CN114853489B - 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品 - Google Patents

低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品 Download PDF

Info

Publication number
CN114853489B
CN114853489B CN202210708991.3A CN202210708991A CN114853489B CN 114853489 B CN114853489 B CN 114853489B CN 202210708991 A CN202210708991 A CN 202210708991A CN 114853489 B CN114853489 B CN 114853489B
Authority
CN
China
Prior art keywords
percent
sic
silicon carbide
beta
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210708991.3A
Other languages
English (en)
Other versions
CN114853489A (zh
Inventor
吕春江
黄志刚
李�杰
张新华
吴吉光
王文武
常赪
王建栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority to CN202210708991.3A priority Critical patent/CN114853489B/zh
Priority to PCT/CN2022/107064 priority patent/WO2023245791A1/zh
Publication of CN114853489A publication Critical patent/CN114853489A/zh
Application granted granted Critical
Publication of CN114853489B publication Critical patent/CN114853489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种低结合相含量的β‑SiC结合SiC耐火材料及其制备方法与制品,属于耐火材料技术领域。该低结合相含量的β‑SiC结合SiC耐火材料包括结合相和主晶相,所述结合相为β‑SiC,质量百分含量占比为3%‑7%;所述主晶相为α‑SiC,质量百分含量占比为92%‑95%;所述β‑SiC结合相以纳米线形态覆盖所述主晶相表面。本发明采用的液态高粘有机物既是碳源又是粘结剂,通过调整液态高粘有机物的加入量、残碳率,即可保证泥料的成型性及烧成过程的烧失量,从而保证成品的致密度。本发明公开的β‑SiC结合SiC耐火材料结合相含量低、碳化硅纯度高可达96%以上,制备方法简单,烧成过程在低温、微压、无氧气氛下进行,无环境污染,烧成能耗低。

Description

低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品
技术领域
本发明属于耐火材料技术领域,尤其涉及一种低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品。
背景技术
国际市场现有报道同材质自结合碳化硅耐火材料产品,主要用于炼铁高炉、垃圾焚烧灰融炉等高温窑炉内衬。其中炼铁高炉用自结合碳化硅制品在中国有一些应用。制备工艺上为提高泥料成型性能,通常多加入微粉级原料、整形的骨料颗粒、机压和浇注两种成型手段等,多以埋碳气氛下反应烧结,其炼铁高炉用产品体积密度多在2.55-2.70g·cm-3范围内,SiC含量大于80%;F.C含量不高于4%,有些典型牌号制品指标中SiC含量在90%以上,高温性能好。市场上进口中国的现有自结合碳化硅制品多为埋碳烧成制品,高温下烧成气氛主要为CO和N2,制品内多有少量氮化物(通常为Si2N2O)存在。相对于主结合相β-SiC,Si2N2O晶粒易生长至较大的尺寸,且生成Si2N2O消耗一定量的金属硅,特别对于低结合相含量的自结合碳化硅材料存在Si2N2O副反应可能会降低材料内主结合相的含量和分散均匀性,不利于材料基础指标的提高。
并且,埋碳生产装卸窑工序操作较繁琐,对生态环境不友好,易产生粉尘,需要严格的环保措施。另外,产品生产或交货周期长,多年来限制了其制品在更多行业的推广。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于解决现有自结合碳化硅耐火材料工艺中制备工艺复杂、对环境不友好,制备得到的碳化硅耐火材料纯度低的技术问题,提供一种低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品。
本发明的发明构思
制备素坯内需要引入Si与C,以便在高温下形成烧结反应。常规引入固态C的方式,由于固态C原料密度偏低,掺入会造成泥料整体成型密度明显降低,不利于提高耐火材料的基础性能指标;而全液态有机碳源不用额外增加其他常规粘结剂,保证更低的烧失量以不至于影响最终耐火材料性能。
液态有机碳源最佳加入量受泥料成型性能限制,泥料干湿合适达到成型要求,造成液态有机碳源引入的碳源数量不容易灵活调节,为提供一定数量的碳源以适应材料制备合成β-SiC结合相的要求,需要增加碳源加入量的调节机制。整体上碳源加入量偏少可生成β-SiC结合相的数量较少,反应烧结形成β-SiC结合相的晶粒越小,从而有利于结合相在材料内的均匀分散,另需要保证骨料颗粒间距尽可能小,也有利于降低β-SiC结合相的数量,提高结合效果保证制品性能。
通过有效降低粘结剂的烧失量与配置合理的颗粒级配相互科学配合,形成碳源加入量的调节机制,为后续耐火材料提供较高的致密度。具体做法是(3-5)mm碳化硅颗粒和(0-10)μm碳化硅微粉的加入量可用于调节液态碳源粘结剂成型时的最佳加入量,使其既能保证泥料正常成型又能引入合理的碳源数量。例如,保持紧密堆积的前提下,当(3-5)mm碳化硅颗粒加入量增加至25%,(0-10)μm碳化硅微粉加入量为0%时,配方内颗粒群的比表面小,较少的粘结剂即可覆盖所有颗粒表面,此时成型所需最佳粘结剂数量减少至3.0%至3.5%,同时降低了有效碳源加入量和结合相的生成数量;相反当(3-5)mm碳化硅颗粒加入量减少至0%,(0-10)μm碳化硅微粉增加至30%时,配方内颗粒群的比表面大幅提高,成型所需的最佳粘结剂数量增加至5.0%至5.5%,可提高有效碳源加入量和结合相的生成数量;在此基础上通过选择使用不同残碳率(30%-60%)的有机粘结剂或混合粘结剂,可更为灵活地增强碳源数量的调节并降低产品烧失,提高制品致密度。因此所述一种低结合相含量的β-SiC结合SiC耐火材料制品结合相数量具备灵活调节机制,大块砖型不易实现充分烧结可采用结合相数量相对偏低的配方,小块砖型容易充分烧结可采用结合相含量偏高的配方,并可保证产品各项性能差异不大,产品易于实现工业化生产。
上述例子用于使方案更加容易理解,同理的其他方案也在本申请的保护范围内。
β-SiC纳米线形成机理上,Si与C生成β-SiC纳米线的反应存在气相参与保证更多絮状纳米线生成和更低的生成温度,易于实现工业化生产。
β-SiC纳米线的生成需要气相参与,通常有氧元素的参与。氧元素的来源一方面来自于制备时加入的球黏土、二氧化硅微粉、活性氧化铝微粉等氧化物高温烧结时提供的氧;另一方面来自环境中的氧气,无氧气氛仅理想状态,实际反应环境中仍然具有少量的氧气存在,虽然气氛烧结炉有一定密封性,但仍有少量空气进入,另外,工业制备的高纯保护气体不可能达到100%的纯度。因此,Si与C生成β-SiC纳米线的反应存在气相参与,具体如下:
Si(s)+[O]=SiO(g)
C(s)+[O]=CO(g)
纳米线沉积反应:SiO(g)+3CO(g)=β-SiC(Nanowire)+2CO2(g)
β-SiC纳米线固-气生成机理:纳米线生长端始终为固态,生长沉积在纳米线的固态尖端;
β-SiC纳米线固-液-气生成机理:纳米线生长端维持有液滴,生长沉积在纳米线的液态尖端。
本发明公开的技术方案如下:
本发明第一方面提供一种低结合相含量的β-SiC结合SiC耐火材料,其特征在于,
包括结合相和主晶相;
其中,所述结合相为β-SiC,质量百分含量占比为3%-7%;
所述主晶相为α-SiC,质量百分含量占比为92%-95%;
所述结合相以纳米线形态覆盖所述主晶相表面。
β-SiC结合SiC耐火材料还包括0-2%的SiO2或Al2O3,这是由于原料中含有少量氧化物,如球黏土、二氧化硅微粉、活性氧化铝微粉等,高温烧成而产生的产物,该部分少量残留对制品使用时性能影响有限。
在一些实施方式中,所述主晶相的制备原料包括A组份和B组份:
所述A组份包括碳化硅、硅源和辅助原料,所述碳化硅包括碳化硅颗粒、碳化硅细粉和碳化硅微粉;
所述B组份包括碳源和特殊添加剂。
在一些实施方式中,所述A组份中各个原料的质量百分含量分别为:碳化硅颗粒60%-80%,碳化硅细粉和碳化硅微粉二者合量10%-30%,硅源2%-5%,辅助原料0%-2%;
所述B组份中碳源的含量为所述A组份各原料总量的3%-6%,所述B组份中特殊添加剂的含量为所述A组份各原料总量的0%-0.2%。
在一些实施方式中,所述碳化硅为黑碳化硅,黑碳化硅韧性好,其它种类α-SiC也均适用;
和/或,所述碳化硅颗粒为颗粒级配的碳化硅颗粒,所述颗粒的粒度为0-5mm;
优选的,所述颗粒级配的碳化硅颗粒的规格是:粒度为0-0.5mm的质量百分含量占比为5%-20%,粒度为0.5mm-1.5mm的质量百分含量占比为20%-40%,粒度为1.5mm-3mm的质量百分含量占比为10%-20%,粒度为3mm-5mm的质量百分含量占比为0%-25%;
进一步优选的,所述碳化硅颗粒的纯度为98%以上;
和/或,碳化硅细粉的粒度为180目-320目,纯度为97%以上;
和/或,所述碳化硅微粉的粒度为D50(0-10)μm,纯度为95%以上。
通过调节碳化硅颗粒级配、碳化硅细粉、碳化硅微粉的含量,选用不同含碳量的有机粘结剂,使得制得的β-SiC结合SiC既能具有较高的致密度,又能保证含量较低的β-SiC结合相。
在一些实施方式中,优选的,所述硅源为金属硅粉;进一步优选的,所述金属硅粉的纯度为98%以上;
优选的,所述碳源仅包括液态高粘有机物,不包括固态碳源;进一步优选的,所述液态高粘有机物的残碳率为30%以上。固态碳源会造成泥料整体成型密度明显降低,使用液态高粘有机物作为碳源,一方面可以作为粘结剂使固体原料成型,另一方面可以控制烧失量,保证β-SiC结合SiC的致密度,残碳率越高,液态高粘有机物的黏性越高,根据实际固体原料的状态进行调配。调节液态碳源粘结剂成型时的最佳加入量,使其既能保证泥料正常成型又能引入合理的碳源数量。另外,即使使用液态高粘有机物高温保护气氛下会有残留的固态碳,所残留的固态碳含量极低,一般不足2%。液态高粘有机物的粘度最低标准是可作为临时粘结剂,压成砖坯的强度达到搬运、装窑等要求即可。通常残碳率越高粘度越大,一般用残碳率较高的有机粘合剂作为碳源。
在一些实施方式中,所述辅助原料选自球黏土、二氧化硅微粉、活性氧化铝微粉中一种或多种,所述辅助原料的粒度范围为D50≤10μm,辅助原料的加入增强了泥料成型性能,高温烧成时,辅助原料可提供极少量的氧元素帮助生成结合相,提升烧成效果,使反应烧结形成均匀分散的结合相;
和/或,所述特殊添加剂选自MoSi2、硅铁合金、硅锰合金中的一种或多种,所述特殊添加剂的粒度范围为240目-320目,特殊添加剂作为烧结助剂,降低Si和C的反应烧结温度。
本发明第二方面提供一种低结合相含量的β-SiC结合SiC耐火材料的制备方法,其特征在于,所述制备方法的步骤包括:
干燥:将成型好的湿坯进行分段干燥;
烧成:将干燥好的砖坯在非氧气氛下低温微压分段烧成。
在一些实施方式中,所述湿坯的密度为2.70-2.90g·cm-3,所述干燥最高温度为110℃-130℃。控制合理的干燥温度、干燥时间,不仅保证生坯强度够强,足以满足搬运、装窑等生产需要而不产生废品,还能够合理的把控能耗,避免温度高能耗高、干燥周期延长增加生产周期和成本。
和/或,所述烧成最高温度不超过1350℃。烧成温度超过1350℃时,烧后材料体积密度和强度略有下降,一方面是由于是烧成时耐火材料尺寸不变,更高温度使耐火材料质量进一步烧失;另一方面较高烧成温度最终β-SiC纳米线的尺寸增加,不利于结合相在耐火材料内的均匀分散。
在一些实施方式中所述分段干燥具体步骤包括:将成型好的湿坯放入干燥窑,分别在60℃、70℃、80℃、90℃、100℃保温4-8h后,以10-20℃/h的升温速度升至最高温度110-130℃,保温12h以上,得到干坯;分段干燥降低干燥速度,延长热传导过程,减少干燥耐火材料不同部位的温差,降低干燥制品不同部位由于挥发速度差异,造成不同步收缩产生应力,避免制品干燥缺陷的产生,分段干燥的好处对于大尺寸耐火材料更为明显。
和/或,所述分段烧成具体步骤包括:将所述干坯以20℃-40℃/h的升温速度升温至1200℃-1250℃,保温5-10h;然后以10℃-30℃/h的升温速度升温至1300℃-1350℃,继续保温10-20h。通过分段烧成的方式,降低耐火材料内外温度差,促进耐火材料不同部位结合相晶种均匀产生并同步生长,特别对耐火材料芯部可充分进行烧结反应,结合相晶体形态大体均匀一致,保证材质均匀性。
本发明第三方面提供一种耐火制品,其特征在于,包括上述所述的β-SiC结合SiC耐火材料或上述制备方法制成的β-SiC结合SiC耐火材料。
相比现有技术,本发明达到的技术效果如下:
(1)本发明公开的β-SiC结合SiC耐火材料结合相含量低、碳化硅纯度高,碳化硅纯度可达96%以上,制备方法简单,烧成过程在低温、微压、无氧气氛下进行,无环境污染,烧成能耗低,降低了制备成本。
(2)现有技术中由于固态碳源密度低,掺入固态碳源会造成泥料整体成型密度明显降低,不利于提高成品的基础性能指标,本发明碳源使用液态高粘有机物,不选用固态碳源,从源头上克服了上述缺陷。另外,液态高粘有机物既是碳源又是粘结剂,在其他原料不变的情况下,仅通过调整液态高粘有机物的加入量、残碳率,即可保证泥料的成型性及烧成过程的烧失量,从而保证成品的致密度。
(3)本发明原料粒度多级配置,调整不同颗粒级的配比,结合粘结剂的含碳率,灵活调节粘结剂的加入量,使其既能保证泥料的正常成型,又能引入合理的碳源数量,达到烧失量低、致密度高、结合强度高的目的。
(4)本发明添加了少量辅助原料和特殊添加剂,增强了泥料的成型性能,并增加了气相反应,降低了固-固反应过程,降低了烧成温度,有助于形成均匀分散的β-SiC纳米线结合相。
(5)本发明整体上碳源加入量少,可生成β-SiC结合相的数量有限,反应烧结形成β-SiC结合相的晶粒小,有利于结合相在材料内的均匀分散,有利于成品性能的提高。
附图说明
图1为所述实施例1制得低结合相含量的β-SiC结合SiC耐火材料的断口显微形貌;
图2为实施例1制得低结合相含量的β-SiC结合SiC耐火材料内β-SiC纳米线结合相的显微形貌;
图中:1β-SiC结合相;2α-SiC主晶相。
具体实施方式
以下结合附图通过具体实施例说明本发明的技术方案。应该理解,本发明提到的一个或者多个步骤不排斥在组合步骤前后还存在其他方法和步骤,或者这些明确提及的步骤间还可以插入其他方法和步骤。还应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的目的,而非限制每个方法的排列次序或限定本发明的实施范围,其相对关系的改变或调整,在无实质技术内容变更的条件下,亦可视为本发明可实施的范畴。
实施例中所采用的原料和仪器,对其来源没有特定限制,在市场购买或者按照本领域内技术人员熟知的常规方法制备即可。
实施例1
所用原料及配方:98%以上碳化硅颗粒,5-3mm占比5%、3-1.5mm占比20%、1.5-0.5mm占比35%、0.5-0mm占比15%;97%以上碳化硅细粉-320目占比12%,95%以上碳化硅微粉D50=8.0μm占比7.5%;98%金属硅粉-320目加入量3.5%,球黏土和二氧化硅微粉重量比1:2,加入2.0%;粒度-320目的MoSi2外加0.1%。泥料制备时,上述原料与残碳率40%的酚醛树脂充分混合,酚醛树脂外加4.0%。模压成型为600×400×100mm的素坯,成型密度2.84g·cm-3,干燥温度130℃,干燥时间12h。电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压120mm水柱,最高1320℃烧成,保温14h。冷却后,制得低结合相含量的β-SiC结合SiC定型耐火材料,成品烧后体积密度2.77g·cm-3,β-SiC结合相的含量4-5%,碳化硅纯度96.79%,抗折强度58.7MPa。
图1为制得的低结合相含量的β-SiC结合SiC耐火材料断口显微形貌,可以看出β-SiC结合相1覆盖在α-SiC主晶相2骨料颗粒表面。
从图2中可以看出,β-SiC呈纳米线结构,直径仅有50-200mm。
将制得的低结合相含量的β-SiC结合SiC耐火材料与进口材料各项性能指标比较见表1。
表1实施例1获得的材料成品与进口材料典型样砖检验结果
Figure BDA0003706406390000081
从上表中可以看出,本实施例制得的低结合相含量的β-SiC结合SiC耐火材料杂质少纯度高,SiC主晶相的优异性能得到更明显的体现。与进口自结合碳化硅材料性能上存在不同:1)可以制备较高纯度和高体积密度的制品;2)制品可实现较高的导热系数;3)F.C和N含量低。
实施例2
所用原料及配方:98%以上碳化硅颗粒,5-3mm占比25%、3-1.5mm占比12%、1.5-0.5mm占比25%、0.5-0mm占比8%;97%以上碳化硅细粉-240目占比24%,95%以上碳化硅微粉D50=3.0μm占比2%;98%金属硅粉-320目加入量2.1%,二氧化硅微粉加入1.9%;-320目MoSi2与硅铁合1:1外加0.2%。制备泥料时,上述原料与残碳率55%的酚醛树脂充分混合,酚醛树脂外加3.4%。模压成型为695×470×165mm的素坯,成型密度2.85g·cm-3,干燥温度120℃,干燥时间15h。电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压100mm水柱,最高1300℃烧成,保温12h。制品烧后体积密度2.80g·cm-3,β-SiC结合相的含量2-3%,碳化硅纯度96.95%,抗折强度60.2MPa,F.C≤1.0%。
实施例3
所用原料及配方,98%以上碳化硅颗粒,5-3mm占比15%、3-1.5mm占比10%、1.5-0.5mm占比25%、0.5-0mm占比15%;97%以上碳化硅细粉-240目占比17%,95%以上碳化硅微粉D50=5.0μm占比12%;98%金属硅粉-320目加入量4.8%,球粘土与活性氧化铝微粉2:1加入1.2%;-320目硅锰与硅铁合金2:1外加0.15%。制备泥料时,上述原料与残碳率50%的酚醛树脂充分混合,酚醛树脂外加4.2%。模压成型为400×350×70mm的素坯,成型密度2.80g·cm-3,干燥温度130℃,干燥时间12h。电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压150mm水柱,最高1350℃烧成,保温10h。制品烧后体积密度2.72g·cm-3,β-SiC结合相的含量5-7%,碳化硅纯度97.57%,抗折强度50.3MPa。
实施例4
所用原料及配方,98%以上碳化硅颗粒,5-3mm占比0%、3-1.5mm占比25%、1.5-0.5mm占比40%、0.5-0mm占比15%;97%以上碳化硅细粉-240目占比2%,95%以上碳化硅微粉D50=1.0μm占比12%;98%金属硅粉-320目加入量4.2%,球粘土与活性氧化铝微粉2:1加入1.8%;-320目硅锰合金与硅铁合金2:1外加0.15%。制备泥料时,上述原料与残碳率40%的酚醛树脂充分混合,酚醛树脂外加4.6%。模压成型为400×350×70mm的素坯,成型密度2.74g·cm-3,干燥温度130℃,干燥时间14h。电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程炉内微正压,压力50mm水柱,最高1330℃烧成,保温10h。制品烧后体积密度2.66g·cm-3,β-SiC结合相的含量4-6%,碳化硅纯度96.89%,抗折强度47.8MPa。
实施例5
原料及配方,98%以上碳化硅颗粒,5-3mm占比25%、3-1.5mm占比10%、1.5-0.5mm占比25%、0.5-0mm占比10%;97%以上碳化硅细粉-240目占比25%;98%金属硅粉-320目加入量3.5%,球粘土加入1.5%;-320目硅铁合金外加0.1%。制备泥料时,上述原料,残碳50%的酚醛树脂与沥青预热5:1充分混合,加入3.6%。模压成型为500×390×80mm的素坯,成型密度2.72g·cm-3,干燥温度130℃,干燥时间15h。电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压50mm水柱,最高1350℃烧成,保温20h。制品烧后体积密度2.66g·cm-3,β-SiC结合相的含量4-5%,碳化硅纯度96.65%,抗折强度48.1MPa。
实施例6
一种耐火制品,包括实施例1制得的低结合相含量的β-SiC结合SiC耐火材料,作为高温窑炉的内衬材料使用,产品按照设计形状制备后,使用配套火泥砌筑在高温窑炉内部作为保护衬,服役过程通常会承受高温热应力变化、各种成份炉渣的侵蚀、高温气体侵蚀或氧化、冲刷磨损等各种复杂的高温工况环境。
有些工作环境不但需要利用材料的耐高温耐侵蚀性能,还可能利用材料的导热性能进行热量交换,如高炉的冷却壁镶砖和带冷却系统的风口组合砖等。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (5)

1.一种低结合相含量的β-SiC结合SiC耐火材料的制备方法,其特征在于,包括:
所用原料及配方:98%以上碳化硅颗粒,5-3mm占比5%、3-1.5mm占比20%、1.5-0.5mm占比35%、0.5-0mm占比15%;97%以上碳化硅细粉-320目占比12%,95%以上碳化硅微粉D50=8.0μm占比7.5%;98%金属硅粉-320目加入量3.5%,球黏土和二氧化硅微粉重量比1:2,加入2.0%;粒度-320目的MoSi2外加0.1%,泥料制备时,上述原料与残碳率40%的酚醛树脂充分混合,酚醛树脂外加4.0%,模压成型为600×400×100mm的素坯,成型密度2.84g·cm-3,干燥温度130℃,干燥时间12h,电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压120mm水柱,最高1320℃烧成,保温14h,冷却后,制得低结合相含量的β-SiC结合SiC定型耐火材料,成品烧后体积密度2.77g·cm-3,β-SiC结合相的含量4-5%,碳化硅纯度96.79%,抗折强度58.7MPa。
2.一种低结合相含量的β-SiC结合SiC耐火材料的制备方法,其特征在于,包括:
所用原料及配方:98%以上碳化硅颗粒,5-3mm占比25%、3-1.5mm占比12%、1.5-0.5mm占比25%、0.5-0mm占比8%;97%以上碳化硅细粉-240目占比24%,95%以上碳化硅微粉D50=3.0μm占比2%;98%金属硅粉-320目加入量2.1%,二氧化硅微粉加入1.9%;-320目MoSi2与硅铁合1:1外加0.2%,制备泥料时,上述原料与残碳率55%的酚醛树脂充分混合,酚醛树脂外加3.4%,模压成型为695×470×165mm的素坯,成型密度2.85g·cm-3,干燥温度120℃,干燥时间15h,电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压100mm水柱,最高1300℃烧成,保温12h,制品烧后体积密度2.80g·cm-3,β-SiC结合相的含量2-3%,碳化硅纯度96.95%,抗折强度60.2MPa,F.C≤1.0%。
3.一种低结合相含量的β-SiC结合SiC耐火材料的制备方法,其特征在于,包括:
所用原料及配方,98%以上碳化硅颗粒,5-3mm占比15%、3-1.5mm占比10%、1.5-0.5mm占比25%、0.5-0mm占比15%;97%以上碳化硅细粉-240目占比17%,95%以上碳化硅微粉D50=5.0μm占比12%;98%金属硅粉-320目加入量4.8%,球粘土与活性氧化铝微粉2:1加入1.2%;-320目硅锰与硅铁合金2:1外加0.15%,制备泥料时,上述原料与残碳率50%的酚醛树脂充分混合,酚醛树脂外加4.2%,模压成型为400×350×70mm的素坯,成型密度2.80g·cm-3,干燥温度130℃,干燥时间12h,电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压150mm水柱,最高1350℃烧成,保温10h,制品烧后体积密度2.72g·cm-3,β-SiC结合相的含量5-7%,碳化硅纯度97.57%,抗折强度50.3MPa。
4.一种低结合相含量的β-SiC结合SiC耐火材料的制备方法,其特征在于,包括:
所用原料及配方,98%以上碳化硅颗粒,5-3mm占比0%、3-1.5mm占比25%、1.5-0.5mm占比40%、0.5-0mm占比15%;97%以上碳化硅细粉-240目占比2%,95%以上碳化硅微粉D50=1.0μm占比12%;98%金属硅粉-320目加入量4.2%,球粘土与活性氧化铝微粉2:1加入1.8%;-320目硅锰合金与硅铁合金2:1外加0.15%,制备泥料时,上述原料与残碳率40%的酚醛树脂充分混合,酚醛树脂外加4.6%,模压成型为400×350×70mm的素坯,成型密度2.74g·cm-3,干燥温度130℃,干燥时间14h,电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程炉内微正压,压力50mm水柱,最高1330℃烧成,保温10h,制品烧后体积密度2.66g·cm-3,β-SiC结合相的含量4-6%,碳化硅纯度96.89%,抗折强度47.8MPa。
5.一种低结合相含量的β-SiC结合SiC耐火材料的制备方法,其特征在于,包括:
原料及配方,98%以上碳化硅颗粒,5-3mm占比25%、3-1.5mm占比10%、1.5-0.5mm占比25%、0.5-0mm占比10%;97%以上碳化硅细粉-240目占比25%;98%金属硅粉-320目加入量3.5%,球粘土加入1.5%;-320目硅铁合金外加0.1%,制备泥料时,上述原料,残碳50%的酚醛树脂与沥青预热5:1充分混合,加入3.6%,模压成型为500×390×80mm的素坯,成型密度2.72g·cm-3,干燥温度130℃,干燥时间15h,电加热气氛炉内烧成,通氩气提前排除炉内空气,烧成过程维持炉内微正压50mm水柱,最高1350℃烧成,保温20h,制品烧后体积密度2.66g·cm-3,β-SiC结合相的含量4-5%,碳化硅纯度96.65%,抗折强度48.1MPa。
CN202210708991.3A 2022-06-21 2022-06-21 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品 Active CN114853489B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210708991.3A CN114853489B (zh) 2022-06-21 2022-06-21 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品
PCT/CN2022/107064 WO2023245791A1 (zh) 2022-06-21 2022-07-21 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210708991.3A CN114853489B (zh) 2022-06-21 2022-06-21 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品

Publications (2)

Publication Number Publication Date
CN114853489A CN114853489A (zh) 2022-08-05
CN114853489B true CN114853489B (zh) 2023-05-02

Family

ID=82625614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210708991.3A Active CN114853489B (zh) 2022-06-21 2022-06-21 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品

Country Status (2)

Country Link
CN (1) CN114853489B (zh)
WO (1) WO2023245791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724680B (zh) * 2022-11-21 2023-05-26 景德镇陶瓷大学 一种SiC纳米线涂层表面改性氧化铝基蜂窝陶瓷的低温原位制备方法及其制得的产品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596303A (en) * 1978-03-02 1981-08-26 Atomic Energy Authority Uk Production of silicon carbide bodies
US4693988A (en) * 1986-07-01 1987-09-15 Kennecott Corporation Single phase silicon carbide refractory
JP2001019548A (ja) * 1999-07-09 2001-01-23 Bridgestone Corp 炭化ケイ素焼結体及びその製造方法
CN101747068B (zh) * 2009-12-24 2012-10-10 中钢集团洛阳耐火材料研究院有限公司 一种碳化硅含量大于92%的自结合碳化硅制品及其制备方法
CN102503431B (zh) * 2011-10-27 2013-07-03 中钢集团洛阳耐火材料研究院有限公司 一种碳化硅陶瓷制品及制备方法
CN103880448B (zh) * 2014-03-27 2015-09-16 中钢集团洛阳耐火材料研究院有限公司 一种浇注成型大型自结合碳化硅制品
CN108610071B (zh) * 2018-07-17 2019-12-03 景德镇陶瓷大学 一种自结合碳化硅耐火材料及其液相烧结制备方法
CN109437947A (zh) * 2018-12-27 2019-03-08 武汉科技大学 一种晶须自结合SiC耐火材料及其制备方法

Also Published As

Publication number Publication date
CN114853489A (zh) 2022-08-05
WO2023245791A1 (zh) 2023-12-28

Similar Documents

Publication Publication Date Title
CN101747068B (zh) 一种碳化硅含量大于92%的自结合碳化硅制品及其制备方法
CN100337987C (zh) 干熄焦用莫来石-碳化硅耐火材料及制备
CN108774054B (zh) 一种高炉永久性陶瓷出铁包及其制备方法
CN109293376B (zh) 一种氮化硅氮化钛结合碳化硅耐火材料及其制备方法
CN108863414B (zh) 一种高性能的镁碳砖及其制备方法
CN101798232B (zh) 一种赛隆-碳化硅-刚玉复合耐火材料的制备方法
CN113816728A (zh) 高强度冶炼特大型高炉出铁口用炮泥
CN114853489B (zh) 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品
CN110981510A (zh) 一种氮氧化硅结合碳化硅耐火砖及其制备方法
CN101423412B (zh) 低温烧成制备高性能氧化硅结合碳化硅耐火材料的方法
CN1050591C (zh) 烧成微孔铝炭砖及其制作方法
CN101798222A (zh) 一种Al2O3-Ni-C-B4C复相陶瓷及其制备方法
CN110590344B (zh) 一种环保型炮泥及其制备方法
CN117049883A (zh) 一种高炉主铁沟用抗氧化浇注料
CN115057692B (zh) 一种添加钛铁合金的铝碳滑板砖及其生产方法
CN113979761B (zh) 一种三元复合自修复免烧滑板砖及其制备方法
CN111892411B (zh) 氮化物-碳化硅-六铝酸钙复合耐火制品及其制备方法
CN104987076A (zh) 一种高韧性碳化硅陶瓷及其低温烧结工艺
CN1108212C (zh) 含塞隆的滑动水口砖
CN105503193B (zh) 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法
CN113651626A (zh) 一种热风炉用优质硅砖及其制备方法
CN102373357A (zh) 一种金属陶瓷组合物及其制备方法、一种金属陶瓷和一种雷蒙磨
JP3661958B2 (ja) 鋳造用耐火物
CN116143529B (zh) 一种环保型铁沟浇注料及其制备方法
KR100308922B1 (ko) 실리콘의질화반응에의한질화규소결합탄화규소계복합재료의제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant