CN105503193B - 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法 - Google Patents

一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法 Download PDF

Info

Publication number
CN105503193B
CN105503193B CN201510907736.1A CN201510907736A CN105503193B CN 105503193 B CN105503193 B CN 105503193B CN 201510907736 A CN201510907736 A CN 201510907736A CN 105503193 B CN105503193 B CN 105503193B
Authority
CN
China
Prior art keywords
sialon
sic
kyanite
milltailings
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510907736.1A
Other languages
English (en)
Other versions
CN105503193A (zh
Inventor
房明浩
闵鑫
黄朝晖
刘艳改
吴小文
张丽娜
张俊东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN201510907736.1A priority Critical patent/CN105503193B/zh
Publication of CN105503193A publication Critical patent/CN105503193A/zh
Application granted granted Critical
Publication of CN105503193B publication Critical patent/CN105503193B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4‑SiC复相耐高温材料的方法,属于耐火材料制备技术领域。其特征是采用以蓝晶石选矿尾矿、碳质材料和高纯氮气为主要原料,经配料、球磨混料、高温碳热氮化还原反应以及除碳等工艺制备得到一种纯度较高的片状或棒状Sialon‑SiC复相粉体;采用碳热还原氮化制得的Sialon‑SiC复相粉体、氮化硅粉体和碳化硅粉体为主要原料,经配料、球磨混料后在非氧化气氛下烧结得到Sialon/Si3N4‑SiC复相耐高温材料。采用蓝晶石选矿尾矿转型转相制备得到的Sialon/Si3N4‑SiC复相材料具有良好的抗折强度与抗压强度,该工艺具有较高的转化率,可用于耐高温材料、陶瓷部件以及钢铁行业等。本发明所涉及的原材料成本及能耗低,蓝晶石选矿尾矿利用率高,不仅为蓝晶石选矿尾矿的利用开辟了新的途径,而且也减轻了对环境的污染,具有深远的环保意义和经济价值。

Description

一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复 相耐高温材料的制备方法
技术领域:
本发明涉及一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法,属于耐火材料制备技术领域。
背景技术:
蓝晶石选矿尾矿是蓝晶石矿开采过程中排放的工业废弃物,固体废弃物的堆积不仅造成资源的浪费,还会大面积侵占耕地,带来严重的环境污染和生态破坏。蓝晶石选矿尾矿储量以每年数万吨的速率增长,但是对于蓝晶石选矿尾矿仍未得到有效的解决途径。
耐火材料是高温设备内使用的结构材料,是实现高温的技术工艺和保护炉体结构的长期稳定工作的基础材料。其中,氮化硅结合碳化硅是一种新型的高级耐火材料,它具有硬度高、强度高、热稳定性好以及热震稳定性好、使用寿命长、高温抗蠕能力强、耐腐蚀、耐极冷极热、抗氧化等优势,广泛应用于钢铁、有色金属、化工建材等多种行业。此外,SiC结合Sialon是在高炉内衬的SiC材料的基础上发展起来的,也具有高的抗氧化性、抗侵蚀性能等优点,也具有广泛的应用前景。但是这类复相耐高温材料存在制备工艺复杂以及成本高等缺点,其技术工艺亟需改进提升。本发明专利结合上述突出问题,提出采用蓝晶石选矿尾矿作为原料,通过碳热还原氮化实现低成本转型转相制备Sialon-SiC复相粉体,并利用它替代Si3N4-SiC复相材料中的部分Si3N4,获得新型Sialon/Si3N4-SiC复相耐高温材料,具有较好的力学性能,能够满足钢铁冶炼行业耐高温材料、陶瓷部件等使用要求,也为实现蓝晶石选矿尾矿等固体废弃物的综合利用提供了新途径。
发明内容:
本发明的目的是针对目前钢铁冶金新技术新工艺对高性能耐火材料苛刻性能的迫切要求以及铝硅质复相耐高温材料制备成本高等突出问题,结合蓝晶石选矿尾矿利用程度低的突出瓶颈问题,提出一种以蓝晶石选矿尾矿转型转相得到的Sialon-SiC复相粉体和Si3N4、SiC等为原料制备新型Sialon/Si3N4-SiC 复相耐高温材料的新工艺。
为实现上述目的,本发明的技术方案如下:
本发明是一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的方法,其特征在于:采用蓝晶石选矿尾矿、碳质材料和高纯氮气为主要原料,经配料、球磨混料、高温碳热还原氮化反应、磨细、除碳等工艺进行处理,制备得到纯度较高Sialon-SiC复相粉体;采用制得的Sialon-SiC复相粉体以及商用Si3N4粉体和SiC粉体为主要原料,经配料、混料、成型、高温非氧化保护气氛烧结等工艺,制备得到Sialon/Si3N4-SiC复相耐高温材料。
本发明提出的一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的方法,其特征在于:其中蓝晶石选矿尾矿为工业废弃物,其主要成分为氧化铝含量20-50%,二氧化硅含量50-80%,少量K2O、Fe2O3等杂质;Si3N4材料为市售工业原料,其质量要求为Si3N4的含量大于85%,氧化铁含量小于1.5%,其他杂质总含量小于8%,粒度小于20mm;SiC材料为市售工业原料,其质量要求SiC 含量大于95.0%,氧化铁含量小于1.5%,粒度小于5.0mm。碳质材料为市售工业原料,其质量要求为含碳量80%,灰分不大于8%,挥发分不大于7%,含硫量小于2%,水分不大于5%,粒度小于20mm。发明所用碳源为焦炭、炭黑或无烟煤等,其理论配碳量按照原料中氧化物完全反应计算得到;氮化气氛由氮气提供,气氛的压力为1Pa-10Pa;碳热还原氮化的反应温度为1000℃-1800℃,反应时间2-20h;除碳温度为600℃-700℃,反应时间为1-3h;反应得到的Sialon-SiC复相粉体主要成分为Sialon和SiC,其含量高于90wt%。发明制备Sialon/Si3N4-SiC复相耐高温材料的配方为碳热还原氮化制得的Sialon-SiC 复相粉体占总配料的质量比为0-30%,碳化硅粉体占总配料的质量比为70%,氮化硅粉体占总配料的质量比为0-30%;经配料、混料、干压成型、冷等静压处理、保护气氛烧结等工艺制备得到该复相耐高温材料;非氧化保护气氛由高纯氮气或氩气实现,烧结温度为1200℃-1700℃、保温时间2-20小时。
具体实施方式:
下面以具体实施例进一步阐述本发明的技术方案,但并非仅仅局限于下述实施案例。
实施例1
原料:
蓝晶石选矿尾矿为工业废弃物,其主要成分为氧化铝含量20-50%,二氧化硅含量50-80%,少量K2O, Fe2O3等杂质。
Si3N4材料为市售工业原料,其质量要求为Si3N4的含量大于85%,氧化铁含量小于1.5%,其他杂质总含量小于8%,粒度小于20mm;
SiC材料为市售工业原料,其质量要求SiC含量大于95.0%,氧化铁含量小于1.5%,粒度小于5.0mm。
碳质材料为焦炭颗粒,市售工业原料,其质量要求为含碳量80%,灰分不大于8%,挥发分不大于 7%,含硫量小于2%,水分不大于5%,粒度小于20mm。
将上述材料中的蓝晶石选矿尾矿和焦炭分别研磨后过100目筛,按照比例称量后放入球磨罐中,干混12小时,将球磨后的粉体倒入钢模中,利用粉末压片机,进行干压成型。
采用碳热还原氮化法,将干压成型的粉体放入高纯氧化铝坩埚中,采用焦炭颗粒埋碳,并在氮气气氛下于1550℃下保温4小时。
将烧结后的试样破碎,放入研钵中研磨成细粉,为Sialon-SiC复相粉体。
将Sialon-SiC复相粉体、Si3N4粉体、不同粒级的SiC粉体按照比例称量后倒入钢模中,利用粉末压片机压成4×4×3mm的条状试样,进行冷等静压处理。
Sialon-SiC复相粉体占总质量分数的25%,Si3N4 325目粉体占总质量分数的5%,325目SiC粉体占总质量分数的28%,240目SiC粉体占总质量分数的21%,21目SiC粉体占总质量分数的21%。
将上述条状试样放入氧化铝坩埚中,在氮气气氛、压力为0.04MPa下于1550℃下保温4小时进行低压烧结。保温结束后,随炉膛冷却至室温,得到Sialon/Si3N4-SiC复相粉体。
所得的Sialon/Si3N4-SiC复相粉体其抗折强度为40.59MPa,抗压强度为63.06MPa。
实施例2
原料:
蓝晶石选矿尾矿为工业废弃物,其主要成分为氧化铝含量20-50%,二氧化硅含量50-80%,少量K2O, Fe2O3等杂质。
Si3N4材料为市售工业原料,其质量要求为Si3N4的含量大于85%,氧化铁含量小于1.5%,其他杂质总含量小于8%,粒度小于20mm
SiC材料为市售工业原料,其质量要求SiC含量大于95.0%,氧化铁含量小于1.5%,粒度小于5.0mm。
碳质材料为无烟煤,市售工业原料,其质量要求为含碳量90%,灰分不大于4%,挥发分不大于3%,含硫量小于2%,水分不大于1%,粒度小于20mm。
将上述材料中的蓝晶石选矿尾矿和无烟煤分别研磨后过100目筛,按照比例称量后放入球磨罐中,干混12小时,将球磨后的粉体倒入钢模中,利用粉末压片机,进行干压成型。
采用碳热还原氮化法,将干压成型的粉体放入高纯氧化铝坩埚中,采用焦炭颗粒埋碳,并在氮气气氛下于1550℃下保温4小时。
将烧结后的试样破碎,放入研钵中研磨成细粉,为Sialon-SiC复相粉体。
将Sialon-SiC复相粉体、Si3N4粉体、不同粒级的SiC粉体按照比例称量后倒入钢模中,利用粉末压片机压成4×4×3mm的条状试样,进行冷等静压处理。Sialon-SiC复相粉体占总质量分数的20%,Si3N4 325 目粉体占总质量分数的10%,325目SiC粉体占总质量分数的28%,240目SiC粉体占总质量分数的21%, 21目SiC粉体占总质量分数的21%。
将上述条状试样放入氧化铝坩埚中,在氮气气氛、压力为0.04MPa下于1550℃下保温4小时进行低压烧结。保温结束后,随炉膛冷却至室温,得到Sialon/Si3N4-SiC复相粉体。
所得的Sialon/Si3N4-SiC复相粉体其抗折强度为37.43MPa,抗压强度为50.02MPa。
实施例3
原料:
蓝晶石选矿尾矿为工业废弃物,其主要成分为氧化铝含量20-50%,二氧化硅含量50-80%,少量K2O, Fe2O3等杂质。
Si3N4材料为市售工业原料,其质量要求为Si3N4的含量大于85%,氧化铁含量小于1.5%,其他杂质总含量小于8%,粒度小于20mm;
SiC材料为市售工业原料,其质量要求SiC含量大于95.0%,氧化铁含量小于1.5%,粒度小于5.0mm。
焦炭材料为市售工业原料,其质量要求为含碳量80%,灰分不大于8%,挥发分不大于7%,含硫量小于2%,水分不大于5%,粒度小于20mm。
将上述材料中的蓝晶石选矿尾矿和焦炭分别研磨后过100目筛,按照比例称量后放入球磨罐中,干混 12小时,将球磨后的粉体倒入钢模中,利用粉末压片机,进行干压成型。
采用碳热还原氮化法,将干压成型的粉体放入高纯氧化铝坩埚中,采用焦炭颗粒埋碳,并在氮气气氛下于1400℃下保温6小时。
将烧结后的试样破碎,放入研钵中研磨成细粉,为Sialon-SiC复相粉体。
将Sialon-SiC复相粉体、Si3N4粉体、不同粒级的SiC粉体按照比例称量后倒入钢模中,利用粉末压片机压成4×4×3mm的条状试样,进行冷等静压处理。Sialon-SiC复相粉体占总质量分数的15%,Si3N4 325 目粉体占总质量分数的15%,325目SiC粉体占总质量分数的28%,240目SiC粉体占总质量分数的21%, 21目SiC粉体占总质量分数的21%。
将上述条状试样放入氧化铝坩埚中,在氮气气氛、压力为0.04MPa下于1600℃下保温3小时进行低压烧结。保温结束后,随炉膛冷却至室温,得到Sialon/Si3N4-SiC复相粉体。
所得的Sialon/Si3N4-SiC复相粉体其抗折强度为34.59MPa,抗压强度为47.86MPa。

Claims (4)

1.一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的方法,其特征是采用蓝晶石选矿尾矿、碳质材料和高纯氮气为主要原料,经配料、球磨混料、高温碳热还原氮化反应、磨细、除碳工艺进行处理,制备得到纯度较高Sialon-SiC复相粉体;采用制得的Sialon-SiC复相粉体以及商用Si3N4粉体和SiC粉体为主要原料,经配料、混料、成型、高温非氧化保护气氛烧结工艺,制备得到Sialon/Si3 N4 -SiC复相耐高温材料;所用碳源为焦炭、炭黑或无烟煤,其理论配碳量按照原料中氧化物完全反应计算得到;碳热还原氮化的反应温度为1000℃-1800℃,反应时间2-20h;除碳温度为600℃-700℃,反应时间为1-3h;碳热还原氮化制得的Sialon-SiC复相粉体占总配料的质量比为0-30%,碳化硅粉体占总配料的质量比为70%,氮化硅粉体占总配料的质量比为0-30%;非氧化保护气氛由高纯氮气或氩气实现,烧结温度为1200℃-1700℃、保温时间2-20小时。
2.根据权利要求1所述的一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的方法,其特征在于:其中蓝晶石选矿尾矿为工业废弃物,其主要成分为氧化铝含量20-50%,二氧化硅含量50-80%,少量K2O、Fe2O3等杂质;Si3N4材料为市售工业原料,其质量要求为Si3N4的含量大于85%,氧化铁含量小于1.5%,其他杂质总含量小于8%,粒度小于20mm;SiC材料为市售工业原料,其质量要求SiC含量大于95.0%,氧化铁含量小于1.5%,粒度小于5.0mm;碳质材料为市售工业原料,其质量要求为含碳量80%,灰分不大于8%,挥发分不大于7%,含硫量小于2%,水分不大于5%,粒度小于20mm。
3.根据权利要求1所述的一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的方法,其特征在于:Sialon-SiC复相粉体的主要成分为Sialon和SiC,其含量高于90wt%。
4.根据权利要求1所述的一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的方法所制备的Sialon/Si3N4-SiC复相耐高温材料,其特征在于:制备得到的Sialon/Si3N4-SiC复相耐高温材料抗折强度高于30MPa,抗压强度高于40MPa,用于耐高温材料、陶瓷部件领域。
CN201510907736.1A 2015-12-10 2015-12-10 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法 Expired - Fee Related CN105503193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510907736.1A CN105503193B (zh) 2015-12-10 2015-12-10 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510907736.1A CN105503193B (zh) 2015-12-10 2015-12-10 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法

Publications (2)

Publication Number Publication Date
CN105503193A CN105503193A (zh) 2016-04-20
CN105503193B true CN105503193B (zh) 2018-10-19

Family

ID=55711572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510907736.1A Expired - Fee Related CN105503193B (zh) 2015-12-10 2015-12-10 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法

Country Status (1)

Country Link
CN (1) CN105503193B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094127B (zh) * 2020-09-25 2023-02-28 南阳开元高温新材料有限公司 一种蓝晶石尾矿系列匣钵的制作工艺
CN113666757A (zh) * 2021-08-27 2021-11-19 宜兴市兴贝耐火保温工程有限公司 一种cfb锅炉点火部位用高强耐火浇注料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164988A (zh) * 2007-10-09 2008-04-23 北京科技大学 一种利用红柱石制备SiAlON陶瓷粉体的方法
CN101177270A (zh) * 2007-11-13 2008-05-14 北京科技大学 利用蓝晶石矿原位合成SiC材料的方法
CN103641486A (zh) * 2013-12-16 2014-03-19 武汉科技大学 一种制备O`-Sialon-Si3N4-SiC复合陶瓷粉末的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164988A (zh) * 2007-10-09 2008-04-23 北京科技大学 一种利用红柱石制备SiAlON陶瓷粉体的方法
CN101177270A (zh) * 2007-11-13 2008-05-14 北京科技大学 利用蓝晶石矿原位合成SiC材料的方法
CN103641486A (zh) * 2013-12-16 2014-03-19 武汉科技大学 一种制备O`-Sialon-Si3N4-SiC复合陶瓷粉末的方法

Also Published As

Publication number Publication date
CN105503193A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6508546B2 (ja) 輝石セラミックスおよびその製造方法
CN101747068B (zh) 一种碳化硅含量大于92%的自结合碳化硅制品及其制备方法
CN101871070B (zh) 一种金属陶瓷复合材料及其制备方法
CN103664199B (zh) 以聚碳硅烷为结合剂制备碳化硅耐火材料的方法
CN102826851A (zh) 一种硼化锆-碳化硅复相耐高温粉体材料的制备方法
CN108083765B (zh) 低导热抗剥落砖及其制备方法
CN109081697A (zh) 一种制备B4C/SiC复合陶瓷粉的方法
CN103464738B (zh) 添加钛的金属结合滑板及其生产方法
Wang et al. Production of magnesium by vacuum aluminothermic reduction with magnesium aluminate spinel as a by-product
CN100361895C (zh) 利用铁矿石尾矿制备SiC复相材料的方法
CN101182015A (zh) 一种合成铁铝尖晶石的方法
CN105503193B (zh) 一种利用蓝晶石选矿尾矿转型转相制备Sialon/Si3N4-SiC复相耐高温材料的制备方法
CN105272310A (zh) 鱼雷罐用铝碳碳化硅砖及其制备方法
CN110511003A (zh) 一种Ti(C,N)固溶体结合刚玉质耐火材料及其制备方法
CN110483023A (zh) 一种微孔化刚玉砖及其制备方法
CN101591190A (zh) 一种铝电解槽侧墙用新型Si3N4-SiC-C耐火砖及其制备方法
CN107244930A (zh) 一种耐铁水侵蚀高炉炭砖及其制备方法
CN103896606A (zh) 一种高炉陶瓷杯用耐火材料
CN114853489B (zh) 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品
CN103833388A (zh) 高耐磨镁铁尖晶石砖及其制备方法
CN113716945B (zh) 一种低导热轻量化硅砖及其制备方法
CN106588024A (zh) 一种Al7O3N5结合刚玉质复合耐火材料的制备方法
CN102731109B (zh) 一种AlON材料的合成方法
CN102373357B (zh) 一种金属陶瓷组合物及其制备方法、一种金属陶瓷和一种雷蒙磨
CN114349520A (zh) 一种高炉本体用Al4SiC4-SiC复合耐火材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181019