CN114853495A - 一种高压强热压烧结炉用炭/炭热压模具的制备方法 - Google Patents

一种高压强热压烧结炉用炭/炭热压模具的制备方法 Download PDF

Info

Publication number
CN114853495A
CN114853495A CN202210424735.1A CN202210424735A CN114853495A CN 114853495 A CN114853495 A CN 114853495A CN 202210424735 A CN202210424735 A CN 202210424735A CN 114853495 A CN114853495 A CN 114853495A
Authority
CN
China
Prior art keywords
carbon
hot
pressing mold
pressing
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210424735.1A
Other languages
English (en)
Inventor
赵大明
胡振英
程皓
侯卫权
王春宇
薛宁娟
程凯峰
张飞飞
张稳
姚成君
艾涛
刘文华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Chaoma Technology Co ltd
Original Assignee
Xi'an Chaoma Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Chaoma Technology Co ltd filed Critical Xi'an Chaoma Technology Co ltd
Priority to CN202210424735.1A priority Critical patent/CN114853495A/zh
Publication of CN114853495A publication Critical patent/CN114853495A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高压强热压烧结炉用炭/炭热压模具的制备方法,该方法包括:一、先沿着热压模具铺层的径向预置连续的炭纤维,然后沿着环向和纵向铺放炭纤维得到三维结构预制体;二、高温预处理;三、化学气相沉积得到热压模具毛坯;四、浸渍‑炭化得到致密热压模具毛坯;五、加工至终尺寸;六、浸渍‑炭化得到炭/炭热压模具。本发明通过预先在径向上引入连续的炭纤维再铺设环向、纵向炭纤维,避免了径向炭纤维的损坏作用,使得环向、纵向炭纤维保持完整连续,并发挥增强作用,提高了整体结构强度,并提高炭/炭热压模具的径向导热系数,从而炭/炭热压模具结构稳定,力学性能优异,热场均匀,使用寿命延长,适用于高压强热压炉。

Description

一种高压强热压烧结炉用炭/炭热压模具的制备方法
技术领域
本发明属于炭/炭材料制备技术领域,具体涉及一种高压强热压烧结炉用炭/炭热压模具的制备方法。
背景技术
热压烧结是在真空或者常压(惰性气体保护)状态下,对较难烧结的粉体材料在高强度模具模腔内施加压力,同时升温烧结的工艺。由于同时加温、加压,有助于粉末颗粒的接触和扩散传质,在短时间内粉末烧成接近理论密度、气孔率接近于零的烧结体,得到细晶粒的组织产品,所压制获得的材料具有良好的机械性能、电学性能。
近年来,粉末冶金硬质合金、先进陶瓷行业领域热压炉尺寸不断扩大,吨位从100T不断升级,截止目前市场研发出多腔室连续压制600T压机,要求热压模具材料不仅耐高压,而且能够经受连续出装极冷极热环境。炭纤维作为炭/炭复合材料中承担载荷的主体,其结构特性、取向方式、体积含量都对材料性能有较大影响。欲提高热压模具使用性能、使用寿命,首先要设计科学合理的炭纤维预制体结构。
公开号为CN102060555A的专利公开了一种高强度炭/炭热压模具制造方法,采用浸胶后的炭纤维环向、纵向交替缠绕,得到所需预成型体,后续经炭化,树脂浸炭增密,得到较高强度热压模具。其不足之处是:层间缺少增强纤维,模具材料易分层掉纱,强度逐渐降低,使用中间部位易变形,装出炉操作不便。
公告号为CN101797646A的专利公开了一种真空热压炉用高强度炭/炭热压模具的制备方法,采用炭布环向连续缠绕,径向针刺制成准三维结构预制体,然后通过化学气相渗透与树脂压力浸渍炭化致密制得炭/炭热压模具。该方法制备的炭/炭热压模具成本低,已替代石墨模具,其不足之处是:预制体为炭布缠绕、径向针刺网胎结构,由针刺网胎引入径向炭纤维,对环向纤维造成损伤,在高压强热压烧结炉内应用时强度不足,寿命短。
公开号为CN112225574A、CN113416087A的专利分别公布了组合式炭/炭热压模具的制备方法,均先制备构件单件单元,再对单元组合得到构件整体,但由于单元之间缺少径向增强纤维,径向导热系数差、热压炉热场不均匀,影响热压产品品质,各单元易脱层,模具使用寿命短。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种高压强热压烧结炉用炭/炭热压模具的制备方法。该方法通过预先在径向上布置连续的炭纤维、再铺设环向、纵向炭纤维,避免了径向炭纤维的损坏作用,使得环向、纵向炭纤维保持完整连续,保证了炭纤维强度利用率,提高了三维结构预制体的整体结构强度,使得炭/炭热压模具的力学性能优异,热场均匀,使用寿命延长,解决了炭/炭热压模具使用过程中易变性、不方便出炉的难题。
为解决上述技术问题,本发明采用的技术方案为:一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,该方法包括以下步骤:
步骤一、按照设计的目的产物炭/炭热压模具铺层方式,先沿着铺层的厚度方向即径向预置连续的炭纤维,然后沿着环向和纵向铺放炭纤维,得到三维结构预制体;所述三维结构预制体的体积密度为0.55g/cm3~1.0g/cm3,所述炭纤维为聚丙烯腈基或沥青基炭纤维,炭纤维的纤维丝束为3K~96K;
步骤二、将步骤一中得到的三维结构预制体放置于高温处理炉内进行高温预处理;所述高温预处理的温度为1000℃~2400℃;
步骤三、将步骤二经高温预处理后的三维结构预制体装入化学气相沉积炉中,通入烃类碳源气体丙烯或者甲烷进行化学气相沉积100h~300h,得到热压模具毛坯;所述热压模具毛坯的密度为0.8g/cm3~1.40g/cm3
步骤四、采用煤沥青或糠酮树脂作为浸渍剂,对步骤三中得到的热压模具毛坯进行浸渍-炭化2~8次,直至密度为1.40g/cm3~1.75g/cm3,得到致密热压模具毛坯;
步骤五、将步骤四中得到的致密热压模具毛坯加工至目的产物炭/炭热压模具的终尺寸;
步骤六、采用煤沥青或糠酮树脂作为浸渍剂,对步骤五中经加工后的致密热压模具毛坯进行浸渍-炭化1~3次,直至密度为1.50g/cm3~1.90g/cm3,得到炭/炭热压模具。
本发明按照设计的目的产物炭/炭热压模具铺层方式,先沿着铺层的厚度方向即径向预置连续的炭纤维,然后沿着环向和纵向铺放炭纤维,得到三维结构预制体,再依次经高温预处理、化学气相沉积、浸渍-炭化、加工、浸渍-炭,制备得到炭/炭热压模具,该制备过程中通过在三个维度方向上即径向、环向、纵向上均铺放炭纤维,使得各维度方向上的炭纤维之间形成稳定均匀的连接结构,通过预先布置径向炭纤维,避免引入径向炭纤维时对环向和径向炭纤维造成损坏,且同维度方向的炭纤维之间连接紧密,不易分层,充分发挥了炭纤维的强度性能,提高了三维结构预制体的整体结构强度,结合后续工艺实现了整体成型,从而本发明制备的炭/炭热压模具的力学性能优异,热场均匀,使用寿命延长。
上述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤一中所述设计的目的产物炭/炭热压模具铺层方式包括根据目的产物炭/炭热压模具的承受压强设计的环向、纵向、径向炭纤维的排布方式和排布量。
上述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤一中所述沿着环向铺放的炭纤维与目的产物炭/炭热压模具轴向的夹角为60°~90°,所述沿着纵向铺放的炭纤维与目的产物炭/炭热压模具轴向的夹角为-60°~+60°。通过上述环向和纵向上炭纤维铺层角度设计,使得预制体中形成环向、纵向纤维网格铺层,形成稳定均匀的连接结构。
上述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤一中所述三维结构预制体中沿径向预置的连续的炭纤维体积含量为5%~30%。通过限定三维结构预制体中沿径向预置的连续的炭纤维体积含量,有利于保证环向、纵向炭纤维铺层之间连接紧密,不易分层,提高了三维结构预制体的整体结构强度。
上述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤六中所述炭/炭热压模具的内径为50mm~1300mm,高度为40mm~1500mm。
本发明与现有技术相比具有以下优点:
1、本发明的制备过程中通过在径向、环向、纵向上均铺放炭纤维,避免引入径向炭纤维时对环向和径向炭纤维造成损坏,使得各维度方向以及同维度方向的炭纤维之间均形成稳定均匀的连接结构,提高了三维结构预制体的整体结构强度,实现了整体成型,从而该炭/炭热压模具的力学性能优异,热场均匀,使用寿命延长,适用于高压强热压炉。
2、本发明通过在径向上预置炭纤维形成径向连续结构,有效提高了热压模具的径向导热系数,不仅节省了热压能耗,还有利于压制热场的均匀分布,并结合环向炭纤维层间的增强作用,提高了热压模具的整体力学性能,使其具有优异的环向拉伸强度。
3、本发明的制备过程中预先在径向上布置炭纤维,避免了对环向、纵向炭纤维的损害,保证了三维结构预制体中的炭纤维平行顺直无交织无损伤,提高了碳纤维强度利用率。
4、本发明通过限定三维结构预制体中沿径向穿入的炭纤维体积含量,有效控制了径向的炭纤维与环向、纵向炭纤维的结构稳定性提高程度,保证了热压模具整体力学性能的提高。
5、本发明依次采用化学气相沉积、煤沥青浸或者糠酮树脂浸渍-炭化增密制备热压模具,优化组合不同基质炭填充热压模具预制体孔隙,进一步提高了热压模具的强度,延长了热压模具的寿命,且制备效率高,成本低、适合于高压强热压炉用热压模具。
下面通过实施例对本发明的技术方案作进一步的详细描述。
具体实施方式
实施例1
本实施例包括以下步骤:
步骤一、按照设计的目的产物炭/炭热压模具铺层方式,先沿着铺层的厚度方向即径向预先布置连续的3K沥青炭纤维,然后沿着环向和纵向铺放3K聚丙烯腈炭纤维,得到体积密度为1.0g/cm3的三维结构预制体;
所述沿着环向铺放的3K聚丙烯腈炭纤维与目的产物炭/炭热压模具轴向的夹角为90°,沿着纵向铺放的3K聚丙烯腈炭纤维与目的产物炭/炭热压模具轴向的夹角为60°,且按照-60°、+60°、90°的夹角变化规律逐层铺放并循环至致密热压模具毛坯外径所需尺寸;所述三维结构预制体中沿着径向预置的连续的3K沥青炭纤维体积含量为5%,沿着环向铺放的3K聚丙烯腈炭纤维体积含量为70%,沿着纵向铺放的3K聚丙烯腈炭纤维体积含量为25%;
步骤二、将步骤一中得到的三维结构预制体放置于高温处理炉内进行高温预处理;所述高温预处理的温度为1000℃;
步骤三、将步骤三经高温预处理后的三维结构预制体装入化学气相沉积炉中,通入烃类碳源气体丙烯进行化学气相沉积100h,得到热压模具毛坯;所述热压模具毛坯的密度为1.40g/cm3
步骤四、采用煤沥青作为浸渍剂,对步骤三中得到的热压模具毛坯进行浸渍-炭化8次,直至密度为1.75g/cm3,得到致密热压模具毛坯;
步骤五、将步骤四中得到的致密热压模具毛坯加工至目的产物炭/炭热压模具的终尺寸即外径250mm、内径50mm、高度40mm;
步骤六、采用煤沥青作为浸渍剂,对步骤五中经加工后的致密热压模具毛坯进行浸渍-炭化3次,直至密度为1.90g/cm3,得到炭/炭热压模具。
经检测,本实施例制备的炭/炭热压模具的环向拉伸强度达到285MPa
实施例2
本实施例包括以下步骤:
步骤一、按照设计的目的产物炭/炭热压模具铺层方式,先沿着铺层的厚度方向即径向预先布置连续的12K聚丙烯腈炭纤维,然后沿着环向和纵向铺放12K沥青炭纤维,得到体积密度为0.85g/cm3的三维结构预制体;
所述沿着环向铺放的12K聚丙烯腈炭纤维与目的产物炭/炭热压模具轴向的夹角为60°,沿着纵向铺放的12K沥青基炭纤维与目的产物炭/炭热压模具轴向的夹角为+21°、-21°,且按照+21°、-21°、60°的夹角变化规律逐层铺放并循环至致密热压模具毛坯外径所需尺寸;所述三维结构预制体中沿着径向预置的连续的12K聚丙烯腈体积含量为10%,沿着环向铺放的12K沥青炭纤维体积含量为50%,沿着纵向铺放的12K沥青炭纤维体积含量为40%;
步骤二、将步骤一中得到的三维结构预制体放置于高温处理炉内进行高温预处理;所述高温预处理的温度为1500℃;
步骤三、将步骤三经高温预处理后的三维结构预制体装入化学气相沉积炉中,通入烃类碳源气体甲烷进行化学气相沉积200h,得到热压模具毛坯;所述热压模具毛坯的密度为1.1g/cm3
步骤四、采用糠酮树脂作为浸渍剂,对步骤三中得到的热压模具毛坯进行浸渍-炭化5次,直至密度为1.70g/cm3,得到致密热压模具毛坯;
步骤五、将步骤四中得到的致密热压模具毛坯加工至目的产物炭/炭热压模具的终尺寸即外径1000mm、内径900mm、高度1200mm;
步骤六、采用糠酮树脂作为浸渍剂,对步骤五中经加工后的致密热压模具毛坯进行浸渍-炭化2次,直至密度为1.80g/cm3,得到炭/炭热压模具。
经检测,本实施例制备的炭/炭热压模具的环向拉伸强度达到285MPa。
实施例3
本实施例包括以下步骤:
步骤一、按照设计的目的产物炭/炭热压模具铺层方式,先沿着铺层的厚度方向即径向预先布置连续的96K沥青炭纤维,然后沿着环向和纵向铺放96K聚丙烯腈炭纤维,得到体积密度为0.50g/cm3的三维结构预制体;
所述沿着环向铺放的96K沥青炭纤维与目的产物炭/炭热压模具轴向的夹角为90°,沿着纵向铺放的96K聚丙烯腈炭纤维与目的产物炭/炭热压模具轴向的夹角为+38°、-38°,且按照+38°、90°、-38°、90°的夹角变化规律逐层铺放并循环5次,然后按照+38°、-38°、90°、90°的夹角变化规律逐层铺放并循环10次、再按照+38°、90°、90°、-38°的夹角变化规律逐层铺放并循环至致密热压模具毛坯外径所需尺寸;所述三维结构预制体中沿着径向预置的连续的96K沥青炭纤维体积含量为30%,沿着环向铺放的96K聚丙烯腈炭纤维体积含量为40%,沿着纵向铺放的96K聚丙烯腈炭纤维体积含量为30%;
步骤二、将步骤一中得到的三维结构预制体放置于高温处理炉内进行高温预处理;所述高温预处理的温度为2400℃;
步骤三、将步骤三经高温预处理后的三维结构预制体装入化学气相沉积炉中,通入烃类碳源气体丙烯进行化学气相沉积300h,得到热压模具毛坯;所述热压模具毛坯的密度为0.80g/cm3
步骤四、采用煤沥青作为浸渍剂,对步骤三中得到的热压模具毛坯进行浸渍-炭化2次,直至密度为1.40g/cm3,得到致密热压模具毛坯;
步骤五、将步骤四中得到的致密热压模具毛坯加工至目的产物炭/炭热压模具的终尺寸即外径1500mm、内径1300mm、高度1500mm;
步骤六、采用糠酮树脂作为浸渍剂,对步骤五中经加工后的致密热压模具毛坯进行浸渍-炭化1次,直至密度为1.50g/cm3,得到炭/炭热压模具。
经检测,本实施例制备的炭/炭热压模具的环向拉伸强度达到154MPa。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (5)

1.一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,该方法包括以下步骤:
步骤一、按照设计的目的产物炭/炭热压模具铺层方式,先沿着铺层的厚度方向即径向预置连续的炭纤维,然后沿着环向和纵向铺放炭纤维,得到三维结构预制体;所述三维结构预制体的体积密度为0.55g/cm3~1.0g/cm3,所述炭纤维为聚丙烯腈基或沥青基炭纤维,炭纤维的纤维丝束为3K~96K;
步骤二、将步骤一中得到的三维结构预制体放置于高温处理炉内进行高温预处理;所述高温预处理的温度为1000℃~2400℃;
步骤三、将步骤二经高温预处理后的三维结构预制体装入化学气相沉积炉中,通入烃类碳源气体丙烯或者甲烷进行化学气相沉积100h~300h,得到热压模具毛坯;所述热压模具毛坯的密度为0.8g/cm3~1.40g/cm3
步骤四、采用煤沥青或糠酮树脂作为浸渍剂,对步骤三中得到的热压模具毛坯进行浸渍-炭化2~8次,直至密度为1.40g/cm3~1.75g/cm3,得到致密热压模具毛坯;
步骤五、将步骤四中得到的致密热压模具毛坯加工至目的产物炭/炭热压模具的终尺寸;
步骤六、采用煤沥青或糠酮树脂作为浸渍剂,对步骤五中经加工后的致密热压模具毛坯进行浸渍-炭化1~3次,直至密度为1.50g/cm3~1.90g/cm3,得到炭/炭热压模具。
2.根据权利要求1所述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤一中所述设计的目的产物炭/炭热压模具铺层方式包括根据目的产物炭/炭热压模具的承受压强设计的环向、纵向、径向炭纤维的排布方式和排布量。
3.根据权利要求1所述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤一中所述沿着环向铺放的炭纤维与目的产物炭/炭热压模具轴向的夹角为60°~90°,所述沿着纵向铺放的炭纤维与目的产物炭/炭热压模具轴向的夹角为-60°~+60°。
4.根据权利要求1所述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤一中所述三维结构预制体中沿着径向预置的连续的炭纤维体积含量为5%~30%。
5.根据权利要求1所述的一种高压强热压烧结炉用炭/炭热压模具的制备方法,其特征在于,步骤六中所述炭/炭热压模具的内径为50mm~1300mm,高度为40mm~1500mm。
CN202210424735.1A 2022-04-21 2022-04-21 一种高压强热压烧结炉用炭/炭热压模具的制备方法 Pending CN114853495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210424735.1A CN114853495A (zh) 2022-04-21 2022-04-21 一种高压强热压烧结炉用炭/炭热压模具的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210424735.1A CN114853495A (zh) 2022-04-21 2022-04-21 一种高压强热压烧结炉用炭/炭热压模具的制备方法

Publications (1)

Publication Number Publication Date
CN114853495A true CN114853495A (zh) 2022-08-05

Family

ID=82632976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210424735.1A Pending CN114853495A (zh) 2022-04-21 2022-04-21 一种高压强热压烧结炉用炭/炭热压模具的制备方法

Country Status (1)

Country Link
CN (1) CN114853495A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115773321A (zh) * 2023-02-13 2023-03-10 西安超码科技有限公司 一种带有陶瓷功能层的高强度炭/陶制动盘

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171137A (zh) * 1994-11-16 1998-01-21 B·F·谷德里奇公司 压力梯度化学蒸汽渗透和沉积的设备及工艺和制品
US6248417B1 (en) * 1997-09-08 2001-06-19 Cytec Technology Corp. Needled near netshape carbon preforms having polar woven substrates and methods of producing same
US20020170787A1 (en) * 2001-04-09 2002-11-21 James Mark C. Wear resistance in carbon fiber friction materials
JP2005145779A (ja) * 2003-11-18 2005-06-09 Japan Atom Energy Res Inst 三次元強化SiC−C/Cコンポジット製高速回転体及びその製作方法
CN101797646A (zh) * 2010-03-25 2010-08-11 西安超码科技有限公司 一种真空热压炉用高强度炭/炭热压模具的制备方法
CN102166840A (zh) * 2011-01-27 2011-08-31 江苏天鸟高新技术股份有限公司 Z向有连续炭纤维预制体
CN102371715A (zh) * 2010-08-04 2012-03-14 揖斐电株式会社 C/c复合材料成型体及其制造方法
CN105218134A (zh) * 2015-08-07 2016-01-06 同济大学 碳纤维增韧碳化硅复合材料板及其制备方法与应用
CN106965425A (zh) * 2017-03-16 2017-07-21 机械科学研究总院先进制造技术研究中心 一种复合材料自适应增减纱三维织造方法
CN109665856A (zh) * 2018-12-30 2019-04-23 镇江顺龙新材料技术开发有限公司 一种双元炭复合材料汽车车架的制备方法
CN109735996A (zh) * 2018-12-21 2019-05-10 北京机科国创轻量化科学研究院有限公司 一种复合材料z向纤维低磨损三维成形方法
CN110184722A (zh) * 2019-06-28 2019-08-30 西安航天复合材料研究所 一种碳棒穿刺碳纤维立体织物的制备方法
CN112301536A (zh) * 2020-09-29 2021-02-02 北京机科国创轻量化科学研究院有限公司 一种复合材料预制体z向纤维自动化植入装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171137A (zh) * 1994-11-16 1998-01-21 B·F·谷德里奇公司 压力梯度化学蒸汽渗透和沉积的设备及工艺和制品
US6248417B1 (en) * 1997-09-08 2001-06-19 Cytec Technology Corp. Needled near netshape carbon preforms having polar woven substrates and methods of producing same
US20020170787A1 (en) * 2001-04-09 2002-11-21 James Mark C. Wear resistance in carbon fiber friction materials
JP2005145779A (ja) * 2003-11-18 2005-06-09 Japan Atom Energy Res Inst 三次元強化SiC−C/Cコンポジット製高速回転体及びその製作方法
CN101797646A (zh) * 2010-03-25 2010-08-11 西安超码科技有限公司 一种真空热压炉用高强度炭/炭热压模具的制备方法
CN102371715A (zh) * 2010-08-04 2012-03-14 揖斐电株式会社 C/c复合材料成型体及其制造方法
CN102166840A (zh) * 2011-01-27 2011-08-31 江苏天鸟高新技术股份有限公司 Z向有连续炭纤维预制体
CN105218134A (zh) * 2015-08-07 2016-01-06 同济大学 碳纤维增韧碳化硅复合材料板及其制备方法与应用
CN106965425A (zh) * 2017-03-16 2017-07-21 机械科学研究总院先进制造技术研究中心 一种复合材料自适应增减纱三维织造方法
CN109735996A (zh) * 2018-12-21 2019-05-10 北京机科国创轻量化科学研究院有限公司 一种复合材料z向纤维低磨损三维成形方法
CN109665856A (zh) * 2018-12-30 2019-04-23 镇江顺龙新材料技术开发有限公司 一种双元炭复合材料汽车车架的制备方法
CN110184722A (zh) * 2019-06-28 2019-08-30 西安航天复合材料研究所 一种碳棒穿刺碳纤维立体织物的制备方法
CN112301536A (zh) * 2020-09-29 2021-02-02 北京机科国创轻量化科学研究院有限公司 一种复合材料预制体z向纤维自动化植入装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115773321A (zh) * 2023-02-13 2023-03-10 西安超码科技有限公司 一种带有陶瓷功能层的高强度炭/陶制动盘
CN115773321B (zh) * 2023-02-13 2023-05-09 西安超码科技有限公司 一种带有陶瓷功能层的高强度炭/陶制动盘

Similar Documents

Publication Publication Date Title
WO2018188436A1 (zh) 一种C/C-SiC复合材料零件的制备方法及其产品
CN109384470B (zh) 一种c/c复合材料的快速制备方法
CA1098265A (en) Fiber reinforced carbon and graphite articles and a method of producing said articles
US5217657A (en) Method of making carbon-carbon composites
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
US6309703B1 (en) Carbon and ceramic matrix composites fabricated by a rapid low-cost process incorporating in-situ polymerization of wetting monomers
CN109251052B (zh) 一种c/c复合材料及其制备方法
US4581263A (en) Graphite fiber mold
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
EP2093453B1 (en) CVI followed by coal tar pitch densification by VPI
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
WO2000061518A9 (en) Chordal preforms for fiber-reinforced articles and method for the production thereof
CN108892523B (zh) 一种基于单向带工艺的碳陶复合材料制备方法
CN114853495A (zh) 一种高压强热压烧结炉用炭/炭热压模具的制备方法
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
JPH01252577A (ja) 炭素/炭素複合材料の製造法
CN111875401B (zh) 一种缠绕成型高强高纯炭/炭复合材料回转体的制备方法
CN108947556B (zh) 一种基于单向带工艺的碳碳复合材料制备方法
CN113416087B (zh) 一种高强度组合式炭/炭热压模具的制备方法
CN113121253B (zh) 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法
CN114436669A (zh) 一种一维高导热c/c复合材料的制备方法
CN112194497A (zh) 一种低温热压高温无压两步法烧结制备c/c复合材料的方法
CN113292352B (zh) 一种单向高导热碳/碳复合材料的制备方法
CN116330757A (zh) 一种高强度层压碳碳复合材料及其制备方法
CN113277866B (zh) 一种双向高导热碳/碳复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220805