CN108083765B - 低导热抗剥落砖及其制备方法 - Google Patents

低导热抗剥落砖及其制备方法 Download PDF

Info

Publication number
CN108083765B
CN108083765B CN201710981890.2A CN201710981890A CN108083765B CN 108083765 B CN108083765 B CN 108083765B CN 201710981890 A CN201710981890 A CN 201710981890A CN 108083765 B CN108083765 B CN 108083765B
Authority
CN
China
Prior art keywords
heat
brick
low
percent
stripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710981890.2A
Other languages
English (en)
Other versions
CN108083765A (zh
Inventor
陈俊红
贾元平
封吉圣
赵维平
朱波
郭玉涛
唐竹兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Refractory Material Engineering Research Center
Shandong ShChuan Ceramics Co ltd
Zibo City Luzhong Refractories Co ltd
Original Assignee
Shandong Refractory Material Engineering Research Center
Shandong ShChuan Ceramics Co ltd
Zibo City Luzhong Refractories Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Refractory Material Engineering Research Center, Shandong ShChuan Ceramics Co ltd, Zibo City Luzhong Refractories Co ltd filed Critical Shandong Refractory Material Engineering Research Center
Priority to CN201710981890.2A priority Critical patent/CN108083765B/zh
Publication of CN108083765A publication Critical patent/CN108083765A/zh
Application granted granted Critical
Publication of CN108083765B publication Critical patent/CN108083765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种低导热抗剥落砖及其制备方法,属于耐火材料制备技术领域。本发明所述的低导热抗剥落砖,以合成的低导热耐碱原料、α氧化铝微粉、红柱石和结合粘土为原料,混合制成混合粉体,然后向混合粉体中加入结合剂,压制成型,干燥,烧成,得到所述的低导热抗剥落砖;所述的合成的低导热耐碱原料由以下重量百分含量的原料制成:焦宝石细粉17%~25%,煤矸石细粉40%~55%,硅石细粉20%~43%。本发明所述的低导热抗剥落砖,导热系数低、耐碱侵蚀性能好,应用于水泥窑预热分解带,使水泥窑热耗大幅度降低,使用寿命大幅度提高;本发明同时提供了一种科学合理、简单便于实现工业化的制备方法。

Description

低导热抗剥落砖及其制备方法
技术领域
本发明涉及一种低导热抗剥落砖及其制备方法,属于耐火材料制备技术领域。
背景技术
20世纪以来水泥工业有两次重大的技术突破,第一次是回转窑在世纪初得到全面推广,第二次是预分解技术的出现,这不仅大大提高了水泥窑的热效率和单机生产能力,促进了水泥工业向大型化、现代化的发展,也相应促进了与之相配套的耐火材料行业的发展。上世纪初至50年代是以粘土、高铝质耐火材料来满足以湿法窑为主的传统回转窑的生产和发展,50年代以后,在对上述材料的性能进一步完善和提高的基础上,陆续出现了镁质耐火材料来适应悬浮预热、预分解窑技术的发展要求,并随预分解窑技术进展而不断改进提高。
关于能耗方面,目前水泥生产热耗主要包括以下几个方面,一是水泥熟料反应热,此部分热耗对某一特定生产线而言相对固定,约占总热耗的50%以上;二是外排废气带走热,约占总热耗的30~35%;三是全系统散热损失,这部分包括预热器、回转窑、三次风管、篦冷机及窑头罩等,约占总热耗的8~12%;四是熟料、收尘灰带走热。现由于绝大多数新型干法水泥窑都已配套建设了余热发电系统,废气余热已得到了较为充分的利用,因此系统的散热损失大小对热耗的降低就显得尤为重要;目前预分解窑的预热器、分解炉系统、三次风管系统、回转窑,窑门罩和篦冷机等装备外表面散热面积都较大,如一条5000t/d水泥熟料生产线的静态热工设备总表面积约为11618m2,单位熟料散热损失约120~150kJ/kg,回转窑散热面积约为1086m2,单位熟料散热损失约为105~130kJ/kg,二项合计约达到250kJ/kg。目前水泥熟料热耗国际先进水平约为2842kJ/kg,而国内先进水平为2970kJ/kg,差距中很大一部分是由整体配置耐火材料产品性能不合理造成的。若能将整体配套耐火材料的导热系数进一步降低,总的散热损失也将大幅降低。
据《海南某厂5000t/d熟料1#生产线系统标定报告》,窑体系统散热损失中比重最大的是回转窑,其表面散热损失约占系统热损失的43.7%,占比很大。因此,回转窑窑衬材料的节能是减少系统散热损失的关键。
2013年8月27日,国家发改委发布《关于加大工作力度确保实现2013年节能减排目标任务的通知》,要求“以节能减排倒逼产业转型和发展方式加快转变,下更大决心,用更大气力,采取更加有力的政策措施,确保2013年全国单位国内生产总值能耗下降3.7%以上。”
中国建筑材料联合会提出“加快第二代新型干法水泥技术创新和研发”,明确了“优化与提升高能效预热预分解和烧成技术,提高产品质量和降低能耗,使我国新型干法水泥的技术达到世界领先水平”的中心指导思想,要求水泥熟料热耗达到2680kJ/kg-cl,通过实施耐火材料性能改进,降低散热损失,熟料热耗降低20kJ/kg-cl。
水泥回转窑预热分解带所用耐火材料既承受一定的热应力,又受到入窑物料碱化合物的化学侵蚀和物料的磨损,并且该段带也有较高的温度,也应考虑减少筒体散热损失。因此,要求该段带耐火材料要具有良好的耐碱性、耐磨性、隔热性和良好的热震稳定性。现有配置下多采用抗剥落高铝砖,但高铝砖因其中的氧化铝含量较高,耐碱性较差,在使用工况下易与碱蒸汽反应而产生碱裂,极易出现剥落,致使用寿命大大降低。并且现有的抗剥落高铝砖因ZrO2含量较少或根本未添加而性能大减,因此远远不能满足使用要求。硅莫砖不仅因较高的氧化铝含量耐碱性较差,又因为所用的SiC原料的特性而导致材料的导热系数较高,散热损失较大。
关于回转窑用耐火材料的导热率,我国企业所列指标以及国内文献的相关数据都欠严密,很多只是标出导热率数据,并未标注温度限定。为此,淄博市鲁中耐火材料有限公司委托国家建筑材料研究院将目前回转窑上应用的抗剥落高铝砖、硅莫砖以及镁铝尖晶石分别测试了350℃、700℃的导热系数,其指标如表1。
表1回转窑用的一些材料的导热系数
Figure GDA0002779708490000021
对于耐火材料的研究,国内外公开的专利及文献如下:
1、CN201110202686“一种低导热率硅莫砖及其制备方法”(发明人:杨建军),该发明涉及一种水泥窑用低导热率硅莫砖,包括8%的一级铝矾土、10%的碳化硅颗粒及10%的复合微粉结合剂;所述一级铝矾土、添加碳化硅颗粒及复合微粉结合剂经高压成型后低温烧制(90℃~110℃)。制得的低导热硅莫砖Al2O3≥58%,导热率≤2.0W/(m·K)。该耐火砖具有耐高温、抗氧化、耐磨损、机械强度高、硬度高、耐腐蚀;降低导热系数、提高热效率,同时也提高材料的热震性能。
2、CN20131030808“一种低导热耐磨砖”(发明人:范圣良;曾大凡;肖佳祥;陈幼荣;蒋晓臻;张松立),该发明公开了一种水泥窑用低导热耐磨砖,包括以下组分且各组分的质量百分比为:颗粒直径d<0.1mm的高铝熟料30%~40%;颗粒直径0.1mm≤d<1mm的高铝熟料5%~15%;颗粒直径1mm≤d<3mm的高铝熟料20%~30%;颗粒直径d≥3mm的高铝熟料3%~5%;碳化硅6%~8%;氧化铝空心球4%~6%;蓝晶石4%~6%;多孔熟料7%~10%;烧结粘土粉5%~7%。制备的低导热耐磨砖的常温磨损量≤10cm3、热面温度800℃时热导率≤1.3W/(m·K),具有良好的耐磨性,抗侵蚀能力强,使用寿命长。
3、CN201210057733“一种低导热硅莫砖及其制备方法”(发明人:姚伯洪;路盘根;罗佳),该发明涉及的水泥窑用低导热硅莫砖,包括以下重量百分比的组分:45%~70%的矾土、5%~15%的刚玉细粉、10%~20%的碳化硅细粉和8%~20%的结合剂。该发明提供的硅莫砖不挂窑皮、耐磨损、抗剥落、抗酸碱能力强、热稳定性优良,与传统技术相比,导热系数小、体积密度轻、能降低筒外温度100℃左右。
4、CN201110202688“一种环保型抗剥落高铝砖及其制备方法”(发明人:杨建军),该发明涉及一种环保型抗剥落高铝砖,包括80%的特级铝矾土、10%的复合微粉结合剂及10%特殊结合剂,所述特级铝矾土、添加碳化硅颗粒及复合微粉结合剂经高压成型后低温烧制(300℃烘烤)。该砖Al2O3≥75%,具有耐高温、抗氧化、耐磨损、机械强度高、硬度高、耐侵蚀等特点;降低了导热系数、热效率相应提高,同时也提高材料的热震性能。
5、CN200910066275“高荷软、抗剥落高铝砖的生产方法”(发明人:宋金标;宋禄峰;宋彩红;宋马峰;樊建令;卢中立;付鸿正;樊召峰;郭英超;胡彦超;黄慧娟),该发明公开了一种高荷软、抗剥落高铝砖的生产方法,包括下述步骤:1、按重量份称取铝矾土料8.5份,锆英砂粉料1份,粘土粉0.5份;2、将上述物料混合均匀,加入物料总重量4%~5%的木质素溶液在湿碾机内,送入压力机,加压成型;3、将上述半成品在干燥室内干燥,然后在隧道窑内烧结,并在1450℃±10℃条件下保温10h~12h,即可得到成品砖体。该产品在新型干法水泥窑预热带的使用寿命可达两年以上,在新型干法水泥窑过渡带的使用寿命可达一年以上。该产品荷重软化温度高、抗热震稳定性好、耐磨性能好,较同类产品相比其热震稳定性(1100℃,水冷)次数可比普通高铝砖增加一倍以上。该产品Al2O3含量≥74%。
6、CN200610012974“一种抗剥落耐磨砖”(发明人:鲁有;任虎平),该发明涉及一种抗剥落耐磨砖,特别适合水泥窑过渡带使用。该抗剥落耐磨砖采用棕刚玉、烟窑矾土熟料、铬矿、复合结合剂(硅微粉和一代磷酸铝或磷酸),按一定比例配料,半成品热处理550℃~600℃。该抗剥落耐磨砖不需高温煅烧,制造方法简捷、成本低、节能、耐用、抗剥落、保温性好。在2000t/d~2700t/d窑上历经1600余吨使用证明平均寿命达一年以上,水泥厂减少了修窑次数,收益明显。该产品Al2O3含量>80%。
7、“水泥回转窑用抗剥落高铝砖的研制及使用”(作者:成斌;陈翠玉)。文章介绍山东耐火材料厂选用山西阳泉一级高铝矾土熟料为原料,为提高制品的抗剥落性及高温性能,在配料中添加了蓝晶石和堇青石,结合粘土采用本地粘土,并加入亚硫酸盐纸浆废液作结合剂制备水泥回转窑用抗剥落高铝砖。该砖的Al2O3含量74.17%。(《耐火材料》,1994年5期,304-305)
8、CN201310651732“高炉用抗渗透低铝莫来石砖及其制备方法”(发明人:蔡国庆;刘伟;李文亮;王文学;王明刚;高蕊;燕宿祥;邵红;刘永振;徐广忠),该发明涉及的高炉用抗渗透低铝莫来石砖,由以下重量份数的原料组成:粒度为5mm~3mm合成莫来石10~15份,粒度为3mm~1mm合成莫来石25~30份,粒度为≤1mm合成莫来石20~30份,粒度为0.074mm红柱石15~30份,粒度为0.074mm粘土5~10份,促烧剂3~5份,结合剂3~4份。该发明具有低气孔率、低杂质、高强度、高温性能好、抗侵蚀能力强等特点,在高炉上能够长期在高温负荷下保持结构稳定,提高了高炉的使用寿命。所述高炉用抗渗透低铝莫来石砖Al2O3含量45%以上,主要用于高炉炉底及炉缸等部位。
9、CN201210266706“高强高热震低铝莫来石砖”(发明人:郭长江;杨奇;张伟;杨玉聪;连曾伟),该发明公开了一种高强高热震低铝莫来石砖,由以下重量百分含量的原料组成:烧结莫来石15%~50%,电熔莫来石5%~15%,特级焦宝石10%~40%,硅线石10%~30%,红柱石10%~30%,活性氧化铝2%~10%,锆英石2%~15%,硅石2%~12%,结合粘土3%~10%。该低铝莫来石砖具有较高的荷重软化温度(≥1550℃)较高的热震稳定性(水冷1100℃≥50),较低的蠕变率(20h~50h≤0.15),优良的耐压强度(≥70MPa),高温下良好的体积稳定性和低杂质等优点,同时提高了抗CO侵蚀性。该发明产品完全能满足大中型高炉热风炉等高温窑炉的使用要求。该产品的Al2O3含量45.58%。
10、CN20091006585“特种复合低铝莫来石砖及其制备方法”(发明人:林彬荫;郭长江;张新玉;贺海蛟;张灿星;王岭渠),该发明公开的特种复合低铝莫来石砖含有以下原料(以重量百分含量表示):粒度为3mm~1mm的莫来石10%~30%,粒度为3mm~1mm的焦宝石20%~40%,粒度为1mm~0mm的焦宝石10%~20%,粒度为-200目的焦宝石5%~15%,硅线石或红柱石10%~30%和添加剂15%~25%。所述耐火砖经混碾、困料、挤压成型、干燥、烧成等步骤制备而成。该特种复合低铝莫来石砖具有低显气孔率、低杂质、高强度、高荷重软化温度、制品微膨胀、莫来石相高等优点,能够起到一砖多用的功能。该发明产品的应用会为钢铁用户节约大量的维修费用和节能费用,具有明显的社会效益和经济效益。该产品的Al2O3含量46.08%~46.71%。
发明内容
本发明的目的在于提供一种低导热抗剥落砖,其导热系数低、耐碱侵蚀性能好,应用于水泥窑预热分解带,使水泥窑热耗大幅度降低,使用寿命大幅度提高;本发明同时提供了一种科学合理、简单便于实现工业化的制备方法。
本发明所述的低导热抗剥落砖,以合成的低导热耐碱原料、α氧化铝微粉、红柱石和结合粘土为原料,混合制成混合粉体,然后向混合粉体中加入结合剂,压制成型,干燥,烧成,得到所述的低导热抗剥落砖;
所述的合成的低导热耐碱原料由以下重量百分含量的原料制成:
焦宝石细粉 17%~25%,
煤矸石细粉 40%~55%,
硅石细粉 20%~43%,
以上述原料的总质量为100%计量,外加助烧剂的种类及质量用量如下:
钾长石细粉 1%~2%,
碳酸钾 0.5%~1%;
所述的合成的低导热耐碱原料的制备方法如下:
将以上原料混合均匀后,用球磨机湿法混磨细度要求D90≤10μm,达到细度后放入均化池均化,均化后的泥浆经喷雾造粒制成粒度为20目~60目颗粒料,用压机压制成砖坯或球或用成球盘滚制成球,利用隧道窑或竖窑1500℃~1550℃烧成,得到所述的合成的低导热耐碱原料。
所述的低导热抗剥落砖,由以下重量百分含量的原料制成:
Figure GDA0002779708490000051
所述合成的低导热耐碱原料的粒度≤5mm;所述α氧化铝微粉的粒度≤0.088mm;所述红柱石的粒度≤3mm;所述结合粘土的粒度≤0.088mm。
所述合成的低导热耐碱原料中Al2O3的质量百分含量为25%~35%,SiO2的质量百分含量为60~70%,Na2O和K2O的质量百分含量之和为1.0%~2.5%,其余为杂质成分,体积密度为2.2-2.6g/cm3
所述α氧化铝微粉中Al2O3的质量百分含量≥98%;红柱石中Al2O3的质量百分含量为50%~58%;结合粘土中Al2O3的质量百分含量为20%~30%。
所述低导热抗剥落砖的Al2O3的质量百分含量为30%-50%,体积密度为2.10~2.40g/cm3,耐压强度为45~100MPa。
所述的低导热抗剥落砖的制备方法,是将原料混合制成混合粉体,然后向混合粉体中加入占混合粉体质量1%~5%的结合剂,用压力机压制成砖坯,经100-150℃保温24小时,干燥后在隧道窑1300℃~1400℃的温度下保温6~8小时,烧制成所述的低导热抗剥落砖。
本发明在分析水泥窑分解预热带用耐材使用工况和损毁机理的基础上,来平衡材料气孔率大小与抗酸碱侵蚀性能,为保证制品的使用性能首先考虑避免碱裂现象的出现。以此为前提,通过调节材料微观结构来降低材料导热系数提高热震稳定性,以达到节能效果。
对水泥窑预热带、分解带而言,从提高材料的耐碱性角度看,铝硅系材料中的氧化铝含量不宜过高,以低铝设计为主。从降低材料的导热系数角度,采用结晶相与非晶组分互相阻断的结构设计。由此,本发明研发合成了低导热高耐碱侵蚀的新原料,此种材料以莫来石为主晶相。莫来石的针柱状结晶结构为该原料提供框架支撑,辅助相为莫来石提供了耐侵蚀的保护,两种材料完美的糅合到了一起,实现了优势互补。
本发明以合成的低导热耐碱原料为主要原料,通过添加预合成的非晶态原材料(合成的低导热耐碱原料)及三石(α氧化铝微粉、红柱石和结合粘土),通过控制材料的粒度分布及成型压力,控制烧成温度及氧化烧成气氛,以保证非晶态材料的稳定存在及莫来石框架的良好形成,从而获得了导热系数低、热震稳定性好、耐碱侵蚀性能优良的低导热抗剥落砖。低导热抗剥落砖兼顾了低导热系数与使用寿命的关系,是回转窑节能降耗的优良产品。
本发明与现有技术相比,具有以下有益效果:
(1)在铝硅系原料中,使结晶相与非晶组分互相阻断的结构可控、可调,制备了所述的合成的低导热耐碱原料;
(2)所述的低导热抗剥落砖,具有高耐碱性,避免了材料的碱侵剥落现象;
(3)所述的低导热抗剥落砖,热膨胀系数小,体积稳定,因热应力增大而造成的材料损坏大大减少,保证了材料的使用寿命;
(4)所述的低导热抗剥落砖,导热系数低,窑体表面温度降低,减少了散热损失,降低能耗;
(5)所述的低导热抗剥落砖,体积密度低,窑体负荷减小,窑衬所受机械应力相应减小,材料采购成本下降,系统电耗降低;
(6)为水泥行业的二代技术的节能减排、协同处置提供了材料支持;
(7)所述的低导热抗剥落砖的制备方法,科学合理、简单便于实现工业化。
附图说明
图1为合成的低导热耐碱原料的XRD图;
图2为合成的低导热耐碱原料的SEM图。
具体实施方式
下面结合实施例对本发明作进一步的说明,但其并不限制本发明的实施。
实施例1
所述的合成的低导热耐碱原料由以下重量百分含量的原料制成:
焦宝石细粉17%,煤矸石细粉40%,硅石细粉43%。
以上述原料的总质量为100%计量,外加助烧剂的种类及质量用量如下:
钾长石细粉1%,碳酸钾1%。
所述的合成的低导热耐碱原料的制备方法如下:
将以上原料混合均匀后,用球磨机湿法混磨细度要求D90≤10μm,达到细度后放入均化池均化,均化后的泥浆经喷雾造粒制成粒度为20目颗粒料,用压机压制成砖坯,利用隧道窑1525±25℃烧成,得到所述的合成的低导热耐碱原料。
所述的低导热抗剥落砖,由以下重量百分含量的原料制成:
合成的低导热耐碱原料,粒度≤5mm,占总量的77%;
结合粘土,粒度≤0.088mm,占总量的15%;
α氧化铝微粉,粒度≤0.088mm,占总量的3%;
红柱石,粒度≤3mm,占总量的5%。
上述原料经称量、混合、以结合剂混炼后制成低导热抗剥落砖DDR-30的混合原料。结合剂的加入量为上述混合粉体为基准的2%。
将上述混合原料装入模具中,用压力机压制成砖坯,经110℃保温24小时干燥后在隧道窑1325±25℃的温度下保温6小时烧制成低导热抗剥落砖DDR-30。
实施例2
所述的合成的低导热耐碱原料由以下重量百分含量的原料制成:
焦宝石细粉25%,煤矸石细粉55%,硅石细粉20%。
以上述原料的总质量为100%计量,外加助烧剂的种类及质量用量如下:
钾长石细粉2%,碳酸钾0.5%。
所述的合成的低导热耐碱原料的制备方法如下:
将以上原料混合均匀后,用球磨机湿法混磨细度要求D90≤10μm,达到细度后放入均化池均化,均化后的泥浆经喷雾造粒制成粒度为60目颗粒料,用压机压制成球,利用隧道窑1525±25℃烧成,得到所述的合成的低导热耐碱原料。
所述的低导热抗剥落砖,由以下重量百分含量的原料制成:
合成的低导热耐碱原料,粒度≤5mm,占总量的68%;
结合粘土,粒度≤0.088mm,占总量的10%;
α氧化铝微粉,粒度≤0.088mm,占总量的12%;
红柱石,粒度≤3mm,占总量的10%。
上述原料经称量、混合、以结合剂混炼后制成低导热抗剥落砖DDR-45的混合原料。结合剂的加入量为上述混合粉体为基准的1%。
将上述混合原料装入模具中,用压力机压制成砖坯,经110℃保温24小时干燥后在隧道窑1355±25℃的温度下保温8小时烧制成低导热抗剥落砖DDR-45。
实施例3
所述的合成的低导热耐碱原料由以下重量百分含量的原料制成:
焦宝石细粉20%,煤矸石细粉45%,硅石细粉35%。
以上述原料的总质量为100%计量,外加助烧剂的种类及质量用量如下:
钾长石细粉1.5%,碳酸钾0.8%。
所述的合成的低导热耐碱原料的制备方法如下:
将以上原料混合均匀后,用球磨机湿法混磨细度要求D90≤10μm,达到细度后放入均化池均化,均化后的泥浆经喷雾造粒制成粒度为40目颗粒料,用成球盘滚制成球,利用竖窑1525±25℃烧成,得到所述的合成的低导热耐碱原料。
所述的低导热抗剥落砖,由以下重量百分含量的原料制成:
合成的低导热耐碱原料,粒度≤5mm,占总量的50%;
结合粘土,粒度≤0.088mm,占总量的5%;
α氧化铝微粉,粒度≤0.088mm,占总量的20%;
红柱石,粒度≤3mm,占总量的25%。
上述原料经称量、混合、以结合剂混炼后制成低导热抗剥落砖DDR-50的混合原料。结合剂的加入量为上述混合粉体为基准的5%。
将上述混合原料装入模具中,用压力机压制成砖坯,经110℃保温24小时干燥后在隧道窑1375±25℃的温度下保温7小时烧制成低导热抗剥落砖DDR-50。
对比例1
所述的普通砖,由以下重量百分含量的原料制成:
M47莫来石原料,粒度≤5mm,占总量的50%;
结合粘土,粒度≤0.088mm,占总量的5%;
α氧化铝微粉,粒度≤0.088mm,占总量的20%;
红柱石,粒度≤3mm,占总量的25%。
上述原料经称量、混合、以结合剂混炼后得到制成普通砖的混合原料。结合剂的加入量为上述混合粉体为基准的5%。
将上述混合原料装入模具中,用压力机压制成砖坯,经110℃保温24小时干燥后在隧道窑1375±25℃的温度下保温7小时烧成得到普通砖。
对上述3个实施例制得的低导热抗剥落砖,以及对比例1制得的普通砖进行了性能测试,具体如下:
表2本发明制备的低导热抗剥落砖及普通砖的理化结果
Figure GDA0002779708490000091
通过表2可以得知,对比例1在同等工艺条件下制备的产品的性能,不如本发明制备的产品的性能优异。

Claims (9)

1.一种低导热抗剥落砖,其特征在于:以合成的低导热耐碱原料、α氧化铝微粉、红柱石和结合粘土为原料,混合制成混合粉体,然后向混合粉体中加入结合剂,压制成型,干燥,烧成,得到所述的低导热抗剥落砖;
所述的合成的低导热耐碱原料由以下重量百分含量的原料制成:
焦宝石细粉 17%~25%,
煤矸石细粉 40%~55%,
硅石细粉 20%~43%,
以上述原料的总质量为100%计量,外加助烧剂的种类及质量用量如下:
钾长石细粉 1%~2%,
碳酸钾 0.5%~1%;
所述的低导热抗剥落砖,由以下重量百分含量的原料制成:
Figure FDA0002779708480000011
2.根据权利要求1所述的低导热抗剥落砖,其特征在于:合成的低导热耐碱原料的粒度≤5mm。
3.根据权利要求1所述的低导热抗剥落砖,其特征在于:α氧化铝微粉的粒度≤0.088mm。
4.根据权利要求1所述的低导热抗剥落砖,其特征在于:红柱石的粒度≤3mm。
5.根据权利要求1所述的低导热抗剥落砖,其特征在于:结合粘土的粒度≤0.088mm。
6.根据权利要求1所述的低导热抗剥落砖,其特征在于:合成的低导热耐碱原料中Al2O3的质量百分含量为25%~35%,SiO2的质量百分含量为60~70%,Na2O和K2O的质量百分含量之和为1.0%~2.5%,其余为杂质成分,体积密度为2.2-2.6g/cm3
7.根据权利要求1所述的低导热抗剥落砖,其特征在于:α氧化铝微粉中Al2O3的质量百分含量≥98%;红柱石中Al2O3的质量百分含量为50%~58%;结合粘土中Al2O3的质量百分含量为20%~30%。
8.根据权利要求1所述的低导热抗剥落砖,其特征在于:低导热抗剥落砖的Al2O3的质量百分含量为30%-50%,体积密度为2.10~2.40g/cm3,耐压强度为45~100MPa。
9.一种权利要求1-8任一所述的低导热抗剥落砖的制备方法,其特征在于:将原料混合制成混合粉体,然后向混合粉体中加入占混合粉体质量1%~5%的结合剂,用压力机压制成砖坯,经100-150℃保温24小时,干燥后在隧道窑1300℃~1400℃的温度下保温6~8小时,烧制成所述的低导热抗剥落砖。
CN201710981890.2A 2018-01-16 2018-01-16 低导热抗剥落砖及其制备方法 Active CN108083765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710981890.2A CN108083765B (zh) 2018-01-16 2018-01-16 低导热抗剥落砖及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710981890.2A CN108083765B (zh) 2018-01-16 2018-01-16 低导热抗剥落砖及其制备方法

Publications (2)

Publication Number Publication Date
CN108083765A CN108083765A (zh) 2018-05-29
CN108083765B true CN108083765B (zh) 2021-01-01

Family

ID=62171913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710981890.2A Active CN108083765B (zh) 2018-01-16 2018-01-16 低导热抗剥落砖及其制备方法

Country Status (1)

Country Link
CN (1) CN108083765B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851332A (zh) * 2019-01-22 2019-06-07 浙江圣奥耐火材料有限公司 一种三次风管低导热高耐磨砖及其加工工艺
CN112028643B (zh) * 2020-06-24 2022-07-08 北京金隅通达耐火技术有限公司 一种水泥窑用单晶相莫来石砖及其制备方法
CN111777409A (zh) * 2020-07-10 2020-10-16 首钢集团有限公司 一种高抗渣侵蚀铁水包用砖及制备方法
CN112408964A (zh) * 2020-12-16 2021-02-26 中钢南京环境工程技术研究院有限公司 一种铝电解槽用防渗砖
CN117209259B (zh) * 2023-08-10 2024-03-08 山东理工大学 铝硅质复合预制件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628818A (zh) * 2008-07-18 2010-01-20 山东鲁阳股份有限公司 莫来石纤维砖及其制法
CN102757248A (zh) * 2012-07-30 2012-10-31 鲁山县宏业耐材有限公司 高强高热震低铝莫来石砖
RU2555973C1 (ru) * 2014-03-28 2015-07-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный экономический университет" Керамическая композиция для изготовления кирпича
CN106146001A (zh) * 2016-08-06 2016-11-23 太原科技大学 一种轻质高强莫来石‑石英多孔砖及其制备工艺
CN106220224A (zh) * 2016-07-08 2016-12-14 南京维能窑炉科技有限公司 一种具有双重孔结构的耐高温轻质绝热材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628818A (zh) * 2008-07-18 2010-01-20 山东鲁阳股份有限公司 莫来石纤维砖及其制法
CN102757248A (zh) * 2012-07-30 2012-10-31 鲁山县宏业耐材有限公司 高强高热震低铝莫来石砖
RU2555973C1 (ru) * 2014-03-28 2015-07-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный экономический университет" Керамическая композиция для изготовления кирпича
CN106220224A (zh) * 2016-07-08 2016-12-14 南京维能窑炉科技有限公司 一种具有双重孔结构的耐高温轻质绝热材料及其制备方法
CN106146001A (zh) * 2016-08-06 2016-11-23 太原科技大学 一种轻质高强莫来石‑石英多孔砖及其制备工艺

Also Published As

Publication number Publication date
CN108083765A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN108083765B (zh) 低导热抗剥落砖及其制备方法
CN106938922B (zh) 硅刚玉耐磨砖
CN101555151B (zh) 一种球式热风炉用刚玉质耐火球及其制备方法
CN107973610A (zh) 一种以废弃碳化硅匣钵为主要原料的碳化硅捣打料
CN106938923B (zh) 硅刚玉耐磨复合砖
CN103880447B (zh) Corex炉用刚玉莫来石复合砖及其制备方法
CN101734936A (zh) 一种Si3N4-SiC-C耐火原料粉体的制备方法
CN102249655B (zh) 热风炉管道用韧性莫来石砖及其制造方法
CN102850065A (zh) 一种水泥窑高温带用镁铁铝复合尖晶石砖及其制造方法
CN108975923B (zh) 一种抗热震及高温体积稳定的陶瓷辊棒及其制备方法
CN109574639A (zh) 高热震稳定性刚玉莫来石砖及其制备方法
CN104725058A (zh) 方镁石-镁铁铁铝尖晶石/镁橄榄石复合砖
CN104355638B (zh) 一种耐火材料、其制备方法及耐火砖
CN104291847A (zh) 一种高强度硅莫砖及其制备方法
CN108395218A (zh) 一种利用改性镁砂制备的低碳镁碳砖及其制备方法
CN110563449A (zh) 一种rh炉用环境友好型镁碳质喷补料及其制备方法
CN110937905B (zh) 一种高抗热震性复合窑口浇注料
CN113087504A (zh) 一种高导热致密硅砖及其制备方法
CN1050591C (zh) 烧成微孔铝炭砖及其制作方法
CN107032811B (zh) 一种焦炉用低铁低铝莫来石砖及制备方法
CN112479693A (zh) 一种高强抗热震耐磨硅莫砖及其生产工艺
CN106830955B (zh) 一种微波干燥制备不烧改性高纯镁铝尖晶石复合砖的方法
CN109851333B (zh) 高炉主铁沟用纳米溶胶结合耐磨板及其制备方法与应用
CN102584288B (zh) 一种硅刚玉砖
CN107935574B (zh) 水泥窑筒体成套低导热内衬

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant