2/CoO多孔异质结复合材料的SEM照片。其中图4(a)、4(b)和4(c)分别是中间体二和氨基化氧化石墨烯的质量比分别为8:1、4:1和2:1时制备的双碳封装的CoS2/CoO多孔异质结复合材料的SEM照片,由图4(a)、4(b)和4(c)所示,不同中间体二(OFC@CoS2/CoO)与氨基化氧化石墨烯质量比制备的双碳封装的CoS2/CoO多孔异质结复合材料,外层氨基化氧化石墨烯(rGO)的包裹状态和复合材料的结构存在明显差异。
以上是对实施例的详细描述,方便本领域的技术人员能正确理解和使用本发明。凡本领域的技术人员依据本发明在现有技术基础上,不经过创新性的劳动,仅通过分析、类推或有限列举等方法得到的改进或修改技术方案,都应该在由权利要求书所确定的保护范围内。

Claims (10)

1.一种双碳封装的CoS2/CoO多孔异质结复合材料,其特征在于,包括:
3D开放骨架结构的海海绵状碳和还原氧化石墨烯组成的双层碳骨架以及CoS2/CoO多孔异质结纳米颗粒。
2.根据权利要求1所述的双碳封装的CoS2/CoO多孔异质结复合材料,其特征在于,
所述CoS2/CoO多孔异质结纳米颗粒封装于所述双层碳骨架中。
3.一种如权利要求1或2所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于,包括如下步骤:
步骤S1,通过超声喷雾热解法制备得到所述3D开放骨架结构的海海绵状碳;
步骤S2,通过调控表面亲疏水性法在所述3D开放骨架结构的海海绵状碳的碳骨架上生长小尺寸的Co-ZIFs纳米颗粒,得到中间体一;
步骤S3,通过气相原位硫化法原位硫化所述中间体一的所述Co-ZIFs纳米颗粒,在所述碳骨架的还原作用下,得到中间体二;
步骤S4,通过吸附组装法使表面带有负电荷的所述中间体二吸附组装带正电荷的氨基化氧化石墨烯,得到中间体三;
步骤S5,将所述中间体三在惰性气体中退火得到所述双碳封装的CoS2/CoO多孔异质结复合材料。
4.根据权利要求3所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于,
其中,步骤S2中所述调控表面亲疏水性法制备所述中间体一的具体过程为:
将所述3D开放骨架结构的海海绵状碳分散于第一溶剂中,加入表面活性剂搅拌均匀,加入钴源和有机物配体进行搅拌反应,用所述第一溶剂洗涤反应产物,干燥得到所述中间体一。
5.根据权利要求3所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于,
其中,步骤S3中所述气相原位硫化法制备所述中间体二的具体过程为:
将所述中间体一和过量硫源放置在管式炉中,在惰性气体保护下程序升温至预置温度进行反应,用能较好溶解硫的洗液洗涤管内的反应产物,干燥得到所述中间体二。
6.根据权利要求3所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于,
其中,步骤S4中所述吸附组装法制备所述中间体三的具体过程为:
将所述中间体二分散于第二溶剂中,逐滴加入分散良好的所述氨基化氧化石墨烯的溶液,搅拌反应后用洗液洗涤反应产物,干燥得到所述中间体三。
7.根据权利要求4所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于:
其中,所述第一溶剂为甲醇,所述3D开放骨架结构的海海绵状碳分散于甲醇的浓度为0.25~2mg/mL,
所述表面活性剂为聚乙烯吡咯烷酮,浓度为1~20mg/mL,
所述钴源为六水合硝酸钴,浓度为5~10mg/mL,
所述有机物配体为2-甲基咪唑,浓度为10~20mg/mL,
所述搅拌反应的反应时间为1~4h。
8.根据权利要求5所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于:
其中,所述硫源为升华硫粉,
所述惰性气体为氮气或氩气,
所述反应的反应时间为1~4h,
所述洗液为二硫化碳。
9.根据权利要求6所述的双碳封装的CoS2/CoO多孔异质结复合材料的制备方法,其特征在于:
其中,所述第二溶剂为去离子水,
所述中间体二和所述氨基化氧化石墨烯的质量比为2:1~8:1,
所述搅拌反应的反应时间为2~4h,
所述洗液为去离子水。
10.如权利要求1或2所述的双碳封装的CoS2/CoO多孔异质结复合材料在钠离子电池负极材料中的应用。
CN202210458926.XA 2022-04-25 2022-04-25 一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用 Active CN114864893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210458926.XA CN114864893B (zh) 2022-04-25 2022-04-25 一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210458926.XA CN114864893B (zh) 2022-04-25 2022-04-25 一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114864893A true CN114864893A (zh) 2022-08-05
CN114864893B CN114864893B (zh) 2023-11-28

Family

ID=82633200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210458926.XA Active CN114864893B (zh) 2022-04-25 2022-04-25 一种双碳封装的CoS2/CoO多孔异质结复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114864893B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784710A (zh) * 2016-12-28 2017-05-31 广东工业大学 一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其制备方法和应用
CN107093709A (zh) * 2017-03-31 2017-08-25 同济大学 一种多孔碳球负载硫化物复合材料的制备方法
JP2017152297A (ja) * 2016-02-26 2017-08-31 株式会社Gsユアサ 二次電池用非水電解質、非水電解質二次電池、及び非水電解質二次電池の製造方法
US20180248190A1 (en) * 2017-02-27 2018-08-30 Nanotek Instruments, Inc. Cathode Active Material Layer for Lithium Secondary Battery and Method of Manufacturing
CN109461916A (zh) * 2018-10-30 2019-03-12 肇庆市华师大光电产业研究院 一种钠离子电池负极材料的制备方法
KR20200042651A (ko) * 2018-10-16 2020-04-24 울산대학교 산학협력단 산화코발트와 질소 및 황이 코도핑된 환원 그래핀 옥사이드를 포함하는 산화환원 반응용 촉매
CN111063873A (zh) * 2019-12-11 2020-04-24 肇庆市华师大光电产业研究院 一种硫化钴-氧化钴复合钠离子电池负极材料的制备方法
CN113060770A (zh) * 2021-02-25 2021-07-02 南京师范大学 一种异质结CoO/CoS多孔纳米棒的制备方法及所得材料和应用
CN113622055A (zh) * 2021-08-17 2021-11-09 四川轻化工大学 一种钠离子电池负极材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152297A (ja) * 2016-02-26 2017-08-31 株式会社Gsユアサ 二次電池用非水電解質、非水電解質二次電池、及び非水電解質二次電池の製造方法
CN106784710A (zh) * 2016-12-28 2017-05-31 广东工业大学 一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其制备方法和应用
US20180248190A1 (en) * 2017-02-27 2018-08-30 Nanotek Instruments, Inc. Cathode Active Material Layer for Lithium Secondary Battery and Method of Manufacturing
CN107093709A (zh) * 2017-03-31 2017-08-25 同济大学 一种多孔碳球负载硫化物复合材料的制备方法
KR20200042651A (ko) * 2018-10-16 2020-04-24 울산대학교 산학협력단 산화코발트와 질소 및 황이 코도핑된 환원 그래핀 옥사이드를 포함하는 산화환원 반응용 촉매
CN109461916A (zh) * 2018-10-30 2019-03-12 肇庆市华师大光电产业研究院 一种钠离子电池负极材料的制备方法
CN111063873A (zh) * 2019-12-11 2020-04-24 肇庆市华师大光电产业研究院 一种硫化钴-氧化钴复合钠离子电池负极材料的制备方法
CN113060770A (zh) * 2021-02-25 2021-07-02 南京师范大学 一种异质结CoO/CoS多孔纳米棒的制备方法及所得材料和应用
CN113622055A (zh) * 2021-08-17 2021-11-09 四川轻化工大学 一种钠离子电池负极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANG HE,ET AL.: ""CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-pe rformance sodium-ion batteries"", vol. 332, pages 1 - 11 *
张立德;方明;: "纳米颗粒材料研究的新进展", vol. 24, no. 17, pages 1 - 7 *

Also Published As

Publication number Publication date
CN114864893B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
Kang et al. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors
CN111362254B (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN104009205B (zh) 一种中空石墨烯球及其制备方法和用途
Sun et al. Catalytic Co 9 S 8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries
Ghiyasiyan-Arani et al. Comparative study on electrochemical hydrogen storage of nanocomposites based on S or N doped graphene quantum dots and nanostructured titanium niobate
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Liang et al. Hybrid cathode composed of pyrite-structure CoS2 hollow polyhedron and Ketjen black@ sulfur materials propelling polysulfide conversion in lithium sulfur batteries
Zhao et al. Design of trimetallic sulfide hollow nanocages from metal–organic frameworks as electrode materials for supercapacitors
CN109473643B (zh) 一种CoSe2/石墨烯复合材料制备方法和用途
Xiang et al. Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures
Pu et al. Multifunctional Ni/NiO heterostructure nanoparticles doped carbon nanorods modified separator for enhancing Li–S battery performance
CN113161533A (zh) 一种MOF衍生的ZnO@C复合材料及其应用
Guo et al. Nitrogen doped carbon nanosheets encapsulated in situ generated sulfur enable high capacity and superior rate cathode for Li-S batteries
Wang et al. Uniformly distributed 1T/2H-MoS2 nanosheets integrated by melamine foam-templated 3D graphene aerogels as efficient polysulfides trappers and catalysts in lithium-sulfur batteries
CN113113681A (zh) 一种复合补钠添加剂及在钠离子电池中的应用
Song et al. Co3O4@ 3D ordered macro-/mesoporous TiO2 as an excellent cathode catalyst for rechargeable Li–O2 batteries
Pappu et al. Electrodeposited manganese oxide based redox mediator driven 2.2 V high energy density aqueous supercapacitor
Yan et al. Hierarchical MnO2@ NiCo2O4@ Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors
CN112635726B (zh) 一种膨润土基复合材料及其制备方法和应用
Li et al. Mesoporous hierarchical NiCoSe2-NiO composite self-supported on carbon nanoarrays as synergistic electrocatalyst for flexible lithium-sulfur batteries
Zhang et al. Enhancing electrochemical performance in aqueous rechargeable Zn-ion batteries through bimetallic oxides of manganese and cobalt as electrode
CN113113576A (zh) 一种Bi/ SnOx@C钠离子电池复合电极材料及其制备方法
CN108832102B (zh) 一种用于制备锂电池电极的复合材料及其应用
CN111192997A (zh) 活性炭负载氧化锡锂硫电池用隔膜及其制备方法与应用
CN111446439B (zh) S@MxSnSy@C复合正极活性材料及其制备和在锂硫电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant