CN113292352B - 一种单向高导热碳/碳复合材料的制备方法 - Google Patents

一种单向高导热碳/碳复合材料的制备方法 Download PDF

Info

Publication number
CN113292352B
CN113292352B CN202110709480.9A CN202110709480A CN113292352B CN 113292352 B CN113292352 B CN 113292352B CN 202110709480 A CN202110709480 A CN 202110709480A CN 113292352 B CN113292352 B CN 113292352B
Authority
CN
China
Prior art keywords
carbon
composite material
asphalt
conductivity
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110709480.9A
Other languages
English (en)
Other versions
CN113292352A (zh
Inventor
马兆昆
张型伟
曹瑞雄
王录
周强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Publication of CN113292352A publication Critical patent/CN113292352A/zh
Application granted granted Critical
Publication of CN113292352B publication Critical patent/CN113292352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

一种单向高导热碳/碳复合材料的制备方法,属于复合材料制备技术领域。该方法通过将超高模量、高导热碳纤维单向布与沥青粉末反复热压‑碳化,化学气相沉积,反复高压浸渍高残碳沥青‑碳化,最后石墨化获得单向高导热碳/碳复合材料。该碳/碳复合材料沿超高模量、高导热碳纤维轴向方向具有极高的热导率和弯曲强度,适用于各种尖端设备的散热。

Description

一种单向高导热碳/碳复合材料的制备方法
技术领域
本发明涉及一种单向高导热碳/碳复合材料的制备方法,属于复合材料制备技术领域。
背景技术
随着科技高端设备的快速发展,元器件的发热量越来越大,其高效散热成为了亟待解决的关键性问题。无论是导弹鼻锥、飞机刹车片、火箭发动机喷管喉衬、航天飞机机翼前缘和鼻锥等航空航天军事装备,还是电脑、5G设备、移动通讯设备等民用电器装置元件,都迫切需要一种轻质、高导热的新型热管理材料。材料导热性能的优劣对元器件的性能发挥起着关键作用。
高导热碳/碳复合材料具有高比模、高比强、低密度、抗热震、抗烧蚀、高导热、低膨胀等一系列优异性能,是目前最有潜力广泛应用的高导热候选材料之一,而碳/碳复合材料的力学以及导热性能与原材料的性能、制备方法等息息相关。从目前国内外的研究现状来看,用于制备高导热碳/碳复合材料的碳纤维主要有沥青基碳纤维、气相生长碳纤维。碳基体主要是热解碳、沥青碳等。沥青基碳纤维制备高导热碳/碳复合材料的方法也各不相同,国内大都是先将1500℃左右碳化的、具有较好柔性的沥青基碳纤维编制成碳布,然后进行碳/碳板的制备工艺,最后一起在2800~3000℃高温下石墨化,这样碳纤维的高温石墨化收缩会导致产品质量不佳,如何将超高模量、高导热的石墨纤维通过热压、浸渍、气相沉积、碳化等工艺直接用于高导热碳/碳复合材料的制备是目前需要研究和解决的问题。
发明内容
针对上述问题,本发明的目的是提供一种单向高导热碳/碳复合材料的制备方法,该方法所制备的碳/碳复合材料具有极高的热导率,能够满足航空航天和电子设备高导热、轻量化的要求。
本发明所提供的单向高导热碳/碳复合材料的制备方法,主要包括下述步骤:
步骤(1),将超高模量、高导热碳纤维单向布与沥青粉末交替铺层在相应大小的不锈钢模具中,盖上模具盖板后,放在热压机上并在一定的温度场、压力场下热压复合成型,保温保压一段时间后,自然降温,获得预制体;
步骤(2),将不脱模具的预制体在高温下碳化,冷却之后取出,然后反复在不锈钢模具中铺撒沥青热压、碳化1~10次得到低密度碳/碳复合材料,经过步骤(1)和(2)最终使得低密度碳/碳复合材料中沥青将碳纤维单向布完全粘合在一起且完全成为一体;
步骤(3),以烃类气体为碳源,通过化学气相沉积的方式在800~2100℃的条件下对低密度碳/碳复合材料进行沉积渗透热解碳来达到增密、增强的目的,沉积时间为20~500h,获得中等密度的碳/碳复合材料,在此过程烃类气体完全渗透沉积到低密度碳/碳复合材料的空隙中,直至重量或密度不再变化;
步骤(4),将中等密度的碳/碳复合材料通过1~15次反复的高压浸渍熔融高残碳沥青、碳化来获得高密度的碳/碳复合材料;在此过程中熔融高残碳沥青不断渗透填充到中等密度的碳/碳复合材料中,直至重量或密度不再变化;
步骤(5),将高密度的碳/碳复合材料在2400~3000℃的惰性气体条件下高温石墨化0.1~30h,自然冷却后获得单向高导热碳/碳复合材料。
上述方法步骤(1)中所述超高模量、高导热碳纤维单向布是指单根碳纤维拉伸模量≥500GPa,导热系数≥400W/(m·K);所述沥青粉末是指灰分低于500ppm的煤沥青或其中间相沥青、石油沥青或其中间相沥青、萘沥青或其中间相沥青,其软化点范围在60~320℃;高导热碳纤维单向布的铺设是均按同一个方向铺层,所铺层数为1层或多层,根据实际需要自由调整。
上述方法步骤(1)中所述的热压过程具体条件为:热压温度高于所用沥青软化点10~100℃,热压压力为0.1~15MPa,保温保压时间为0.1~10h。
上述方法步骤(2)中的热压温度和压力同步骤(1),所述碳化温度为700~1600℃。
上述方法步骤(3)中所述烃类气体为甲烷、乙烷、丙烷、乙烯、丙烯、乙炔等碳氢气体,沉积时为常压气流。
上述方法步骤(4)中所述高压浸渍是指压力为2~12MPa;所述高残碳沥青是指残碳率≥55%,灰分≤500ppm的煤沥青或其中间相沥青、石油沥青或其中间相沥青、萘沥青或其中间相沥青,所述碳化的温度为700~1600℃。
本发明具有以下优点:
(1)该单向高导热碳/碳复合材料沿超高模量、高导热碳纤维轴向方向具有很高的热导率和抗弯强度;
(2)本发明直接使用了超高模量、高导热的碳纤维单向布,保证了碳/碳复合材料后续石墨化过程中不再收缩,进而保证产品的高性能;
(3)本发明使用了多次热压-碳化、化学气相沉积、高压浸渍-碳化等工艺过程,有效提高了所制备碳/碳复合材料的密度,进而增加了其力学和导热性能;
附图说明
图1为本发明单向高导热碳/碳复合材料制备过程的流程图。
具体实施方式
下面以具体实施例的方式说明本发明,但不构成对本发明的限制。
实施例1:
将5层模量为600GPa、导热系数为800W/(m·K)的碳纤维单向布与软化点为158℃、灰分为100ppm的煤沥青粉末交替铺层在相应大小的不锈钢模具中,盖上模具盖板后,放在热压机上并升温至200℃,加压至5MPa热压复合成型,保温保压0.5h后,自然降温,获得预制体;将不脱模具的预制体在1000℃下碳化,冷却之后取出,然后反复在不锈钢模具中铺撒沥青热压、碳化5次得到低密度碳/碳复合材料,其厚度为1mm;
接下来,以乙炔为碳源,通过化学气相沉积的方式在1100℃的条件下对低密度碳/碳复合材料进行沉积渗透热解碳来达到增密、增强的目的,沉积时间为300h,获得中等密度的碳/碳复合材料;然后将中等密度的碳/碳复合材料通过8次反复的在7MPa压力下浸渍残碳率为70%的熔融煤基中间相沥青、碳化(1200℃)来获得高密度的碳/碳复合材料;最后将高密度的碳/碳复合材料在2800℃的惰性气体条件下高温石墨化3h,自然冷却后获得单向高导热碳/碳复合材料,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.81g/cm3,导热系数为652W/(m·K),抗弯强度为217MPa。
实施例2:
将碳纤维单向布的使用量由5层增加到6层,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.80g/cm3,导热系数为672W/(m·K),抗弯强度为247MPa。
实施例3:
将模量为600GPa、导热系数为800W/(m·K)的碳纤维单向布替换成模量为850GPa、导热系数为800W/(m·K)的碳纤维单向布,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.73g/cm3,导热系数为647W/(m·K),抗弯强度为223MPa。
实施例4:
将模量为600GPa、导热系数为800W/(m·K)的碳纤维单向布替换成模量为600GPa、导热系数为1000W/(m·K)的碳纤维单向布,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.86g/cm3,导热系数为721W/(m·K),抗弯强度为215MPa。
实施例5:
将软化点为158℃、灰分为100ppm的煤沥青粉末替换成软化点为137℃、灰分为100ppm的石油沥青粉末,相应热压温度调整为180℃,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.75g/cm3,导热系数为635W/(m·K),抗弯强度为228MPa。
实施例6:
将软化点为158℃、灰分为100ppm的煤沥青粉末替换成软化点为275℃、灰分为100ppm的煤基中间相沥青粉末,相应热压温度调整为340℃,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.94g/cm3,导热系数为676W/(m·K),抗弯强度为242MPa。
实施例7:
将热压压力由5MPa升高到6MPa,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.98g/cm3,导热系数为662W/(m·K),抗弯强度为240MPa。
实施例8:
将热压机的保温保压时间由0.5h升高到1h,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.82g/cm3,导热系数为657W/(m·K),抗弯强度为223MPa。
实施例9:
将预制体碳化温度由1000℃降低到900℃,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.63g/cm3,导热系数为641W/(m·K),抗弯强度为209MPa。
实施例10:
将反复热压次数由5次增加到7次,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.95g/cm3,导热系数为658W/(m·K),抗弯强度为222MPa。
实施例11:
将化学气相沉积的碳源由乙炔替换成丙烯,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.71g/cm3,导热系数为647W/(m·K),抗弯强度为213MPa。
实施例12:
将化学气相沉积温度由1100℃降低到800℃,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.73g/cm3,导热系数为598W/(m·K),抗弯强度为204MPa。
实施例13:
将化学气相沉积时间由300h增加到400h,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.95g/cm3,导热系数为672W/(m·K),抗弯强度为236MPa。
实施例14:
将高压浸渍高残碳沥青-碳化的次数由8次降低到5次,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.77g/cm3,导热系数为637W/(m·K),抗弯强度为198MPa。
实施例15:
将高压浸渍高残碳沥青的压力由7MPa降低到3MPa,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.67g/cm3,导热系数为626W/(m·K),抗弯强度为200MPa。
实施例16:
将残碳率为70%的熔融煤基中间相沥青替换成残碳率为75%的熔融石油基中间相沥青,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为2.01g/cm3,导热系数为698W/(m·K),抗弯强度为241MPa。
实施例17:
将石墨化温度由2800℃提高到3000℃,其他条件同实施13,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.90g/cm3,导热系数为703W/(m·K),抗弯强度为238MPa。
实施例18:
将石墨化时间由3h提高到5h,其他条件同实施13,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.93g/cm3,导热系数为700W/(m·K),抗弯强度为235MPa。
实施例19:
将高压浸渍高残碳沥青-碳化的碳化温度由1200℃增加到1500℃,其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为1mm,密度为1.75g/cm3,导热系数为645W/(m·K),抗弯强度为204MPa。
实施例20:
将碳纤维单向布的使用量由5层增加到10层,制备2mm厚的单向高导热碳/碳复合材料其他条件同实施1,所得单向高导热碳/碳复合材料的厚度为2mm,密度为1.87g/cm3,导热系数为661W/(m·K),抗弯强度为310MPa。
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (5)

1.一种单向高导热碳/碳复合材料的制备方法,其特征在于,主要包括下述步骤:
步骤(1),将超高模量、高导热碳纤维单向布与沥青粉末交替铺层在相应大小的不锈钢模具中,盖上模具盖板后,放在热压机上并在一定的温度场、压力场下热压复合成型,保温保压一段时间后,自然降温,获得预制体;
步骤(2),将不脱模具的预制体在高温下碳化,冷却之后取出,然后反复在不锈钢模具中铺撒沥青热压、碳化1~10次得到低密度碳/碳复合材料,经过步骤(1)和(2)最终使得低密度碳/碳复合材料中沥青将碳纤维单向布完全粘合在一起且完全成为一体;
步骤(3),以烃类气体为碳源,通过化学气相沉积的方式在800~2100℃的条件下对低密度碳/碳复合材料进行沉积渗透热解碳来达到增密、增强的目的,沉积时间为20~500h,获得中等密度的碳/碳复合材料,在此过程烃类气体完全渗透沉积到低密度碳/碳复合材料的孔隙中,直至重量或密度不再变化;
步骤(4),将中等密度的碳/碳复合材料通过1~15次反复的高压浸渍熔融高残碳沥青、碳化来获得高密度的碳/碳复合材料;在此过程中熔融高残碳沥青不断渗透填充到中等密度的碳/碳复合材料中,直至重量或密度不再变化;
步骤(5),将高密度的碳/碳复合材料在2400~3000℃的惰性气体条件下高温石墨化0.1~30h,自然冷却后获得单向高导热碳/碳复合材料;
步骤(1)中所述超高模量、高导热碳纤维单向布是指单根碳纤维拉伸模量≥500GPa,导热系数≥400 W/(m·K);所述沥青粉末是指灰分低于500ppm的煤沥青或其中间相沥青、石油沥青或其中间相沥青、萘沥青或其中间相沥青,其软化点范围在60~320℃;高导热碳纤维单向布的铺设是均按同一个方向铺层,所铺层数为1层或多层,根据实际需要自由调整;
步骤(1)中所述的热压过程具体条件为:热压温度高于所用沥青软化点10~100℃,热压压力为0.1~15MPa,保温保压时间为0.1~10h;
所述高残碳沥青是指残碳率≥55%,灰分≤500ppm的煤沥青或其中间相沥青、石油沥青或其中间相沥青、萘沥青或其中间相沥青。
2.按照权利要求1所述的一种单向高导热碳/碳复合材料的制备方法,其特征在于,步骤(2)中所述预制体的高温碳化温度为700~1600℃。
3.按照权利要求1所述的一种单向高导热碳/碳复合材料的制备方法,其特征在于,步骤(3)中所述烃类气体为甲烷、乙烷、丙烷、乙烯、丙烯、乙炔,沉积时为常压气流。
4.按照权利要求1所述的一种单向高导热碳/碳复合材料的制备方法,其特征在于,步骤(4)中所述高压浸渍是指压力为2~12MPa;所述碳化的温度为700~1600℃。
5.按照权利要求1-4任一项所述的方法制备得到的一种单向高导热碳/碳复合材料。
CN202110709480.9A 2021-04-30 2021-06-25 一种单向高导热碳/碳复合材料的制备方法 Active CN113292352B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110482071 2021-04-30
CN202110482071X 2021-04-30

Publications (2)

Publication Number Publication Date
CN113292352A CN113292352A (zh) 2021-08-24
CN113292352B true CN113292352B (zh) 2022-09-23

Family

ID=77329662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110709480.9A Active CN113292352B (zh) 2021-04-30 2021-06-25 一种单向高导热碳/碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN113292352B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436669A (zh) * 2022-02-21 2022-05-06 武汉科技大学 一种一维高导热c/c复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449833A (zh) * 2013-09-27 2013-12-18 大连理工大学 一种水润滑轴承用炭/炭复合材料制备方法
CN107059242A (zh) * 2017-04-26 2017-08-18 湖南大学 一种高导热沥青基炭纤维复合材料预制体的制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093482A (en) * 1998-12-16 2000-07-25 Daewoo Heavy Industries Ltd. Carbon-carbon composite for friction products and method of making same
CN100389094C (zh) * 2006-07-31 2008-05-21 西北工业大学 碳纤维与热解碳基体中间相沥青过渡层复合材料的制备方法
CN101637975B (zh) * 2009-05-15 2011-10-19 西安超码科技有限公司 一种化学气相渗透与树脂浸渍炭化致密制备发热体的方法
US20150128828A1 (en) * 2012-07-16 2015-05-14 Honeywell International Inc. Infiltration of densified carbon-carbon composite material with low viscosity resin
CN104557098B (zh) * 2014-12-27 2016-09-28 西安超码科技有限公司 一种炭/炭复合材料法兰及其制备方法
CN104692823B (zh) * 2015-02-28 2017-07-04 中南大学 一种受电弓用c/c复合材料滑条的制备方法
CN108727053B (zh) * 2018-06-04 2020-11-24 中钢集团新型材料(浙江)有限公司 一种高性能碳碳复合碳材料的制备方法
CN109437949A (zh) * 2018-11-21 2019-03-08 上海大学 一种高导热碳/碳复合材料的制备方法
CN109681553A (zh) * 2018-12-30 2019-04-26 兴化市精密铸锻造产业研究院有限公司 一种重载汽车用高强沥青基复合材料刹车片的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449833A (zh) * 2013-09-27 2013-12-18 大连理工大学 一种水润滑轴承用炭/炭复合材料制备方法
CN107059242A (zh) * 2017-04-26 2017-08-18 湖南大学 一种高导热沥青基炭纤维复合材料预制体的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
单向C/C复合材料中碳纤维和热解碳微结构的XRD法分析;李同起等;《宇航材料工艺》;20091015(第5期);第74-77页 *

Also Published As

Publication number Publication date
CN113292352A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
KR101472850B1 (ko) 고온-내성 복합재
US5837081A (en) Method for making a carbon-carbon composite
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
US7927523B2 (en) Densification of C-C composites with pitches followed by CVI/CVD
JPH10251065A (ja) 炭素繊維強化複合材料及びその製造方法
CN113666748B (zh) 一种石墨材料的制备方法及石墨材料
CN1945048A (zh) 一种高速列车碳/碳制动材料的制备方法
CN113896561B (zh) 一种液相-气相沉积碳纤维/碳复合热场材料及其制备方法
CN111908936A (zh) 一种短切纤维碳纤维复合材料及其制备方法
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
CN113292352B (zh) 一种单向高导热碳/碳复合材料的制备方法
CN109627034A (zh) 一种高导热c/c复合材料的制备
JP3151580B2 (ja) 炭素材料の製造法
CN114436669A (zh) 一种一维高导热c/c复合材料的制备方法
CN113277866B (zh) 一种双向高导热碳/碳复合材料的制备方法
EP3225871B1 (en) High density carbon-carbon friction materials
KR100198153B1 (ko) 탄소/탄소 복합재료의 고밀도화를 위한 진공가압함침탄화법
CN102211766A (zh) 一种高导热碳材料的快速、低成本制备方法
CN114853495A (zh) 一种高压强热压烧结炉用炭/炭热压模具的制备方法
JP2018052791A (ja) 炭素/炭素複合材料の前駆体用マトリックス組成物およびそれを使用したプリプレグの製造方法
EP0656331B1 (en) A method for preparing a carbon/carbon composite material
JPH09316217A (ja) アブレータ材料およびその製造方法
JP2001181062A (ja) 樹脂含浸炭素繊維強化炭素複合材とその製造方法
KR970008693B1 (ko) 고밀도 탄소섬유강화 탄소복합재의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant