CN114835171B - 一种多孔纳米四氧化三钴的制备方法及其应用 - Google Patents

一种多孔纳米四氧化三钴的制备方法及其应用 Download PDF

Info

Publication number
CN114835171B
CN114835171B CN202210468115.8A CN202210468115A CN114835171B CN 114835171 B CN114835171 B CN 114835171B CN 202210468115 A CN202210468115 A CN 202210468115A CN 114835171 B CN114835171 B CN 114835171B
Authority
CN
China
Prior art keywords
solution
porous nano
cobaltosic oxide
cobalt
ppcps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210468115.8A
Other languages
English (en)
Other versions
CN114835171A (zh
Inventor
曾寒轩
朱浩
邓靖
马晓雁
朱世俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202210468115.8A priority Critical patent/CN114835171B/zh
Publication of CN114835171A publication Critical patent/CN114835171A/zh
Application granted granted Critical
Publication of CN114835171B publication Critical patent/CN114835171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于水处理领域,具体涉及一种多孔纳米四氧化三钴的制备方法及其应用。本发明通过分别配制溶液A(钴盐和钼酸铵的混合溶液)和溶液B(碱性溶液),再将溶液B滴加入溶液A中进行共沉淀反应,随后对共沉淀固体进行煅烧和酸洗,得到孔隙均匀的多孔纳米四氧化三钴。同时,将本发明得到的多孔纳米四氧化三钴应用于活化PMS降解水中PPCPs,多孔结构更适合过硫酸氢钾分子在催化剂内部穿梭;且纳米单元有利于暴露更多的四氧化三钴表面活性位点;并通过非自由基机制形成的表面高价态钴能够协同硫酸根自由基高效降解PPCPs。从而使得水中PPCPs实现高效的降解效果。

Description

一种多孔纳米四氧化三钴的制备方法及其应用
技术领域
本发明属于水处理领域,具体涉及一种多孔纳米四氧化三钴的制备方法及其应用。
背景技术
药品及个人护理品(Pharmaceutical and Personal Care Products,PPCPs)是一类具有高度结构稳定性、难生物降解性和潜在致癌性的化学物质。随着科技的进步与工业化进程的加速,大量新型PPCPs被合成并用于改善人类的生活质量,与此同时,针对PPCPs妥善处置技术的落后也造成了大量PPCPs随人类生活、生产活动进入自然水体中。相关调查研究表明,PPCPs广泛存在于生活污水、河流、湖泊和地下水中。虽然这类有机物在庞大的水环境中赋存浓度极低(ng/L~μg/L),其对生物体的急性毒性风险较小,但PPCPs容易被生物富集,进而通过生态系统在人体内累积,长期摄入PPCPs将会对人体各种器官造成不可逆损伤,甚至引发恶性肿瘤。
高级氧化法(Advanced Oxidation Processes,AOPs)是一种针对PPCPs高效降解的新型技术。通过光、热、超声、辐射、过渡金属离子等方式活化包括过氧化物和过硫酸盐在内氧化剂产生强氧化性自由基是高级氧化法的核心所在。相较于活化过氧化物产生的羟基自由基,过硫酸盐裂解产生硫酸根自由基有着更高的氧化还原电位、更长的半衰期和更强的环境适应性。因此基于硫酸根自由基的高级氧化法(Sulfate Radical Based AdvancedOxidation Processes,SR-AOPs)在近年来尤受研究者的青睐。然而传统活化过硫酸盐的方式通常伴随着能耗大、效率低和二次污染明显等缺陷,非均相催化氧化技术的诞生为这一难题提供了新思路,设计合成一系列基于过渡金属的催化剂用于活化过硫酸盐降解水中有机污染物可以有效克服均相催化体系的种种缺陷。
研究表明,Co(II)是过硫酸氢盐的最佳活化剂,因此钴的氧化物与氢氧化物是目前非均相SR-AOPs中研究最为广泛的催化剂,同时作为最基础的钴氧化物之一的四氧化三钴也是研究者们关注的热点。四氧化三钴结构中同时存在Co(III)和Co(II),因此,虽然四氧化三钴的催化稳定性优于氧化亚钴,但其催化活性却远低于氧化亚钴。通过实验研究,学者们提出了大量强化四氧化三钴催化活性的材料改性技术。虽然这些技术可以有效提高四氧化三钴的催化活性,但其中大多数依然采用了杂原子掺杂的方式,通过加速Co(III)/Co(II)的氧化还原循环提升四氧化三钴的催化活性。这种改性方式引入了更多的杂质,给待处理水体带来了更大的二次污染风险。
发明内容
本发明的目的在于解决现有技术问题,提供一种多孔纳米四氧化三钴的制备方法,该方法不引入其他杂原子,多孔结构更适合过硫酸盐如硫酸氢钾分子在催化剂四氧化三钴内部穿梭,纳米单元有利于暴露更多的四氧化三钴表面活性位点。本发明合成的多孔纳米四氧化三钴拥有比商用四氧化三钴更高的催化活性和更低的金属离子泄露量。
为了解决上述技术问题,本发明的技术方案如下:
一种多孔纳米四氧化三钴的制备方法,包括如下步骤:
S1、配置溶液:分别配制溶液A和溶液B,其中,溶液A为钴盐和钼酸铵的混合溶液,溶液B为碱性溶液;并对溶液A和溶液B分别进行除氧;
S2、共沉淀反应:在惰性气氛下,搅拌条件下将溶液B滴加至溶液A中,室温下搅拌一定时间,反应结束后进行后处理得到固体C;
S3:煅烧:固体C在含氧气氛中以一定的升温速率升温至一定温度后煅烧一定时间,得到固体D;
S4:酸洗:将固体D进行酸洗,后处理后得到多孔纳米四氧化三钴。
通过采用上述技术方案,在步骤S1中将溶液A和溶液B分别进行配制,能够分别得到稳定澄清的溶液A和溶液B,避免溶液A中的钴离子和碱性溶液B共同存在下导致快速的共沉淀的现象,进而避免得到的四氧化三钴的孔隙不均匀或甚至无孔的现象;随后在步骤S2中,将溶液B逐滴滴加至溶液A中,能够使得溶液A中的钼酸铵随着碱性溶液的加入逐渐水解(例如碱性溶液为氢氧化钠是水解为钼酸钠),随后共沉淀钴离子形成均匀混合的钼酸钴和无定型氢氧化钴杂合物,随后经过步骤S3煅烧进一步形成均匀杂合的钼酸钴和四氧化三钴杂合物,经过S4酸洗刻蚀去除钼酸钴最终形成孔隙均匀且为纳米级孔径的多孔纳米四氧化三钴;同时,步骤S1中的对溶液A和溶液B进行除氧步骤能够避免在共沉淀过程中形成晶态氢氧化钴,而导致钼酸钴无法均匀杂合在氢氧化钴的现象,从而导致四氧化三钴孔隙不均匀甚至无孔的现象。
优选的,所述钴盐为水溶性钴盐,更优选钴盐为水溶性二价钴盐,更优选钴盐为氯化钴、六水氯化钴、六水硝酸钴、硫酸钴、七水硫酸钴的至少一种,更优选为六水氯化钴。
优选的,钼酸铵为四水钼酸铵。
优选的,所述碱性溶液为可溶性的强碱溶液,更优选为氢氧化钠溶液、氢氧化钾溶液、氨水的至少一种。更优选为氢氧化钠溶液。通过采用所述技术方案,将碱性溶液B滴加至溶液A中,能够使得溶液A中的钼酸铵随着碱性溶液的加入逐渐水解为钼酸钠,而钼酸钠和氢氧化钠共沉淀钴离子形成均匀混合的钼酸钴和无定型氢氧化钴杂合物。
优选的,所述步骤S1中溶液A中的钴盐和钼酸铵的摩尔比为5:7,其中钴盐的摩尔数以钴离子计。通过采用所述技术方案,能够使得溶液A中钴盐和钼酸铵共同稳定存在于溶液中。
优选的,所述步骤S1中溶液A中钴盐的浓度(以钴离子计)为0.5mmol/L,钼酸铵的浓度为0.7mmol/L。
更优选的,所述步骤S1中将钴盐和钼酸铵按比例混溶于超纯水中后,超声10-20分钟溶解充分得到溶液A。通过采用所述技术方案,使得溶液A中钴盐和钼酸铵稳定存在的同时能够充分混合均匀。
优选的,所述步骤S1中溶液B中氢氧化钠浓度为适当浓度,以使得将溶液B逐滴加入溶液A的过程中,溶液的pH能够缓慢升高;更优选浓度为0.1-10mmol/L,更优选浓度为0.5mmol/L。通过采用所述技术方案,能够进一步保证溶液B加入到溶液A的过程中不会使得溶液内pH升高过快,从而导致四氧化三钴孔隙不均匀甚至无孔的现象。
优选的,所述步骤S1中使用惰性气氛对溶液A和溶液B进行除氧。
优选的,所述步骤S2中搅拌速率以将溶液混合均匀为目的,并减少或避免溅出,更优选搅拌速率为50-1500rpm,更优选为300rpm,实际搅拌速度与溶液体积相关,以实际情况进行选择调整;步骤S2中滴加速率为0.01-1mL/s,更优选为1滴/s,更优选为0.03-0.05mL/s。具体滴加速率与溶液B浓度相关,高浓度慢滴加,低浓度快滴加,以使溶液B滴加入溶液A的过程中溶液内pH缓慢升高。
优选的,所述步骤S2中滴加至混合溶液(反应体系)的pH为8,结束滴加,继续搅拌进行反应。通过采用所述技术方案,能够使得反应体系稳定均匀的形成沉淀,且沉淀可以稳定存在于反应体系中。
优选的,所述步骤S2中反应时间为不低于10h,更优选为12h。此处的反应时间是指自滴加结束后,继续搅拌陈化进行充分反应的时间。
优选的,所述步骤S2中后处理为常规后处理操作,包括但不限于过滤、洗涤、干燥,更优选的还包括研磨;更优选的,干燥温度为50℃-70℃,干燥时间为不低于12小时;更优选洗涤为水洗至少3次;更优选研磨后粉体为80-100目。具体后处理为,将反应所得悬浊液过滤洗净后于60℃下干燥完全后得到固体C,对固体C进行研磨以进行下一步煅烧步骤。通过采用所述技术方案,获得干燥完全的固体C;其中研磨有助于提高后续催化反应均匀性,避免煅烧过程不均匀。
优选的,所述步骤S3中含氧气氛为氧气气氛、空气气氛的至少一种。
优选的,所述步骤S3中升温速率为2-5℃/min,更优选为2℃/min。通过采用所述技术方案,能够使固体受热更加均匀,从而得到空隙更加均匀的目标物。
优选的,所述步骤S3中升温至450℃并煅烧2h。通过采用所述技术方案,使得无定型氢氧化钴更加均匀完全的转变为四氧化三钴,但需要注意的是,实际情况下可以对煅烧温度和煅烧时间进行进一步的调整,以使得无定型氢氧化钴能够均匀稳定的转变为四氧化三钴为宜。而不局限于本申请所列举的优选方案。
优选的,所述步骤S4中酸洗的酸为盐酸、硫酸的至少一种,更优选为0.1-1mol/L盐酸溶液;酸洗时间为12-20h。
优选的,所述步骤S4中后处理为常规操作,包括但不限于过滤、洗涤、干燥;更优选的后处理为,酸洗后的溶液过滤,固体水洗至少1次后于60℃干燥完全,得到多孔纳米四氧化三钴。
优选的,本发明中所述惰性气氛为氮气、氩气、氦气的至少一种。
优选的,本发明中所述室温为15-35℃,更优选为25-30℃。
更优选的,所述制备方法具体包括如下步骤:
S1、将一定摩尔比例的六水氯化钴和四水钼酸铵混溶于100mL超纯水中,后超声10分钟溶解充分;
S2、将固体氢氧化钠溶于100mL超纯水中配置成浓度为0.5mM的氢氧化钠溶液;
S3、使用氮气对S1和S2所得溶液进行除氧;
S4、在室温、氮气保护和强烈搅拌下,将已完全除氧的S2溶液逐滴滴入S1溶液中,直到溶液pH达到8.0;
S5、将S4所得溶液密封后于室温下搅拌12小时;
S6、将S5所得悬浊液过滤洗净后于60℃下干燥完全后研磨备用;
S7、取一定量S6所得固体粉末置于瓷坩埚中,在空气氛围中以一定的升温速率在450℃下煅烧2小时;
S8、取一定量S7所得粉末分散在0.1M盐酸溶液中搅拌12小时;
S9、将S8所得悬浊液过滤洗净后于60℃下干燥完全后即得到多孔纳米四氧化三钴。
进一步地,S1中六水氯化钴和四水钼酸铵的摩尔比为5:7;
进一步地,S7中升温速率优选为2℃/分钟。
本发明的另一目的是提供一种如上所述的制备方法制备得到的多孔纳米四氧化三钴或如上所述的多孔纳米四氧化三钴在催化过硫酸氢钾(PMS)降解水中PPCPs的应用。
优选的,将所述多孔纳米四氧化三钴和PMS置于含有PPCPs的溶液中进行搅拌反应。更优选的含有PPCPs的溶液中,PPCPs浓度为10~100μmol/L。通过采用所述技术方案,能够对水中PPCPs进行较快的去除,在5min时去除率即不低于98%,但需要知道的是,对于更高浓度的PPCPs依然具有良好的并且高效的降解效果,具体浓度和降解时间依据实际情况进行选择调整。
优选的,所述搅拌的速率为100-300rpm;更优选搅拌过程为磁力搅拌。
优选的,所述PMS的投加量以含PPCPs溶液体积计为0.1-0.4mmol/L;所述多孔纳米四氧化三钴的投加量以含PPCPs溶液体积计为每1L所述溶液中投加0.05-0.2g多孔纳米四氧化三钴。
优选的,搅拌过程中,温度为15-45℃。
优选的,所述PPCPs包括药物与个人护理品,更优选的,包括各类抗生素、人工合成麝香、止痛药、降压药、避孕药、催眠药、减肥药、发胶、染发剂和杀菌剂等。更优选的所述PPCPs包括卡马西平、磺胺甲恶唑、双酚A和阿特拉津的至少一种。
本发明通过多孔纳米四氧化三钴活化PMS降解水中PPCPs,其机理包括Co(III)/Co(II)氧化还原循环产生的硫酸根自由基以及表面高价态钴(Co(IV)=O)对PPCPs的氧化作用。
与现有技术相比,本发明的有益效果是:
(1)多孔结构更适合过硫酸氢钾分子在催化剂内部穿梭;
(2)纳米单元有利于暴露更多的四氧化三钴表面活性位点;
(3)通过非自由基机制形成的表面高价态钴能够协同硫酸根自由基高效降解PPCPs;
(4)水中PPCPs实现高效降解,5min即可达到不低于98%的降解率。
附图说明
图1是多孔纳米四氧化三钴的扫描电镜图、能谱扫描图和透射电镜图。
图2是多孔纳米四氧化三钴的X射线衍射图。
图3是多孔纳米四氧化三钴和商用的四氧化三钴催化PMS降解卡马西平的效果以及钴离子溶出量对比图。
图4是检测到的表面高价态钴和硫酸根自由基示意图。
图5是多孔纳米四氧化三钴催化PMS降解不同有机物的效果图。
具体实施方式
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体说明。
实施例1
多孔纳米四氧化三钴的制备:
将0.011g六水氯化钴和0.087g四水钼酸铵混溶于100mL超纯水中超声10分钟记为溶液A,将0.002g氢氧化钠溶于100mL超纯水记为溶液B,使用氮气对A、B溶液进行30分钟除氧,在室温、氮气保护和300rpm强烈搅拌下,将已完全除氧的B溶液以1滴/s逐滴滴入A溶液中,直到溶液pH达到8.0,将所得溶液密封后继续于室温下搅拌12小时后过滤洗净于60℃下干燥完全后研磨至80-100目备用;取0.2g所得固体粉末置于瓷坩埚中,在空气氛围中以2℃/分钟的升温速率在450℃下煅烧2小时;将煅烧所得粉末分散在200mL 0.1M盐酸溶液中搅拌12小时,所得悬浊液过滤洗净后于60℃下干燥完全后即得到多孔纳米四氧化三钴。附图1为多孔纳米四氧化三钴的扫描电镜图、能谱扫描图和透射电镜图,由图可知,本发明所得到的多孔纳米四氧化三钴由大量粒径为100nm左右的四氧化三钴纳米棒组建而成,表面和内部呈现多纳米孔道结构,孔径约为5nm。附图2为多孔纳米四氧化三钴的XRD图,由图可知,XRD衍射图谱中仅检测到了四氧化三钴的特征衍射峰,而无其他杂质成分。
实施例2
利用实施例1获得的多孔纳米四氧化三钴催化PMS降解水中PPCPs的方法,具体步骤如下:配制好待处理的含卡马西平的水溶液作为待处理溶液(pH=7),体积50mL,卡马西平的初始浓度为40μM(其中,M即mol/L,μM即10-6mol/L,mM即10-3mol/L,下同),投加实施例1制备的催化剂多孔纳米四氧化三钴5mg(质量浓度为0.1g/L),后加入0.1mM PMS(即加入PMS至浓度为0.1mM)。并在相同条件下,将多孔纳米四氧化三钴和PMS的组合依次分别替换为:仅加入PMS、仅加入多孔纳米四氧化三钴、加入商用四氧化三钴和PMS的组合,分别进行降解水中PPCPs的实验,由实验结果及图3可知:室温条件下磁力搅拌5min后,采用实施例1的多孔纳米四氧化三钴和PMS的组合对卡马西平的去除率达98%以上,而商用四氧化三钴对卡马西平的降解率仅为27.1%(图3),而单独使用多孔纳米四氧化三钴或PMS基本不具有降解效果。同时,多孔纳米四氧化三钴不仅在催化效果上明显优于商用四氧化三钴,其反应过程中的钴离子泄漏量也较低,由图3可知商用四氧化三钴在反应过程中的钴离子溶出量为0.59mg/L,而多孔纳米四氧化三钴仅为0.19mg/L。此外,利用甲基苯基亚砜(PMSO)和对羟基苯甲酸(HBA)作为探针物质检测到催化过程中产生了Co(IV)=O和硫酸根自由基,Co(IV)=O协同硫酸根自由基能够更高效降解水中有机污染物(图4)。
实施例3
利用实施例1获得的多孔纳米四氧化三钴催化PMS降解水中不同PPCPs的方法,具体步骤如下:配制好待处理的含卡马西平、磺胺甲恶唑、双酚A或阿特拉津的水溶液作为待处理溶液(pH=7),体积50mL,卡马西平、磺胺甲恶唑、双酚A或阿特拉津的初始浓度为40μM,投加实施例1制备的催化剂多孔纳米四氧化三钴5mg(质量浓度为0.1g/L),后加入0.1mMPMS。室温条件下磁力搅拌5min后,几种PPCPs的去除率均达98%以上(图5),这表明本发明制备的多孔纳米四氧化三钴对水中多种有机物都具有良好的去除效果。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围。

Claims (9)

1.一种多孔纳米四氧化三钴的制备方法,其特征在于,包括如下步骤:S1、配置溶液:分别配制溶液A和溶液B,并进行除氧;其中,溶液A为可溶性钴盐和钼酸铵的混合溶液,溶液B为碱性溶液;
S2、共沉淀反应:在惰性气氛下,搅拌下将溶液B滴加至溶液A中,室温下搅拌一定时间,反应结束后进行后处理得到固体C;
S3:煅烧:固体C在含氧气氛中以一定的升温速率升温至一定温度后煅烧,得到固体D;
S4:酸洗:将固体D进行酸洗,后处理得到多孔纳米四氧化三钴;
其中,所述钴盐为氯化钴、六水氯化钴、六水硝酸钴、硫酸钴、七水硫酸钴的至少一种;钼酸铵为四水钼酸铵。
2.根据权利要求1所述一种多孔纳米四氧化三钴的制备方法,其特征在于,所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、氨水的至少一种。
3.根据权利要求1所述一种多孔纳米四氧化三钴的制备方法,其特征在于,所述步骤S1中溶液A中的钴盐和钼酸铵的摩尔比为5:7。
4.根据权利要求1所述一种多孔纳米四氧化三钴的制备方法,其特征在于,所述步骤S2中滴加至反应体系的pH为8,所述步骤S2中反应时间为不低于10h。
5.根据权利要求1所述一种多孔纳米四氧化三钴的制备方法,其特征在于,所述步骤S3中升温速率为2~5℃/min。
6.根据权利要求5所述一种多孔纳米四氧化三钴的制备方法,其特征在于,所述步骤S3中升温至450℃并煅烧2h。
7.根据权利要求1所述一种多孔纳米四氧化三钴的制备方法,其特征在于,所述步骤S4中酸洗的酸为盐酸、硫酸的至少一种,酸洗时间为12~20h。
8.一种权利要求1-7所述任意一种制备方法制备得到的多孔纳米四氧化三钴在催化过硫酸氢钾降解水中PPCPs中的应用,其特征在于,所述PPCPs包括各类抗生素、人工合成麝香、止痛药、降压药、避孕药、催眠药、减肥药、发胶、染发剂和杀菌剂的至少一种。
9.根据权利要求8所述一种多孔纳米四氧化三钴在催化过硫酸氢钾降解水中PPCPs中的应用,其特征在于,所述应用方法为:室温下,将所述多孔纳米四氧化三钴和过硫酸氢钾置于含PPCPs溶液中进行搅拌反应。
CN202210468115.8A 2022-04-29 2022-04-29 一种多孔纳米四氧化三钴的制备方法及其应用 Active CN114835171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210468115.8A CN114835171B (zh) 2022-04-29 2022-04-29 一种多孔纳米四氧化三钴的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210468115.8A CN114835171B (zh) 2022-04-29 2022-04-29 一种多孔纳米四氧化三钴的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114835171A CN114835171A (zh) 2022-08-02
CN114835171B true CN114835171B (zh) 2024-07-30

Family

ID=82567035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210468115.8A Active CN114835171B (zh) 2022-04-29 2022-04-29 一种多孔纳米四氧化三钴的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114835171B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555025B (zh) * 2022-10-31 2024-01-26 河北建材职业技术学院 一种高分散钴钼双金属催化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058286A (zh) * 2013-01-08 2013-04-24 苏州科技学院 一种新型介孔金属氧化物材料的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830523B (zh) * 2020-12-31 2022-03-18 南京理工大学 用于超级电容器的钼掺杂四氧化三钴及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058286A (zh) * 2013-01-08 2013-04-24 苏州科技学院 一种新型介孔金属氧化物材料的合成方法

Also Published As

Publication number Publication date
CN114835171A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN108273492B (zh) 一种氧化铋/四氧化二铋异质结光催化剂及其制法和用途
CN113908878B (zh) 一种双金属普鲁士蓝类似物催化剂的制备方法及应用
CN111545192B (zh) 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN109046473B (zh) 一种过渡金属修饰TiO2-MOFs膜的复合电极及其制备方法与应用
CN109364924B (zh) 一种磁性纳米臭氧催化剂CoFe2O4及其制备方法与应用
CN106732509A (zh) 改性氧化铝载体的制备方法、催化臭氧氧化催化剂及其应用
CN109621961B (zh) 一种生长二维纳米片原位制备金属高分散催化剂的方法
CN109647437B (zh) 一种CuS掺杂纳米TiO2光催化剂、制备方法及其应用
CN113751015B (zh) 一种无定形非均相芬顿催化剂及其制备方法与应用
CN113171779A (zh) 一种b位五元高熵钙钛矿催化剂的制备方法与应用
CN114835171B (zh) 一种多孔纳米四氧化三钴的制备方法及其应用
CN113877599A (zh) 一种钴锰尖晶石材料及其制备方法与应用
WO2020093517A1 (zh) 一种高效选择性光催化还原水中硝态氮的光催化材料及其制备方法
CN111545211B (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN110302819B (zh) 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用
CN116943692A (zh) 一种铁酸铋/硫酸氧铋/三氧化二铁条状复合材料及其制备方法和应用
CN113244929B (zh) 铁铋氧化物Bi2Fe4O9的制备方法及在有机废水处理中的应用
CN111659411B (zh) 一种稀土铈掺杂钼酸铁光催化剂的制备及应用
CN111569890B (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
CN115287693A (zh) 一种空位氧化铈负载双金属纳米颗粒的制备及其在电催化还原硝酸盐中的应用
CN112675891A (zh) 一种高分散的具有磁性的纳米光催化剂及制备方法
CN111821984B (zh) 一种氧化石墨烯-氧化铈-四氧化三钴复合材料、合成方法及其应用
CN115193439B (zh) 一种三维有序大孔La0.4Ce0.6FeO3光催化剂的制备方法及应用
CN116605973B (zh) 一种处理四环素废水的催化剂及其制备方法和应用
CN115845856B (zh) 一种紫外光辅助制备的纳米复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant