CN114864703A - 具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管 - Google Patents

具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管 Download PDF

Info

Publication number
CN114864703A
CN114864703A CN202210192776.2A CN202210192776A CN114864703A CN 114864703 A CN114864703 A CN 114864703A CN 202210192776 A CN202210192776 A CN 202210192776A CN 114864703 A CN114864703 A CN 114864703A
Authority
CN
China
Prior art keywords
layer
metal
type diamond
gallium oxide
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210192776.2A
Other languages
English (en)
Inventor
张濛
贾富春
常青原
武玫
杨凌
侯斌
宓珉瀚
马晓华
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202210192776.2A priority Critical patent/CN114864703A/zh
Publication of CN114864703A publication Critical patent/CN114864703A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66022Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6603Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明的一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管,其结构包括:自上而下包括阳极金属、P型金刚石层、n‑Ga2O3漂移层、n+‑Ga2O3层、阴极金属。本发明采用P型金刚石作为P型区域避免选择区域形成P型氧化镓面临的难题,同时在优化倾斜角度的台面上生长优化延伸长度的P型金刚石形成结终端结构,终端处的PN结使器件在反向偏置下具有更平滑的等电位轮廓、更小的边缘电场,有效缓解边缘电场集中。本发明利用金刚石的高热导率促进器件散热,可以弥补氧化镓热导率低、散热能力差的劣势。

Description

具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管
技术领域
本发明属于半导体技术领域,具体涉及具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管。
背景技术
Ga2O3是一种新兴的半导体材料,鉴于Ga2O3的Baliga优值(FOM)远远超过了GaN和4H-SiC的优值(FOM),其在实现高性能电子器件方面有着较大优势。同时Ga2O3的临界击穿场强高达8MV/cm,室温下电子迁移率约为200cm2/Vs,这些特性使Ga2O3成为下一代电力电子器件的优秀候选材料。
垂直Ga2O3肖特基二极管(SBD)可以通过增加漂移层厚度和减少漂移层掺杂浓度来增加器件的击穿电压,不会增加器件的横向尺寸导致晶圆利用率的降低。SBD一般作为单极器件,反向恢复时间短,具有优异的频率特性,但是击穿主要发生在电场分布集中的肖特基结的边缘,需要有效的终端技术,调节肖特基结处电场分布,提高器件的耐压水平。根据现有终端技术提出的肖特基二极管结构包括:结势垒肖特基二极管(JBS)和混合PIN/肖特基二极管(MPS)。
结势垒肖特基二极管通过在器件中引入P型重掺杂,P+区位于外延层表面同时与阳极金属相连,在有源区以一定的间距规则地排列在一起。P型重掺杂在器件中引入了pn结,pn结产生的势垒为肖特基接触屏蔽了高电场。肖特基接触处较小的电场将导致较小的肖特基势垒降低和较弱的场发射效应,从而获得低漏电流和高击穿电压。在实际制备器件的过程中,通常使用相同的阳极肖特基金属来形成与P型区域和N型区域的接触,没有任何退火过程,这简化了器件的制造过程。但在设计器件时,P型区域之间的距离必须适当,以避免正向偏置时N型区域被完全耗尽。同时P型Ga2O3材料难以制备,这使得Ga2O3 JBS器件的实现成为一大难题。
混合PIN/肖特基二极管同样是通过引入pn结来调节器件肖特基结处的电场分布。但MPS P型区域和阳极金属之间为欧姆接触,这是MPS与JBS的不同之处。与JBS器件相比,MPS整流器表现出更好的浪涌电流能力。但是由于少数载流子通过欧姆接触注入,导致MPS的频率响应较慢。同时Ga2O3 JBS器件同样存在P型Ga2O3材料制备困难的问题。
发明内容
本发明的目的在于克服背景技术存在的问题,提供一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管。本发明要解决的技术问题通过以下技术方案实现:
第一方面,本发明提供的一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管包括:
自上而下包括阳极金属、P型金刚石层、n--Ga2O3漂移层、n+-Ga2O3层以及阴极金属;
其中,n--Ga2O3层自上而下呈梯形结构,梯形结构的倾斜角度θ的范围为90°~150°,P型金刚石层在梯形结构两侧,并部分覆盖在梯形结构的n--Ga2O3层上以及n--Ga2O3层倾斜台面上,P型金刚石层在倾斜台面上可延伸长度为n--Ga2O3层斜面长度的0~3/4倍,阳极金属位于n--Ga2O3层上中间未被P型金刚石层覆盖部分,且超出P型金刚石层并向两侧延伸部分覆盖两侧的P型金刚石层。
其中,P型金刚石层的生长厚度为30~100nm,掺杂离子为硼离子,掺杂浓度范围为1×1018~1×1020cm-3
其中,n--Ga2O3层的生长厚度为5~15μm,掺杂离子为Si离子或Sn离子,掺杂浓度范围为1×1016~1×1018cm-3
其中,n+-Ga2O3衬底厚度为300~650μm,掺杂离子为Si离子或Sn离子,掺杂浓度范围为1×1018~1×1020cm-3
其中,阳极金属层包括:Ni/Au或Pt/Au;阴极金属层包括:Ti/Au或Ti/Al/Ni/Au;
其中,阳极金属为Ni/Au组合或Pt/Au组合,第一层金属Ni或Pt的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属为Ti/Au组合或Ti/Al/Ni/Au组合,阴极金属若为Ti/Au组合,第一层金属Ti的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属若为Ti/Al/Ni/Au组合,第一层金属Ti的生长厚度为10~200nm,第二层金属Al生长厚度为10~200nm,第三层金属Ni的生长厚度为10~200nm,第四层金属Au的生长厚度为50~400nm。
第二方面,本发明提供的一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管的制作方法包括:
步骤1:获取n+-Ga2O3衬底;
步骤2:对n+-Ga2O3衬底进行标准清洗;
步骤3:在n+-Ga2O3衬底上外延生长低掺杂n--Ga2O3薄膜;
步骤4:将外延生长低掺杂n--Ga2O3薄膜的衬底依次进行有机溶剂和去离子水清洗后,放入体积比为HF:H2O=1:1的混合溶液中腐蚀40~100s,用流动的去离子水清洗并用高纯氮气吹干;
步骤5:采用ICP设备在步骤4所形成的结构上,刻蚀氧化镓斜面台面;
步骤6:利用MPCVD方法,在低掺杂的n--Ga2O3薄膜上制备P型金刚石层;
步骤7:在硼掺杂P型金刚石上涂抹光刻胶,光刻出肖特基接触区域和P型金刚石在倾斜台面上的多余部分,并去除刻蚀完成后的光刻胶;
步骤8:在步骤7所形成的结构放置在电子束蒸发台中,在n+-Ga2O3衬底背面蒸发Ti/Au金属组合或Ti/Al/Ni/Au金属组合作为阴极;
步骤9:在蒸发阴极金属之后,将n+-Ga2O3衬底在450~600℃的N2环境中进行40~80s快速热退火,使阴极金属与重掺杂氧化镓之间形成欧姆接触作为阴极;
步骤10:在低掺杂n--Ga2O3薄膜上先旋涂光刻胶,光刻后在肖特基接触区域和其周围部分P型金刚石上方蒸发Ni/Au金属组合或Pt/Au金属组合作为阳极。
可选的,步骤3中,外延生长低掺杂n--Ga2O3薄膜工作环境为:
在三甲基镓TMGa流量为3.0×10-6~1.2×10-5mol/min,O2流量为1.0×10-2~4.0×10-2mol/min,温度为50~120℃,压强为500Pa的MOCVD设备中。
可选的,步骤5的刻蚀条件为:
上电极功率200~350W/下电极功率为40~60W,腔室压力为4~20mTorr,气体流量Cl2为30~60sccm,温度为10~50℃。
本发明的有益效果:
1.本发明采用P型金刚石作为P型区域规避P型氧化镓制备困难的难题。同时利用金刚石的高热导率促进器件散热,弥补氧化镓热导率低、散热能力差的劣势。以下将结合附图及实施例对本发明做进一步详细说明。
2.本发明提供的肖特基二极管采用倾斜台面结终端结构,通过优化倾斜台面角度θ和P型金刚石在倾斜台面上的延伸长度使器件具有更平滑的等电位轮廓、更小的边缘电场,提升肖特基二极管的击穿电压。
附图说明
图1为本发明一种具有P型金刚石倾斜台面结终端结构的肖特基二极管的剖面结构示意图;
图2为本发明提供的制备一种具有P型金刚石倾斜台面结终端结构的肖特基二极管的流程图;
图3为本发明提供的外延生长低掺杂n--Ga2O3薄膜后的结构图;
图4为本发明提供的刻蚀氧化镓斜面台面的结构图;
图5为本发明提供的制备出硼掺杂P型金刚石层的结构图;
图6为本发明提供的在P型金刚石层刻蚀肖特基接触区域以及多余部分的结构图;
图7为本发明提供的最终形成具有P型金刚石倾斜台面结终端结构的肖特基二极管示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,本发明提供的一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管包括:
自上而下包括阳极金属、P型金刚石层、n--Ga2O3层、n+-Ga2O3层以及阴极金属;
其中,n--Ga2O3层、n+-Ga2O3层以及阴极金属层自上而下呈梯形结构,梯形结构的倾斜角度θ的范围为90°~150°,P型金刚石层在梯形结构两侧,并部分覆盖在梯形结构的n--Ga2O3层上以及n--Ga2O3层倾斜台面上可延伸长度为n--Ga2O3层斜面长度0~3/4倍,阳极金属层位于n--Ga2O3层上中间未被P型金刚石层覆盖部分,且超出P型金刚石层并向两侧延伸部分覆盖两侧的P型金刚石层。
其中,P型金刚石层的生长厚度范围为30~100nm。n--Ga2O3层的生长厚度范围为5~15μm,掺杂离子为Si离子或Sn离子,掺杂浓度范围为1×1016~1×1018cm-3。n+-Ga2O3衬底厚度范围为300~650μm。掺杂离子为Si离子或Sn离子,掺杂浓度范围为1×1018~1×1020cm-3。阳极金属层为Ni/Au或Pt/Au组合;阴极金属层为Ti/Au或Ti/Al/Ni/Au金属组合。阳极金属为Ni/Au组合或Pt/Au组合,第一层金属Ni或Pt的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属为Ti/Au组合或Ti/Al/Ni/Au组合,阴极金属若为Ti/Au组合,第一层金属Ti的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属若为Ti/Al/Ni/Au组合,第一层金属Ti的生长厚度为10~200nm,第二层金属Al生长厚度为10~200nm,第三层金属Ni的生长厚度为10~200nm,第四层金属Au的生长厚度为50~400nm。本发明还可以使用其它金属组合,本发明对此不作限制。
如图2所示,本发明提供的一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管的制作方法包括:
步骤1:获取厚度为300~650μm的n+-Ga2O3衬底,掺杂离子为Si离子或Sn离子,掺杂浓度为1×1018~1×1020cm-3
步骤2:对n+-Ga2O3衬底进行标准清洗;
步骤3:在n+-Ga2O3衬底上外延生长厚度为5~15μm的低掺杂n--Ga2O3薄膜,掺杂离子为Si离子或Sn离子,掺杂浓度为1×1016~1×1018cm-3
其中,步骤3的制作条件为在三甲基镓TMGa流量为3.0×10-6~1.2×10-5mol/min,O2流量为1.0×10-2~4.0×10-2mol/min,温度为50~120℃,压强为500Pa的MOCVD设备中。
参考图3,将清洗后的衬底放入MOCVD设备中,在三甲基镓TMGa流量为3.0×10-6~1.2×10-5mol/min,O2流量为1.0×10-2~4.0×10-2mol/min,温度为50~120℃,压强为500Pa的条件下外延生长厚度为5~15μm、掺杂浓度为1×1016~1×1018cm-3的低掺杂n--Ga2O3薄膜。
步骤4:将外延生长低掺杂n--Ga2O3薄膜的衬底依次进行有机溶剂和去离子水清洗后,放入体积比为HF:H2O=1:1的混合溶液中腐蚀40~100s,用流动的去离子水清洗并用高纯氮气吹干;
步骤5:采用ICP设备在步骤4所形成的结构上,刻蚀氧化镓斜面台面;
其中,步骤5的刻蚀条件为:
上电极功率200~350W/下电极功率为40~60W,腔室压力为4~20mTorr,气体流量Cl2为30~60sccm,温度为10~50℃。
参考图4,本步骤可以采用ICP设备,刻蚀氧化镓斜面台面,上电极功率200~350W/下电极功率为40~60W,腔室压力为4~20mTorr,气体流量Cl2为30~60sccm,温度为10~50℃,并去除光刻胶。
步骤6:利用MPCVD方法,在低掺杂的n--Ga2O3薄膜上制备出厚度为30~100nm的P型金刚石层,掺杂离子为硼离子,掺杂浓度范围为1×1018~1×1020cm-3
参考图5,在低掺杂的n--Ga2O3上制备出硼掺杂P型金刚石层,掺杂浓度为1×1018~1×1020cm-3,厚度为30~100nm。反应的主要气体为CH4、H2和乙硼烷(B2H6),把混合气体通入反映腔体,通过控制气体的流量来控制B2H6的掺杂量制备出硼掺杂P型金刚石层。
步骤7:在硼掺杂P型金刚石上涂抹光刻胶,并光刻出肖特基接触区域和P型金刚石在斜面台面上的多余部分,并去除刻蚀完成的光刻胶;
参考图6,在P型金刚石上涂抹光刻胶并光刻出肖特基接触区域和P型金刚石在斜面台面上的多余部分,上电极功率200~350W/下电极功率为40~60W,腔室压力为4~20mTorr,气体流量O2 20~80sccm,托盘温度10~50℃;刻蚀完成后去除光刻胶。
步骤8:步骤6所形成的结构放置在电子束蒸发台中,在n+-Ga2O3衬底背面蒸发Ti/Au或Ti/Al/Ni/Au金属组合作为阴极;
其中,阴极金属为Ti/Au组合或Ti/Al/Ni/Au组合,阴极金属若为Ti/Au组合,第一层金属Ti的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属若为Ti/Al/Ni/Au组合,第一层金属Ti的生长厚度为10~200nm,第二层金属Al生长厚度为10~200nm,第三层金属Ni的生长厚度为10~200nm,第四层金属Au的生长厚度为50~400nm。
步骤9:在蒸发阴极金属之后,将n+-Ga2O3衬底在450~600℃的N2环境中进行40~80s快速热退火,使阴极金属与重掺杂氧化镓之间形成欧姆接触作为阴极;
步骤10:在低掺杂n--Ga2O3薄膜上先旋涂光刻胶,光刻后在肖特基接触区域和其周围部分P型金刚石上方蒸发Ni/Au或Pt/Au组合作为阳极;
其中,阳极金属为Ni/Au组合或Pt/Au组合,第一层金属Ni或Pt的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;
参考图7,图7为制作完成后的肖特基二极管,在n--Ga2O3层、n+-Ga2O3层以及阴极金属层自上而下呈梯形结构,P型金刚石层在梯形结构两侧,并部分覆盖在梯形结构的n--Ga2O3层上以及n--Ga2O3层倾斜台面上,阳极金属层位于n--Ga2O3层上中间未被P型金刚石层覆盖部分,且超出P型金刚石层并向两侧延伸部分覆盖两侧的P型金刚石层。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管,其特征在于,包括:
自上而下包括阳极金属、P型金刚石层、n--Ga2O3漂移层、n+-Ga2O3层以及阴极金属;
其中,所述n--Ga2O3层自上而下呈梯形结构,梯形结构的倾斜角度θ的范围为90°~150°,所述P型金刚石层在梯形结构两侧,并部分覆盖在梯形结构的n--Ga2O3层上以及n--Ga2O3层倾斜台面上,P型金刚石层在倾斜台面上可延伸长度为n--Ga2O3层斜面长度的0~3/4倍,所述阳极金属位于n--Ga2O3层上中间未被P型金刚石层覆盖部分,且超出所述P型金刚石层并向两侧延伸部分覆盖两侧的P型金刚石层。
2.根据权利要求1所述的具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管,其特征在于,P型金刚石层的生长厚度为30~100nm,掺杂离子为硼离子,掺杂浓度范围为1×1018~1×1020cm-3
3.根据权利要求1所述的具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管,其特征在于,n--Ga2O3层的生长厚度为5~15μm,掺杂离子为Si离子或Sn离子,掺杂浓度范围为1×1016~1×1018cm-3
4.根据权利要求1所述的具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管,其特征在于,n+-Ga2O3衬底厚度为300~650μm,掺杂离子为Si离子或Sn离子,掺杂浓度范围为1×1018~1×1020cm-3
5.根据权利要求1所述的具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管,其特征在于,阳极金属层包括:Ni/Au或Pt/Au;阴极金属层包括:Ti/Au或Ti/Al/Ni/Au;
其中,阳极金属为Ni/Au组合或Pt/Au组合,第一层金属Ni或Pt的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属为Ti/Au组合或Ti/Al/Ni/Au组合,阴极金属若为Ti/Au组合,第一层金属Ti的生长厚度为10~50nm,第二层金属Au的生长厚度为100~400nm;阴极金属若为Ti/Al/Ni/Au组合,第一层金属Ti的生长厚度为10~200nm,第二层金属Al生长厚度为10~200nm,第三层金属Ni的生长厚度为10~200nm,第四层金属Au的生长厚度为50~400nm。
6.一种具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管的制作方法,其特征在于,包括:
步骤1:获取n+-Ga2O3衬底;
步骤2:对所述n+-Ga2O3衬底进行标准清洗;
步骤3:在所述n+-Ga2O3衬底上外延生长低掺杂n--Ga2O3薄膜;
步骤4:将外延生长低掺杂n--Ga2O3薄膜的衬底依次进行有机溶剂和去离子水清洗后,放入体积比为HF:H2O=1:1的混合溶液中腐蚀40~100s,用流动的去离子水清洗并用高纯氮气吹干;
步骤5:采用ICP设备在步骤4所形成的结构上,刻蚀氧化镓斜面台面;
步骤6:利用MPCVD方法,在低掺杂的n--Ga2O3薄膜上制备P型金刚石层;
步骤7:在硼掺杂P型金刚石上涂抹光刻胶,光刻出肖特基接触区域和P型金刚石在倾斜台面上的多余部分,并去除刻蚀完成后的光刻胶;
步骤8:在步骤7所形成的结构放置在电子束蒸发台中,在n+-Ga2O3衬底背面蒸发Ti/Au金属组合或Ti/Al/Ni/Au金属组合作为阴极;
步骤9:在所述蒸发阴极金属之后,将n+-Ga2O3衬底在450~600℃的N2环境中进行40~80s快速热退火,使阴极金属与重掺杂氧化镓之间形成欧姆接触作为阴极;
步骤10:在低掺杂n--Ga2O3薄膜上所述先旋涂光刻胶,光刻后在肖特基接触区域和其周围部分P型金刚石上方蒸发Ni/Au金属组合或Pt/Au金属组合作为阳极。
7.根据权利要求1所述的具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管的制作方法,其特征在于,所述步骤3中,外延生长低掺杂n--Ga2O3薄膜工作环境为:
在三甲基镓TMGa流量为3.0×10-6~1.2×10-5mol/min,O2流量为1.0×10-2~4.0×10- 2mol/min,温度为50~120℃,压强为500Pa的MOCVD设备中。
8.根据权利要求1所述的具有P型金刚石倾斜台面结终端的氧化镓肖特基二极管的制作方法,其特征在于,所述步骤5的刻蚀条件为:
上电极功率200~350W/下电极功率为40~60W,腔室压力为4~20mTorr,气体流量Cl2为30~60sccm,温度为10~50℃。
CN202210192776.2A 2022-02-28 2022-02-28 具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管 Pending CN114864703A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210192776.2A CN114864703A (zh) 2022-02-28 2022-02-28 具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210192776.2A CN114864703A (zh) 2022-02-28 2022-02-28 具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管

Publications (1)

Publication Number Publication Date
CN114864703A true CN114864703A (zh) 2022-08-05

Family

ID=82627800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210192776.2A Pending CN114864703A (zh) 2022-02-28 2022-02-28 具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管

Country Status (1)

Country Link
CN (1) CN114864703A (zh)

Similar Documents

Publication Publication Date Title
US8372738B2 (en) Method for manufacturing a gallium nitride based semiconductor device with improved termination scheme
EP0847598B1 (en) SiC SEMICONDUCTOR DEVICE COMPRISING A PN JUNCTION WITH A VOLTAGE ABSORBING EDGE
CN108281491B (zh) 一种具有台阶结构的碳化硅功率器件及其制备方法
CN103606551A (zh) 碳化硅沟槽型半导体器件及其制作方法
JP2012033618A (ja) バイポーラ半導体素子
CN112186032A (zh) 一种带场板结构的氧化镓结势垒肖特基二极管
CN115411095B (zh) 具有介电调控混合场板终端的sbd结构及其制备方法
CN108565295A (zh) 一种碳化硅肖特基二极管及其制备方法
US20240178280A1 (en) Scalable mps device based on sic
US10170563B2 (en) Gallium nitride semiconductor device with improved termination scheme
CN113782587A (zh) 一种具有屏蔽环结构的垂直型ⅲ族氮化物功率半导体器件及其制备方法
CN116230750A (zh) 一种垂直阶梯场板高压GaN基二极管及其制作方法
CN207947287U (zh) 一种碳化硅肖特基二极管
KR20180044110A (ko) 실리콘 카바이드 트렌치 쇼트키 배리어 다이오드의 제조방법
CN113555448B (zh) 一种基于Ga2O3终端结构的4H-SiC肖特基二极管及制作方法
CN110752260A (zh) 新型GaN结势垒肖特基二极管及其制备方法
CN114864703A (zh) 具有p型金刚石倾斜台面结终端的氧化镓肖特基二极管
CN210349845U (zh) 一种碳化硅结势垒肖特基二极管
CN209766432U (zh) Mps二极管器件
CN112531007A (zh) 具有梯度深度p型区域的结势垒肖特基二极管及制备方法
CN116581151B (zh) 一种低开启电压氧化镓肖特基二极管及其制备方法
CN114220869B (zh) 一种具有沟槽结构的垂直型氮化镓肖特基二极管及其制备方法
CN114823926A (zh) 基于p型金刚石的氧化镓异质结肖特基二极管及制备方法
US20230420577A1 (en) Semiconductor device with selectively grown field oxide layer in edge termination region
JP2010245234A (ja) 半導体素子およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination