CN114806057A - 一种自粘附导电有机凝胶及其制备方法 - Google Patents

一种自粘附导电有机凝胶及其制备方法 Download PDF

Info

Publication number
CN114806057A
CN114806057A CN202210539756.8A CN202210539756A CN114806057A CN 114806057 A CN114806057 A CN 114806057A CN 202210539756 A CN202210539756 A CN 202210539756A CN 114806057 A CN114806057 A CN 114806057A
Authority
CN
China
Prior art keywords
conductive
self
monomer
gel
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210539756.8A
Other languages
English (en)
Other versions
CN114806057B (zh
Inventor
徐华
刘世念
李佳佳
顾忠泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202210539756.8A priority Critical patent/CN114806057B/zh
Publication of CN114806057A publication Critical patent/CN114806057A/zh
Application granted granted Critical
Publication of CN114806057B publication Critical patent/CN114806057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明公开了一种自粘附导电有机凝胶,合成原料包括单体、导电材料或导电离子、助剂和溶剂,所述单体由丙烯酰胺单体与丙烯酰基甘氨酰氨以比1:1混合,单体在溶剂中的质量分数为10%~35%;所述助剂包括交联剂、引发剂和促进剂;制备方法包括以下步骤:(1)将丙烯酰胺、N‑丙烯酰基甘氨酰胺、交联剂和导电纳米材料或导电离子均匀分散在溶剂中;(2)再加入引发剂和促进剂,溶解,并在惰性气体氛围下除氧,静止进行自组装;(3)将(2)物料在40~90℃下,进行聚合反应,即得到所述自粘附导电有机凝胶;该凝胶中不需要引入仿贻贝的粘附成分,通过丙烯酰胺单体、丙烯酰基甘氨酰氨单体和导电材料的自组装共价聚合交联得到,具有优异的自粘附性。

Description

一种自粘附导电有机凝胶及其制备方法
技术领域
本发明涉及一种凝胶及其制备方法,特别涉及一种自粘附导电有机凝胶及其制备方法。
背景技术
导电水凝胶由于具有和生物体相近的柔软性、优异的导电性,已成为目前穿戴式传感器的热门材料。水凝胶分为物理交联型凝胶和化学交联型凝胶。物理交联型凝胶是通过高分子链段缠绕结、静电作用、氢键作用结合起来的凝胶。但是这种由物理作用结合起来的凝胶不是稳定的,通过加热后分子链间的物理作用力会消失,水凝胶内部的高分子链段之间结合点减少甚至消失,最终网络坍陷,失去原有的性能。化学交联型凝胶由化学键交联而形成的三维网络聚合物。化学交联形成的三维网络性能稳定,能适应不同的外界环境。通过在水凝胶中掺杂导电纳米材料来制备,如石墨烯、碳纳米管、Mxene等,可以来制备电子导电水凝胶。
传统导电水凝胶粘附性能差,无法自粘附在皮肤上,通常需要依靠如胶带、绷带等粘附剂来实现固定在皮肤上,容易造成明显的信号噪音和运动伪像干扰,不适合长期稳定检测生物电信号。为提高导电凝胶的粘附性,目前常用的方法是仿贻贝黏附的原理,在导电水凝胶引入含有儿茶酚的粘附成分的化合物,如多巴胺、丹宁酸、茶多酚等,来制备具有自粘附的复合导电凝胶。尽管许多基于仿贻贝的粘附水凝胶已被开发制备并用于可穿戴研究,但由于儿茶酚在空气中很容易被过度氧化成醌,导致这类水凝胶普遍存在粘附性低、稳定性差、粘附时间短等问题,阻碍了其在可穿戴方面的实际应用。
发明内容
发明目的:本发明第一目的是提供一种不需要引入仿贻贝的粘附成分(如多巴胺、茶多酚等),具有优异的自粘附性性能的自粘附导电有机凝胶;本发明的第二目的提供该有机凝胶的制备方法。
技术方案:本发明所述的凝胶,合成原料包括单体、导电材料或导电离子、助剂和溶剂,所述单体由丙烯酰胺单体与丙烯酰基甘氨酰氨以比1:1混合,单体在溶剂中的质量分数为10%~35%;所述助剂包括交联剂、引发剂和促进剂;所述单体和导电材料或导电离子先在溶剂中自组装,然后在助剂的作用下聚合形成自粘附导电有机凝胶。
所述丙烯酰胺单体与丙烯酰基甘氨酰氨通过共价键聚合形成水凝胶网络。共价交联的网络结构赋予凝胶强的机械性能,大量的氢键作用赋予凝胶优秀的粘附性能;导电纳米材料和导电离子通过非共价键固定在水凝胶网络中,赋予水凝胶导电性能。所述交联剂的作用是使线性的高分子聚合物相互连接在一起,形成网络结构,提高水凝胶的强度和弹性;引发剂的作用是产生活性自由基,引发单体聚合;促进剂的作用是提高反应速率。
优选的,所述交联剂为N,N'-亚甲基双丙烯酰胺、二甲基丙烯酸乙二醇酯或N,N'-(双丙烯酰)胱胺,其用量为单体质量的0.1%~5%。
优选的,所述引发剂为过硫酸钾或过硫酸铵,其用量为单体质量的0.5%~5%。
优选的,所述促进剂为四甲基乙二胺或四甲基丙二胺或二甲基乙醇胺,其用量为溶剂总体积的0.5%~5%。
优选的,所述溶剂为多元醇与水的混合物,其中醇与水的比例为1:10~10:1,所述多元醇为乙二醇或丙三醇。利用多元醇和水分子形成强的氢键从而阻止水分子的挥发和在低温下结晶,提高凝胶的保湿抗冻能力。
优选的,所述导电材料为石墨烯、银纳米线、碳纳米管或Mxene中的至少一种;所述导电离子为NaCl、LiCl、ZnSO4、磺基甜菜碱或羧基甜菜碱中的至少一种;导电材料或导电离子的用量与单体质量比为0.01~0.25:1。
本发明的自粘附导电有机凝胶的制备方法,包括以下步骤:
(1)将丙烯酰胺、N-丙烯酰基甘氨酰胺、交联剂和导电纳米材料或导电离子均匀分散在溶剂中;
(2)再加入引发剂和促进剂,溶解,并在惰性气体氛围下除氧,静止进行自组装;
(3)将(2)物料在40~90℃下,进行聚合反应,即得到所述自粘附导电有机凝胶。
优选的,所述聚合反应的时间为0.5~4h。
反应机理:通过丙烯酰胺和丙烯酰基甘氨酰氨共价聚合得到的凝胶含有大量的氨基、亚氨基和羰基。其中,氨基和亚氨基很容易和固体表面上的氧、氮、氟等成分形成氢键作用;羰基很容易和固体表面上的羟基、氨基形成氢键作用,和固定表面的金属离子形成金属配位作用;此外,凝胶中的碳链还可以通过疏水性作用和固体表面作用;凝胶和固体表面之间这些的物理相互作用增强了凝胶和固体表面的结合,赋予凝胶优异的粘附性能。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)该凝胶中不需要引入仿贻贝的粘附成分(如多巴胺、茶多酚等),通过丙烯酰胺单体、丙烯酰基甘氨酰氨单体和导电材料的自组装共价聚合交联得到,具有优异的自粘附性(2)该导电有机凝胶具有良好的抗冻性能,在低温条件0~-60℃下仍具有很好的可拉伸性和导电性;(3)该导电有机凝胶具有强的机械性能,高的柔韧性和拉伸性,可以任意角度弯曲、折叠,其可以拉伸到1400%,突破了以往导电有机凝胶机械性能差的缺点,极大地拓宽了其使用范围;(4)制备方法简单,操作方便,对设备、工艺要求简单,成本低,可实现大规模工业化生产等优点。
附图说明
图1是实施例1制备的导电有机凝胶实物图;
图2是实施例4制备的导电有机凝胶实物图;
图3是实施例1制备的导电有机凝胶的粘附性照片图;
图4是实施例1制备的导电有机凝胶的粘附性能测试图;
图5是实施例4制备的导电有机凝胶的粘附性能测试图;
图6是实施例4制备的导电有机凝胶的电流电压曲线;
图7是实施例1制备的导电有机凝胶的柔韧性和拉伸性测试图;
图8是实施例4制备的导电有机凝胶的的应力应变曲线;
图9是实施例1制备的导电有机凝胶的保湿性能测试图;
图10是实施例1制备的导电有机凝胶的在-40℃下的拉伸性能测试图。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例1
本发明的自粘附导电有机凝胶,其制备方法包括以下步骤:
(1)称取150mg丙烯酰胺,150mg N-丙烯酰基甘氨酰胺,3mg石墨烯(rGO)和0.3mgN,N'-(双丙烯酰)胱胺,超声分散在0.85ml体积比为1:1的乙二醇/水溶液中形成均匀的分散液。
(2)接着加入3.75mg过硫酸钾和5ul四甲基乙二胺,得到的分散液,在N2氛围下除氧1h,注入2.2cm*2.2cm*0.2cm模具中静止自组装;
(3)再放入60℃的烘箱中聚合反应2h,得到自粘附导电有机凝胶P(AM-NAGA)/rGO。
实施例2
本发明的自粘附导电有机凝胶,其制备方法包括以下步骤:
(1)称取400mg丙烯酰胺,400mg N-丙烯酰基甘氨酰胺,15mg Ag纳米线和40mg N,N'-亚甲基双丙烯酰胺,超声分散在8mL体积比为3:2的乙二醇/水溶液中形成均匀的分散液;
(2)接着加入40mg过硫酸钾和100ul四甲基乙二胺,得到的分散液,在N2氛围下除氧1h,注入直径为10cm的圆形模具中静止自组装;
(3)再放入70℃的烘箱中聚合反应1h,得到自粘附导电有机凝胶P(AM-NAGA)/AgNW。
实施例3
本发明的自粘附导电有机凝胶,其制备方法包括以下步骤:
(1)称取200mg丙烯酰胺,200mg N-丙烯酰基甘氨酰胺,8mg表面羧基化的碳纳米管和0.5mg N,N'-(双丙烯酰)胱胺,超声分散在2mL体积比为10:1的丙三醇/水溶液中形成均匀的分散液;
(2)接着加入2mg过硫酸钾和20ul四甲基乙二胺,得到分散液,在N2氛围下除氧1h,注入2.2cm*2.2cm*0.2cm模具中静止自组装;
(3)再放入40℃的烘箱中聚合反应4h,得到自粘附导电有机凝胶P(AM-NAGA)/CNT。
实施例4
本发明的自粘附导电有机凝胶,其制备方法包括以下步骤:
(1)称取200mg丙烯酰胺,200mg N-丙烯酰基甘氨酰胺和100mg LiCl,1.5mg N,N'-亚甲基双丙烯酰胺,超声分散在1.5mL体积比为5:1的乙二醇/水溶液中形成均匀的分散液;
(2)接着加入4.5mg过硫酸钾和10ul四甲基乙二胺,得到分散液,在N2氛围下除氧1h,注入直径为6cm的圆形模具中静止自组装;
(3)再放入90℃的烘箱中聚合反应0.5h,得到自粘附导电有机凝胶P(AM-NAGA)/LiCl。
性能测试
如图3所示,将实施例1制备的导电有机凝胶粘附在丁腈手套(a)、丁腈手套和金属之间(c)、皮肤(d)和玻璃(e)上,表明该有机凝胶在不同的材料上具有优异的粘附性能。
如图4所示,实施例1制备的导电有机凝胶在聚丙烯(pp)、丁腈、玻璃和纸张表面的粘附强度分别是75kPa,25kPa,45kPa和100kPa。
如图5所示,实施例4制备的导电有机凝胶在钢、木头、塑料表面的粘附强度分别是30kPa,42kPa和18kPa。
如图8所示,实施例4制备的导电有机凝胶的应力应变曲线,由图可得其拉伸比可达到900%。
如图9所示,以乙二醇和水为溶剂的导电凝胶具有稳定的电学性能;而以纯水为溶剂的导电凝胶电阻呈现明显的增大。
如图10所示,实施例1制备的导电凝胶的在-40℃仍然可以被拉伸。

Claims (8)

1.一种自粘附导电有机凝胶,其特征在于,合成原料包括单体、导电材料或导电离子、助剂和溶剂,所述单体由丙烯酰胺单体与丙烯酰基甘氨酰氨以比1:1混合,单体在溶剂中的质量分数为10%~35%;所述助剂包括交联剂、引发剂和促进剂;所述单体和导电材料或导电离子先在溶剂中自组装,然后在助剂的作用下聚合形成自粘附导电有机凝胶。
2.根据权利要求1所述的凝胶,其特征在于,所述交联剂为N,N'-亚甲基双丙烯酰胺、二甲基丙烯酸乙二醇酯或N,N'-(双丙烯酰)胱胺,用量为单体质量的0.1%~5%。
3.根据权利要求1所述的凝胶,其特征在于,所述引发剂为过硫酸钾或过硫酸铵,其用量为单体质量的0.5%~5%。
4.根据权利要求1所述的凝胶,其特征在于,所述促进剂为四甲基乙二胺、四甲基丙二胺或二甲基乙醇胺,用量为溶剂总体积的0.5%~5%。
5.根据权利要求1所述的凝胶,其特征在于,所述溶剂为多元醇与水的混合物,其中醇与水的体积比为1:10~10:1,所述多元醇为乙二醇或丙三醇。
6.根据权利要求1所述的凝胶,其特征在于,所述导电材料为石墨烯、银纳米线、碳纳米管或Mxene中的至少一种;所述导电离子为NaCl、LiCl、ZnSO4、磺基甜菜碱或羧基甜菜碱中的至少一种;导电材料或导电离子的用量与单体质量比为0.01~0.25:1。
7.一种权利要求1所述的有机凝胶的制备方法,其特征在于,包括以下步骤:
(1)将丙烯酰胺、N-丙烯酰基甘氨酰胺、交联剂和导电纳米材料或导电离子均匀分散在溶剂中;
(2)再加入引发剂和促进剂,并在惰性气体氛围下除氧,静止进行自组装;
(3)将(2)物料在40~90℃下,进行聚合反应,即得到所述自粘附导电有机凝胶。
8.根据权利要求7所述的凝胶的制备方法,其特征在于,聚合反应的反应时间为0.5~4h。
CN202210539756.8A 2022-05-18 2022-05-18 一种自粘附导电有机凝胶及其制备方法 Active CN114806057B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210539756.8A CN114806057B (zh) 2022-05-18 2022-05-18 一种自粘附导电有机凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210539756.8A CN114806057B (zh) 2022-05-18 2022-05-18 一种自粘附导电有机凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN114806057A true CN114806057A (zh) 2022-07-29
CN114806057B CN114806057B (zh) 2023-09-08

Family

ID=82516123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210539756.8A Active CN114806057B (zh) 2022-05-18 2022-05-18 一种自粘附导电有机凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN114806057B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759732A (zh) * 2016-08-23 2018-03-06 天津大学 丙烯酰基甘氨酰胺/2‑丙烯酰胺‑2‑甲基丙磺酸共聚水凝胶及其制备方法
CN107759734A (zh) * 2016-08-23 2018-03-06 天津大学 基于丙烯酰基甘氨酰胺的高强度超分子导电水凝胶及其制备方法
CN109503862A (zh) * 2017-09-15 2019-03-22 天津大学 一种近红外响应型纳米复合超分子水凝胶及其制备方法
JP2019085483A (ja) * 2017-11-07 2019-06-06 学校法人同志社 形状記憶ハイドロゲル
CN111320768A (zh) * 2020-03-13 2020-06-23 华南理工大学 一种水凝胶应变传感器的制备方法
CN112538172A (zh) * 2019-09-20 2021-03-23 天津大学 一种聚(n-丙烯酰基甘氨酰胺)微凝胶自增强水凝胶及其制备方法
CN113801266A (zh) * 2021-10-18 2021-12-17 中国科学院长春应用化学研究所 一种可拉伸抗冻有机水凝胶热敏电阻材料的制备方法
CN113974635A (zh) * 2021-10-22 2022-01-28 上海交通大学 一种可穿戴的HD-sEMG传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759732A (zh) * 2016-08-23 2018-03-06 天津大学 丙烯酰基甘氨酰胺/2‑丙烯酰胺‑2‑甲基丙磺酸共聚水凝胶及其制备方法
CN107759734A (zh) * 2016-08-23 2018-03-06 天津大学 基于丙烯酰基甘氨酰胺的高强度超分子导电水凝胶及其制备方法
CN109503862A (zh) * 2017-09-15 2019-03-22 天津大学 一种近红外响应型纳米复合超分子水凝胶及其制备方法
JP2019085483A (ja) * 2017-11-07 2019-06-06 学校法人同志社 形状記憶ハイドロゲル
CN112538172A (zh) * 2019-09-20 2021-03-23 天津大学 一种聚(n-丙烯酰基甘氨酰胺)微凝胶自增强水凝胶及其制备方法
CN111320768A (zh) * 2020-03-13 2020-06-23 华南理工大学 一种水凝胶应变传感器的制备方法
CN113801266A (zh) * 2021-10-18 2021-12-17 中国科学院长春应用化学研究所 一种可拉伸抗冻有机水凝胶热敏电阻材料的制备方法
CN113974635A (zh) * 2021-10-22 2022-01-28 上海交通大学 一种可穿戴的HD-sEMG传感器及其制备方法

Also Published As

Publication number Publication date
CN114806057B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
Wu et al. A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites
Huang et al. A double-layer carbon nanotubes/polyvinyl alcohol hydrogel with high stretchability and compressibility for human motion detection
US11515059B2 (en) All-weather self-healing stretchable conductive material and preparation method thereof
CN111040194A (zh) 导电水凝胶及其制备方法和应用
CN110776654B (zh) 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用
CN109438728B (zh) 一种金属离子配位作用增强的温敏性导电水凝胶及其制备方法
US9972451B2 (en) Polyelectrolyte and a method for manufacturing an energy storage device
CN110172161B (zh) 一种三重网状结构水凝胶的制备方法及其应用
Chen et al. Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors
CN111995769B (zh) 一种可调控双温敏水凝胶及其制备方法
Yang et al. Highly Conductive, Stretchable, Adhesive, and Self‐Healing Polymer Hydrogels for Strain and Pressure Sensor
CN112679753A (zh) 一种超柔软的导电自愈合水凝胶及其制备方法和应用
JP2004143212A (ja) 高分子複合体、その延伸物及び高分子複合体の製造方法
CN113683788A (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质、制备方法及应用
CN114806057B (zh) 一种自粘附导电有机凝胶及其制备方法
CN112724325B (zh) 纳米硅交联剂和快速响应水凝胶的制备方法及应用
CN110330669A (zh) 聚(丙烯酰胺-vdt)/ta高强度水凝胶的制备方法
CN107857841B (zh) 基于丙烯酰胺基甘氨酰胺的高强度共聚水凝胶及其制备方法
CN113336971B (zh) 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用
CN114213673B (zh) 聚吡咯修饰的牛血清蛋白的制备方法、蛋白质导电水凝胶及其制备方法和用途
Du et al. Stretchable and tough tannic acid-modified graphene oxide/polyvinyl alcohol conductive hydrogels for strain and pressure sensors
CN107840955B (zh) 导电粘合剂及其制备方法
CN107840966B (zh) 季戊四醇三丙烯酸酯-多巴胺-吡咯聚合物及其应用
CN116222835A (zh) 一种柔性薄膜压力传感器及其制备方法
CN114349980A (zh) 一种导电水凝胶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant