CN114853482B - 一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法 - Google Patents

一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法 Download PDF

Info

Publication number
CN114853482B
CN114853482B CN202210509763.3A CN202210509763A CN114853482B CN 114853482 B CN114853482 B CN 114853482B CN 202210509763 A CN202210509763 A CN 202210509763A CN 114853482 B CN114853482 B CN 114853482B
Authority
CN
China
Prior art keywords
silicon nitride
nanowire
toughness
layered ceramic
nitride nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210509763.3A
Other languages
English (en)
Other versions
CN114853482A (zh
Inventor
王红洁
李明主
肖灵彬
苏磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210509763.3A priority Critical patent/CN114853482B/zh
Publication of CN114853482A publication Critical patent/CN114853482A/zh
Application granted granted Critical
Publication of CN114853482B publication Critical patent/CN114853482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化硅纳米线增韧氮化硅层状陶瓷及其制备方法,以氮化硅纳米线纸作为软相,以氮化硅陶瓷作为硬相,添加适量的金属氧化物烧结助剂,以层层组装的方式堆叠成模,采用热压烧结方法,制备出Si3N4纳米线增韧氮化硅层状陶瓷。该方法操作工艺简单,对设备要求低,适合工业规模化生产。经本发明方法制得的高韧性氮化硅纳米线/氮化硅层状陶,抗弯强度最高超过300Mpa,断裂韧性可以达到14MPa·m1/2,大大提高了其可靠性。

Description

一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法
技术领域
本发明属于氮化硅陶瓷制备技术领域,具体涉及一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法。
背景技术
氮化硅作为一种先进的结构陶瓷,具有高硬度、高抗弯强度和抗蠕变性能好的特点。然而,传统氮化硅陶瓷由于固有的Si-N强共价键结合,在高强度的同时,也导致其断裂韧性差,纯氮化硅陶瓷的断裂韧性一般在3~5MPa·m1/2,这大大限制了其应用。近年来,受自然界中生物仿生结构的启发,发现层状结构的设计可以提高陶瓷的韧性。如贝壳珍珠层是由95%的文石片(CaCO3)和5%的有机质(蛋白质和多糖)组成,尽管珍珠母层中的有机质仅占5%,但它在空间和化学层面上控制了晶体的成核和生长,形成了一种在微观上软(有机)/硬(无机)相交替分布的层状结构,使其断裂韧性可以达到10MPa·m1/2以上。虽然软相的存在会影响材料整体的耐高温性能,但是具有软/硬相相互交替叠合的“砖-泥”结构的仿贝壳珍珠母层材料,为高韧性的氮化硅材料的结构设计提供了新的思路。基于这一思路,要制备高韧性氮化硅陶瓷最重要的是要寻找合适的“软相”。
氮化硅陶瓷作为基体层(硬相)的前提下、研究者使用第二相材料等作为界面层(软相),制备出一系列氮化硅层状材料。以陶瓷粉体为代表的强界面层把具有不同热膨胀系数和收缩率不匹配的两种高强度的材料相互叠加,利用层与层产生残余应力,界面残余应力可以来起到增韧的作用,但却失去了“砖-泥”结构中阶梯状断裂的优点。为此,若想较大程度的提高氮化硅层状陶瓷的断裂韧性,应该引入适当的界面层。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法,能够在不降低氮化硅陶瓷材料耐高温性能的前提下实现其韧性的有效提升。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,包括以下步骤:
1)将氮化硅粉末和金属氧化物烧结助剂充分混合后,经干燥、过筛处理,得到粉末原料;
2)将粉末原料和无水乙醇充分混合,制备得到氮化硅浆料;
3)在片状的氮化硅纳米线纸表面涂抹氮化硅浆料,然后将涂抹后的若干片氮化硅纳米线纸在模具中逐层堆叠,并进行烘干处理;
4)将经步骤3)处理的样品进行热压或部分热压烧结,冷却,取出模具脱模后获得高韧性氮化硅纳米线/氮化硅层状陶瓷。
优选地,步骤1)中,所述氮化硅粉末的粒径为20nm~5μm。
优选地,步骤1)中充分混合是以无水乙醇为介质,球磨24h;干燥是先在室温下晾干4~8h,然后在50~80℃烘箱中烘干处理10~24h;过筛是依次采用50目、100目和200目的筛网对干燥后的粉末进行过筛。
优选地,步骤2)中,通过调节粉末原料和无水乙醇的用量比为(10~150)g:30mL,能够控制氮化硅层状陶瓷中基体相氮化硅的厚度。
优选地,步骤3)中,在片状的氮化硅纳米线纸表面涂抹氮化硅浆料的方式有两种,一种是将片状的氮化硅纳米线纸浸渍于氮化硅料浆中,另一种是在片状的氮化硅纳米线纸表面涂覆氮化硅浆料;
将片状的氮化硅纳米线纸在模具中逐层堆叠之前,在模具底部均匀平铺氮化硅粉末,堆叠完成后在最顶部的氮化硅纳米线纸表面平铺氮化硅粉末,该操作可以有效提高产物的强度。
优选地,步骤3)中,烘干处理是在真空干燥箱中于50~80℃下恒温处理10~24h。
优选地,步骤4)中,在热压或部分热压烧结温度为1550~1750℃,保温时间为30~120min。
进一步优选地,热压或部分热压方式下的烧结制度为:
自室温起,以10℃/min的升温速率升温至1000℃,加压后继续以5℃/min的升温速率升至1550~1750℃。
本发明还公开了采用上述的制备方法制得的高韧性氮化硅纳米线/氮化硅层状陶瓷,该高韧性氮化硅纳米线/氮化硅层状陶瓷为块体层状材料,层数为40~150层。
优选地,该高韧性氮化硅纳米线/氮化硅层状陶瓷的抗弯强度达到300Mpa以上,断裂韧性达到14MPa·m1/2以上。
与现有技术相比,本发明具有以下有益效果:
本发明公开的高韧性氮化硅纳米线/氮化硅层状陶的制备方法,以氮化硅纳米线纸(发明专利号ZL201810172223.4公开的方法制备得到)作为软相,以氮化硅陶瓷作为硬相,添加适量的金属氧化物烧结助剂,以层层组装的方式堆叠成模,采用热压或部分热压烧结的方法,制备出高韧性氮化硅纳米线/氮化硅层状陶瓷。该方法操作工艺简单,对设备要求低,适合工业规模化生产。
经本发明方法制得的氮化硅层状陶瓷,抗弯强度最高超过300Mpa,断裂韧性可以达到14MPa·m1/2,大大提高了其可靠性。
附图说明
图1为氮化硅层状陶瓷断口的微观形貌;
图2为氮化硅层状陶瓷XRD图;
图3为实施例3制得的Si3N4层状材料的三点弯曲应力-应变曲线;
图4为实施例3的样品的断裂韧性测试试样测试过程中的应力-应变曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
本发明的实施例使用的“氮化硅纳米线纸”是以专利授权号为ZL201810172223.4的专利申请中公开的氮化硅纳米线纸,即可压缩回复的氮化硅气凝胶。
实施例1
本实施例制备了厚度为7mm,直径为30mm,层数为40的块体层状材料,具体步骤如下:
步骤1:称量90g氮化硅粉,6g氧化铝粉,4g氧化钇粉放入500mL的球磨罐中,将球磨罐加满酒精球磨24h。球磨后把浆料倒入盘中,在室温下晾晒6h,然后在70℃的烘箱里烘干12h,得到干燥的粉末原料按顺序用50目、100目和200目的筛子过筛收集,得到粉末原料;
步骤2:取10g配好的粉末原料和30mL酒精混在一起磁力搅拌2h,再超声处理30min备用;
步骤3:将组内自制的氮化硅纳米线纸,以金属模具裁剪成φ30mm的圆片;
步骤4:将裁剪好的氮化硅纳米线纸圆片,在氮化硅@酒精料浆中浸渍后取出;
步骤5:把小圆片一片片叠入部分热压模具,叠之前在模具底部均匀的铺上2g配好的氮化硅粉,叠完之后同样在顶部铺2g氮化硅粉,并在真空烘箱中烘干;
步骤6:把模具在热压炉中装好,同时抽真空,以10℃/min的升温速率升至1000℃,此时再给上0.5T的压力。然后继续以5℃/min的升温速率升至1550℃,保温2h。随炉冷却,便得到了所需的氮化硅层状材料。
实施例2
本实施例制备了厚度为7mm,直径为30mm,层数为80的块体层状材料,具体步骤如下:
步骤1:称量90g氮化硅粉,6g氧化铝粉,4g氧化钇粉放入500ml的球磨罐中,将球磨罐加满酒精球磨24h。球磨后把浆料倒入盘中,在室温下晾晒6h,然后在70℃的烘箱里烘干12h,得到干燥的粉末原料。按顺序用50目、100目和200目的筛子过筛收集;
步骤2:取10g配好的粉和30ml酒精混在一起磁力搅拌2h,再超声处理30min备用;
步骤3:将组内自制的氮化硅纳米线纸,以金属模具裁剪成φ30mm的圆片;
步骤4:将裁剪好的氮化硅纳米线纸圆片,在氮化硅@酒精料浆中浸渍后取出;
步骤5:把小圆片一片片叠入部分热压模具,叠之前在模具底部均匀的铺上2g配好的氮化硅粉,叠完之后同样在顶部铺2g氮化硅粉,并在真空烘箱中烘干;
步骤6:把模具在热压炉中装好,同时抽真空,以10℃/min的升温速率升至1000℃,此时再给上0.5T的压力。然后继续以5℃/min的升温速率升至1650℃,保温2h。随炉冷却,便得到了所需的氮化硅层状材料。
实施例3
本实施例制备了厚度为7mm,直径为30mm,层数为120的块体层状材料,具体步骤如下:
步骤1:称量90g氮化硅粉,6g氧化铝粉,4g氧化钇粉放入500ml的球磨罐中,将球磨罐加满酒精球磨24h。球磨后把浆料倒入盘中,在室温下晾晒6h,然后在70℃的烘箱里烘干12h,得到干燥的粉末原料。按顺序用50目、100目和200目的筛子过筛收集;
步骤2:取10g配好的粉和30ml酒精混在一起磁力搅拌2h,再超声处理30min备用;
步骤3:将组内自制的氮化硅纳米线纸,以金属模具裁剪成φ30mm的圆片;
步骤4:将裁剪好的氮化硅纳米线纸圆片,在氮化硅@酒精料浆中浸渍后取出;
步骤5:把小圆片一片片叠入部分热压模具,叠之前在模具底部均匀的铺上2g配好的氮化硅粉,叠完之后同样在顶部铺2g氮化硅粉,并在真空烘箱中烘干;
步骤6:把模具在热压炉中装好,同时抽真空,以10℃/min的升温速率升至1000℃,此时再给上0.5T的压力。然后继续以5℃/min的升温速率升至1600℃,保温2h。随炉冷却,便得到了所需的氮化硅层状材料。
实施例4
本实施例制备了厚度为7mm,直径为30mm,层数为150的块体层状材料,具体步骤如下:
步骤1:称量90g氮化硅粉,6g氧化铝粉,4g氧化钇粉放入500ml的球磨罐中,将球磨罐加满酒精球磨24h。球磨后把浆料倒入盘中,在室温下晾晒6h,然后在70℃的烘箱里烘干12h,得到干燥的粉末原料。按顺序用50目、100目和200目的筛子过筛收集;
步骤2:取10g配好的粉和30ml酒精混在一起磁力搅拌2h,再超声处理30min备用;
步骤3:将组内自制的氮化硅纳米线纸,以金属模具裁剪成φ30mm的圆片;
步骤4:将裁剪好的氮化硅纳米线纸圆片,在氮化硅@酒精料浆中浸渍后取出;
步骤5:把小圆片一片片叠入部分热压模具,叠之前在模具底部均匀的铺上2g配好的氮化硅粉,叠完之后同样在顶部铺2g氮化硅粉,并在真空烘箱中烘干;
步骤6:把模具在热压炉中装好,同时抽真空,以10℃/min的升温速率升至1000℃,此时再给上0.5T的压力。然后继续以5℃/min的升温速率升至1750℃,保温2h。随炉冷却,便得到了所需的氮化硅层状材料。
参见图1,为实施例1制得的氮化硅纳米线增韧氮化硅层状陶瓷材料的经弯曲变形后的微观扫描照片SEM图。从图1中可以看出,氮化硅层状材料在三点弯断裂过程中出现了明显的裂纹偏转,还出现了明显的裂纹分岔,形成这样的裂纹需要的表面能更高,这些都有利于在断裂过程中消耗更多的能量提高韧性。
参见图2,为实施例1、2、3和4制得的层状材料的XRD谱图。从XRD图可以看出,利用本发明方法制备的层状材料都是由α相和β相的Si3N4共同组成。
参见图3,为实施例3制得的Si3N4层状材料的三点弯曲应力-应变曲线,从图中可以看出,利用本发明公开的方法所制备的层数为150层的Si3N4层状材料的弯曲强度可达306MPa,断裂应变可达0.014(1.4%)以上。
参见图4,为实施例3的样品的断裂韧性测试试样测试过程中的应力-应变曲线,经计算,可得样品的断裂韧性可达14MPa·m1/2.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (9)

1.一种高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,以氮化硅纳米线纸作为软相,以氮化硅陶瓷作为硬相,以层层组装的方式堆叠成模,采用热压或部分热压烧结的方法,制备出高韧性氮化硅纳米线/氮化硅层状陶瓷;所述氮化硅纳米线纸为可压缩回复的氮化硅气凝胶;
制备具体包括以下步骤:
1)将氮化硅粉末和金属氧化物烧结助剂充分混合后,经干燥、过筛处理,得到粉末原料;
2)将粉末原料和无水乙醇充分混合,制备得到氮化硅浆料;
3)在片状的氮化硅纳米线纸表面涂抹氮化硅浆料,然后将涂抹后的若干片氮化硅纳米线纸在模具中逐层堆叠,并进行烘干处理;
4)将经步骤3)处理的样品进行热压或部分热压烧结,冷却,取出模具脱模后获得高韧性氮化硅纳米线/氮化硅层状陶瓷;
其中,热压或部分热压烧结温度为1550~1750℃,保温时间为30~120 min;制得的高韧性氮化硅纳米线/氮化硅层状陶为块体层状材料,层数为40~150层。
2.根据权利要求1所述的高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,步骤1)中,所述氮化硅粉末的粒径为20nm~5μm。
3.根据权利要求1所述的高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,步骤1)中充分混合是以无水乙醇为介质,球磨24h;干燥是先在室温下晾干4~8h,然后在50~80℃烘箱中烘干处理10~24h;过筛是依次采用50目、100目和200目的筛网对干燥后的粉末进行过筛。
4.根据权利要求1所述的高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,步骤2)中,调节粉末原料和无水乙醇的用量比为(10~150)g:30mL。
5.根据权利要求1所述的高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,步骤3)中,在片状的氮化硅纳米线纸表面涂抹氮化硅浆料的方式有两种,一种是将片状的氮化硅纳米线纸浸渍于氮化硅料浆中,另一种是在片状的氮化硅纳米线纸表面涂覆氮化硅浆料;
将片状的氮化硅纳米线纸在模具中逐层堆叠之前,在模具底部均匀平铺氮化硅粉末,堆叠完成后在最顶部的氮化硅纳米线纸表面平铺氮化硅粉末。
6.根据权利要求1所述的高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,步骤3)中,烘干处理是在真空干燥箱中于50~80℃下恒温处理10~24h。
7.根据权利要求1所述的高韧性氮化硅纳米线/氮化硅层状陶瓷的制备方法,其特征在于,热压或部分热压方式下的烧结制度为:
自室温起,以10℃/min的升温速率升温至1000℃,加压后继续以5℃/min的升温速率升至1550~1750℃。
8.采用权利要求1~7中任意一项所述的制备方法制得的高韧性氮化硅纳米线/氮化硅层状陶瓷,其特征在于,该高韧性氮化硅纳米线/氮化硅层状陶为块体层状材料,层数为40~150层。
9.根据权利要求8所述的高韧性氮化硅纳米线/氮化硅层状陶瓷,其特征在于,该高韧性氮化硅纳米线/氮化硅层状陶的抗弯强度达到300Mpa以上,断裂韧性达到14 MPa·m1/2以上。
CN202210509763.3A 2022-05-11 2022-05-11 一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法 Active CN114853482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210509763.3A CN114853482B (zh) 2022-05-11 2022-05-11 一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210509763.3A CN114853482B (zh) 2022-05-11 2022-05-11 一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114853482A CN114853482A (zh) 2022-08-05
CN114853482B true CN114853482B (zh) 2023-06-06

Family

ID=82637133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210509763.3A Active CN114853482B (zh) 2022-05-11 2022-05-11 一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114853482B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108794033A (zh) * 2018-06-28 2018-11-13 中国科学院兰州化学物理研究所 一种自增韧纤维独石结构陶瓷及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694242B2 (ja) * 1995-12-22 1997-12-24 工業技術院長 高信頼性窒化ケイ素セラミックスとその製造方法
US5855997A (en) * 1996-02-14 1999-01-05 The Penn State Research Foundation Laminated ceramic cutting tool
KR0182413B1 (ko) * 1997-01-08 1999-04-15 서상기 일방향으로 배열된 질화규소 휘스커를 함유하는 박층으로 이루어진 자기강화형 질화규소 세라믹스 복합체
CN1112337C (zh) * 1999-05-28 2003-06-25 清华大学 一种超高韧性氮化硅基复合材料的制备方法
CN1280237C (zh) * 2004-12-01 2006-10-18 山东中材先进材料股份有限公司 天线罩涂层材料及其制备方法
CN105198472A (zh) * 2015-09-25 2015-12-30 西北工业大学 一种氮化硅晶须增强氮化硅层状陶瓷的制备方法
CN113999015A (zh) * 2021-11-10 2022-02-01 西安交通大学 一种轻质高强的弹性陶瓷及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108794033A (zh) * 2018-06-28 2018-11-13 中国科学院兰州化学物理研究所 一种自增韧纤维独石结构陶瓷及其制备方法

Also Published As

Publication number Publication date
CN114853482A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN111777427B (zh) 一种仿珍珠母层状高强超韧陶瓷的制备方法
CN101648809B (zh) 氮化硼基复合陶瓷透波材料及其制备方法
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN110818426A (zh) 一种碳材料表面HfB2-TaSi2-SiC抗氧化涂层的制备方法
CN110304924B (zh) 一种层状结构碳化硅复合材料及其制备方法
CN110698205A (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN110655405B (zh) 一种陶瓷基复合材料结构的制备方法
CN106904977A (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN104057667A (zh) 一种TiAl/Ti3SiC2复合板材及其制备方法
CN110395988A (zh) 一种高强度氮化硼陶瓷及其制备方法
CN109761622A (zh) 一种基于外场辅助技术的氮化硅基梯度复合材料及其制备方法
CN114853482B (zh) 一种高韧性氮化硅纳米线/氮化硅层状陶瓷及其制备方法
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN113173788A (zh) 一种红外透明陶瓷的快速烧结制备方法
CN108117381A (zh) 一种惰性复合承烧板及其制备方法
CN115784775B (zh) 一种氧化锆和氧化铝梯度复合涂层及其制备方法
CN108329018B (zh) 一种增韧氧化铝复合陶瓷及其制备方法
CN108658589A (zh) 亚微晶氧化铝陶瓷刀具基体材料的制备方法
CN107955890A (zh) 电子封装用石墨-钼铜复合材料及其制备方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
CN109053205A (zh) 一种可控正交排布Si-CF增强HA复合材料及其制备方法和用途
CN112030028B (zh) 氧化铝基金属复合陶瓷及制备方法、氧化铝基金属复合陶瓷骨植入假体及应用
CN117902832A (zh) 一种基于3dp成型的微晶玻璃氧化物陶瓷制品及其制备方法
CN116375446B (zh) 一种仿生高强韧三维石墨烯基硅酸盐复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant