CN113336971B - 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用 - Google Patents

一种纳米结构聚苯胺复合水凝胶及其制备方法及应用 Download PDF

Info

Publication number
CN113336971B
CN113336971B CN202110655083.8A CN202110655083A CN113336971B CN 113336971 B CN113336971 B CN 113336971B CN 202110655083 A CN202110655083 A CN 202110655083A CN 113336971 B CN113336971 B CN 113336971B
Authority
CN
China
Prior art keywords
composite hydrogel
polyaniline
nano
polyaniline composite
initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110655083.8A
Other languages
English (en)
Other versions
CN113336971A (zh
Inventor
刘天西
于晓辉
凡小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202110655083.8A priority Critical patent/CN113336971B/zh
Publication of CN113336971A publication Critical patent/CN113336971A/zh
Application granted granted Critical
Publication of CN113336971B publication Critical patent/CN113336971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines

Abstract

本发明涉及一种纳米结构聚苯胺复合水凝胶及其制备方法及应用,所述复合水凝胶先通过微相分离技术制备得到聚苯胺纳米颗粒,再通过加入丙烯酸和甲基丙烯酸聚乙二醇酯通过热引发自由基聚合,即得。本发明的纳米结构聚苯胺复合水凝胶可用于应变传感器。克服了目前导电聚合物复合水凝胶机械耐受性较差的局限性,并且通过微相分离技术使得聚苯胺以纳米结构均匀分散在水凝胶网络中,进一步提升了材料的导电性。纳米结构的聚苯胺颗粒在水凝胶网络中均匀分散,使得材料具有优秀的电导率。此外,由于没有添加化学交联剂,丙烯酸与聚乙二醇单甲醚丙烯酸酯中丰富的动态氢键确保了材料在可以耐受巨大形变的同时呈现出超柔软的特性。

Description

一种纳米结构聚苯胺复合水凝胶及其制备方法及应用
技术领域
本发明属于水凝胶的技术领域,特别涉及一种超高机械耐受性的纳米结构聚苯胺复合水凝胶。
背景技术
水凝胶是一种三位网络结构聚合物,具有优秀的生物相容性、出色的机械性能以及较低的制备成本。近年来,水凝胶已经被广泛运用于生物传感器、健康管理以及能源存储器件的组装。其中,导电水凝胶是一种兼具导电能力与水凝胶优秀力学性能的新型功能材料。导电水凝胶的导电组分目前主要分为两类,分别是以碳纳米管、炭黑等为代表的无机导电填料,另一类是以聚苯胺、聚吡咯等聚合物为代表的导电聚合物。其中,导电聚合物基水凝胶凭借着其原材料分布广泛、价格低廉、导电性能优异等特点,已经受到了广泛的关注。
公开号为CN112159536A的中国专利文献公开了一种高导电性聚丙烯酸复合水凝胶的制备方法。该发明体涉及一种高导电性聚丙烯酸复合水凝胶的制备方法。所述方法使用石墨烯作为交联剂,在聚丙烯酸/石墨烯水凝胶的表面和内部原位聚合导电高分子,得到兼具有电子导电性和离子导电性的聚丙烯酸/石墨烯/导电高分子水凝胶,即聚丙烯酸复合水凝胶。然而,该类在原有水凝胶外部进行聚合的非原位方法,往往会导致导电聚合物在凝胶内部非均相的分布,导致最终制备材料的性能出现较大差异。
此外,由于导电聚合物分子结构上的大量刚性组分的存在,目前的导电聚合物复合水凝胶往往不具备大的机械耐受性,在较大形变下水凝胶会发生破碎。并且,导电聚合物之间强烈的共轭作用,也会使得导电聚合物复合水凝胶的拉伸模量大幅上升,最大断裂伸长率出现明显的下滑。过强的刚性将会极大降低水凝胶材料在传感监控时的灵敏度。
因此,如何制备一种导电聚合物均匀分散,且材料在保持柔软的情况下可以耐受超高机械形变的新型导电聚合物复合水凝胶成为了当前的研究重点。
发明内容
本发明提供了一种超高机械耐受性的纳米结构聚苯胺复合水凝胶及其制备方法及应用,克服了目前导电聚合物复合水凝胶机械耐受性较差的局限性,并且通过微相分离技术使得聚苯胺以纳米结构均匀分散在水凝胶网络中,进一步提升了材料的导电性。
一种纳米结构聚苯胺复合水凝胶的制备方法,包括如下步骤:
步骤1:将苯胺单体、酸掺杂剂溶解于甘油中,再加入引发剂的水溶液,在低温环境下剧烈震荡,持续反应,制备得到聚苯胺混合溶液;
步骤2:在步骤1中的聚苯胺混合溶液中加入聚乙二醇单甲醚丙烯酸酯、丙烯酸和引发剂,持续通入氮气后倒入模具内,热引发制备得到纳米结构聚苯胺复合水凝胶。
一种基于本发明的制备方法得到的纳米结构聚苯胺复合水凝胶。
一种基于本发明的制备方法得到的纳米结构聚苯胺复合水凝胶的应用,可用于应变传感器。
有益效果
1、本发明方法通过微相分离技术,成功制备了纳米结构的聚苯胺颗粒,确保聚苯胺在水凝胶体系内的均匀分散,提高了材料的导电性;
2、本发明的丙烯酸与聚乙二醇单甲醚丙烯酸酯中丰富的动态氢键确保了材料可以耐受巨大的机械形变。
3、本发明的复合水凝胶先通过微相分离技术制备得到聚苯胺纳米颗粒,再通过加入丙烯酸和甲基丙烯酸聚乙二醇酯通过热引发自由基聚合,即得。纳米结构的聚苯胺颗粒在水凝胶网络中均匀分散,使得材料具有优秀的电导率。此外,由于没有添加化学交联剂,丙烯酸与聚乙二醇单甲醚丙烯酸酯中丰富的动态氢键确保了材料在可以耐受巨大形变的同时呈现出超柔软的特性。
附图说明
图1为不同倍率下实施例3的SEM图。
图2为对比例1、实施例1、实施例2和实施例3的电导率对比图
图3为对比例1、实施例1、实施例2、实施例3的拉伸应力应变曲线。
图4为对比例1、实施例1、实施例2、实施例3的压缩应力应变曲线。
图5为实施例3组装的应变传感器在拉伸模式下的应变-电阻曲线。
图6为实施例3组装的应变传感器在不同拉伸形变下的应变-电阻曲线。
图7为实施例3组装的应变传感器在压缩模式下的压力-电阻曲线。
图8为实施例3组装的应变传感器在不同最大压力下的压力-电阻曲线。
图9为实施例3组装的应变传感器检测人体手腕和手肘弯曲的电信号曲线。
图10为实施例3组装的应变传感器检测水滴下落的电信号曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
一种纳米结构聚苯胺复合水凝胶的制备方法,包括如下步骤:
步骤1:将苯胺单体、酸掺杂剂溶解于甘油中,再加入引发剂的水溶液,在低温环境下剧烈震荡,持续反应,制备得到聚苯胺混合溶液;
步骤2:在步骤1中的聚苯胺混合溶液中加入聚乙二醇单甲醚丙烯酸酯、丙烯酸和引发剂,持续通入氮气后倒入模具内,热引发制备得到纳米结构聚苯胺复合水凝胶。
优选的是,本发明步骤1中的酸掺杂剂为植酸,引发剂为过硫酸铵,反应温度为0℃,反应时间为24h。
优选的是,本发明步骤1中引发剂、苯胺单体、酸掺杂剂、甘油、水溶液的质量比为1:1:0.5:50:50。所述水溶液为去离子水。
优选的是,本发明步骤2中聚乙二醇单甲醚丙烯酸酯的分子量为480,引发剂为4,4'-偶氮双(4-氰基戊酸),热引发反应温度为65℃,反应时间为12h。
优选的是,本发明步骤2中引发剂、聚乙二醇单甲醚丙烯酸酯、丙烯酸、聚苯胺混合溶液的质量比为1:50:50:400。
一种基于本发明的制备方法得到的纳米结构聚苯胺复合水凝胶。
一种基于本发明的制备方法得到的纳米结构聚苯胺复合水凝胶的应用,可用于应变传感器。所述应变传感器的组装方法包括以下步骤:(1)将复合水凝胶裁剪为0.1cm×2cm×10cm,制得M1;(2)将M1的两侧贴上有导电银浆的铜箔,制得M2;(3)将M2两侧的铜箔用铜线引出,制的器件M3,器件M3即为所述应变传感器。
苯胺(≥99.5%),4,4'-偶氮双(4-氰基戊酸)(AR)购于上海麦克林生化科技有限公司;甘油(AR)、植酸溶液(50%水溶液)、丙烯酸(99%,含有200ppmMEHQ稳定剂)均购于上海阿拉丁生化科技股份有限公司;聚乙二醇单甲醚丙烯酸酯(n=9,99%,含有90ppmMEHQ稳定剂)购于梯希爱(上海)化成工业发展有限公司;去离子水通过超纯水机制备。
实施例1
步骤1:将100 mg苯胺单体,2 mL 植酸溶液溶于15 mL甘油中得到溶液A;再将400mg 过硫酸铵溶解于15 mL去离子水当中,得到溶液B。将溶液B倒入溶液A中,在0℃下持续剧烈震荡反应12h,得到聚苯胺溶液。
步骤2:将1 mL丙烯酸,1 mL聚乙二醇单甲醚丙烯酸酯以及20 mg 4,4'-偶氮双(4-氰基戊酸)加入8 mL上述聚苯胺溶液中,持续通入氮气后倒入模具内,65℃热引发12h制备得到实施例1。
实施例2
步骤1:将200mg苯胺单体,2 mL 植酸溶液溶于15 mL甘油中得到溶液A;再将200mg过硫酸铵溶解于15 mL去离子水当中,得到溶液B。将溶液B倒入溶液A中,在0℃下持续剧烈震荡反应12h,得到聚苯胺溶液。
步骤2:将1 mL丙烯酸,1 mL聚乙二醇单甲醚丙烯酸酯以及20 mg 4,4'-偶氮双(4-氰基戊酸)加入8 mL上述聚苯胺溶液中,持续通入氮气后倒入模具内,65℃热引发12h制备得到实施例1。
实施例3
步骤1:将300mg苯胺单体,2 mL 植酸溶液溶于15 mL甘油中得到溶液A;再将300mg过硫酸铵溶解于15 mL去离子水当中,得到溶液B。将溶液B倒入溶液A中,在0℃下持续剧烈震荡反应12h,得到聚苯胺溶液。
步骤2:将1 mL丙烯酸,1 mL聚乙二醇单甲醚丙烯酸酯以及20 mg 4,4'-偶氮双(4-氰基戊酸)加入8 mL上述聚苯胺溶液中,持续通入氮气后倒入模具内,65℃热引发12h制备得到实施例1。
对比例1
将4 mL甘油和4 mL去离子水配成混合溶液后,再将1 mL丙烯酸,1 mL聚乙二醇单甲醚丙烯酸酯以及20 mg 4,4'-偶氮双(4-氰基戊酸)加入8 mL上述溶液中,持续通入氮气后倒入模具内,65℃热引发12h制备得到对比例1。
图1展示了不同倍率下实施例3 的SEM图,其中图1a是在10000倍率下的SEM 图,图1b是在50000倍率下的SEM 图,图1c是在100000倍率下的SEM 图。对比例3的低倍SEM图中呈现出水凝胶典型的三维网络结构,预示着材料具有优秀的机械性能。此外,大量的纳米结构的聚苯胺颗粒均匀的分布于水凝胶网络中,表明材料具有稳定且优异的导电性能。
图2展示了对比例1、实施例1、实施例2和实施例3的电导率对比图。对比例1由于缺少导电填料,材料的电导率较低。随着苯胺含量的逐渐增加,实施例1、实施例2、实施例3的电导率逐渐增加,表明材料具有优异的导电能力。
图3展示了对比例1、实施例1、实施例2和实施例3的拉伸应力应变曲线。对比例1展示出了最低的断裂伸长率,随着聚苯胺的引入,实施例1展示出了超长的断裂伸长率。随着聚苯胺含量的进一步增加,材料内动态氢键含量的进一步增加,材料的断裂伸长率略有下降,最大应力得到了提升。
图4展示了对比例1、实施例1、实施例2和实施例3的压缩应力应变曲线。四个样品君和耐受90%的差大压缩形变,并且可以恢复至初始状态,具有优秀的机械型形变耐受性。此外,随着聚苯胺含量的增加,最大压缩应力逐渐提升,但始终为千帕级,依旧属于超软材料的范围。这种超软、超强机械耐受性极大的克服了目前大多数聚苯胺水凝胶机械性能较差的缺点。
图5展示了由实施例3组装的应变传感器在拉伸模式下的应变-电阻曲线。传感器在0%-200%的展示出线性的应变-电阻响应,线性度为2.3,表明该传感器具有灵敏的拉伸传感性能。此外,由于材料优秀的回弹性,传感器在拉伸及回复过程中,应变-电阻曲线基本重合,表明传感器具有优秀的使用循环性。
图6展示了由实施例3组装的应变传感器在不同拉伸形变下的应变-电阻曲线。传感器在50%-200%不同的拉伸形变下,均可做出稳定的可重复的电阻响应,表明该传感器具有较宽的适用范围和优秀的循环稳定性。
图7展示了由实施例3组装的应变传感器在压缩模式下的压力-电阻曲线。传感器在1千帕以内的较低压力区间内,可以做出灵敏的电信号响应,灵敏度为0.18 kPa-1。这种优秀的电阻响应灵敏度主要归因于材料优秀的导电能力以及较为柔软的力学性能。
图8展示了由实施例3组装的应变传感器在不同最大压力下的下的压力-电阻曲线。传感器在200-1000帕这一较小的压力区间内,均可以做出灵敏且可重复的电阻响应,表明该传感器对于小压力可以进行高灵敏度的检测,并且这一传感性能具有优秀的循环稳定性。
图9展示了由实施例3组装的应变传感器检测人体手腕和手肘弯曲的电信号曲线。由于手腕和手肘在弯曲时的形变大小不同,传感器可以通过对与形变的检测从而推测所运动部位的不同。手腕运动时形变较小,故而传感器所展示的电信号较小,手肘弯曲时形变较大,孤儿传感器所展示的电信号较大。这表明该传感器具有潜在的人体行为检测能力。
图10展示了由实施例3组装的应变传感器检测水滴下落的电信号曲线。由于水凝胶具有超柔软的特性,故而该传感器具有超高灵敏度的检测能力,对于水滴下落时,可以对于这种微小的形变做出精确的响应。

Claims (8)

1.一种纳米结构聚苯胺复合水凝胶的制备方法,其特征在于包括如下步骤:
步骤1:将苯胺单体、酸掺杂剂溶解于甘油中,再加入引发剂的水溶液,在低温环境下剧烈震荡,持续反应,制备得到聚苯胺混合溶液;
步骤2:在步骤1中的聚苯胺混合溶液中加入聚乙二醇单甲醚丙烯酸酯、丙烯酸和引发剂,持续通入氮气后倒入模具内,热引发制备得到纳米结构聚苯胺复合水凝胶。
2.根据权利要求1所述的纳米结构聚苯胺复合水凝胶的制备方法,其特征在于上述步骤1中的酸掺杂剂为植酸,引发剂为过硫酸铵,反应温度为0℃,反应时间为24h。
3.根据权利要求1所述的纳米结构聚苯胺复合水凝胶的制备方法,其特征在于上述步骤1中引发剂、苯胺单体、酸掺杂剂、甘油、水溶液的质量比为1:1:0.5:50:50。
4.根据权利要求3所述的纳米结构聚苯胺复合水凝胶的制备方法,其特征在于上述水溶液为去离子水。
5.根据权利要求1所述的纳米结构聚苯胺复合水凝胶的制备方法,其特征在于上述步骤2中聚乙二醇单甲醚丙烯酸酯的分子量为480,引发剂为4,4'-偶氮双(4-氰基戊酸),热引发反应温度为65℃,反应时间为12h。
6.根据权利要求1所述的纳米结构聚苯胺复合水凝胶的制备方法,其特征在于上述步骤2中引发剂、聚乙二醇单甲醚丙烯酸酯、丙烯酸、聚苯胺混合溶液的质量比为1:50:50:400。
7.一种基于权利要求1所述的制备方法得到的纳米结构聚苯胺复合水凝胶。
8.一种基于权利要求1所述的制备方法得到的纳米结构聚苯胺复合水凝胶的应用。
CN202110655083.8A 2021-06-11 2021-06-11 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用 Active CN113336971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110655083.8A CN113336971B (zh) 2021-06-11 2021-06-11 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110655083.8A CN113336971B (zh) 2021-06-11 2021-06-11 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN113336971A CN113336971A (zh) 2021-09-03
CN113336971B true CN113336971B (zh) 2022-05-24

Family

ID=77477070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110655083.8A Active CN113336971B (zh) 2021-06-11 2021-06-11 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN113336971B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213681B (zh) * 2022-01-05 2023-07-14 东华大学 一种热塑性3d打印水凝胶及其制备方法及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250639A (en) * 1991-07-09 1993-10-05 Tomoegawa Paper Co., Ltd. Polyaniline derivatives and their production process
EP1228124B1 (en) * 2000-05-27 2004-11-03 Q-Sys Co., Ltd Electrically conductive microgel and method for preparing the same
CN1159366C (zh) * 2001-10-08 2004-07-28 东华大学 聚苯胺-聚丙烯酸水凝胶的制备方法
CN104371070B (zh) * 2014-05-23 2017-02-15 江苏苏博特新材料股份有限公司 一种酰胺/酰亚胺结构的聚羧酸混凝土高效减水剂及其制备方法
KR20180083946A (ko) * 2015-12-11 2018-07-23 후지필름 가부시키가이샤 고체 전해질 조성물, 바인더 입자, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 이들의 제조 방법
EP3397689A4 (en) * 2015-12-29 2019-08-28 Northeastern University BIOKOMPATIBLE AND CONDUCTIVE HYDROGELS WITH ADJUSTABLE PHYSICAL AND ELECTRICAL PROPERTIES
CN109897316B (zh) * 2019-03-05 2021-10-12 中原工学院 一种聚苯胺/聚乙烯醇复合导电凝胶的制备方法
CN110157013B (zh) * 2019-05-30 2021-07-27 福州大学 一种高拉伸性聚苯胺基柔性导电水凝胶的制备方法

Also Published As

Publication number Publication date
CN113336971A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Su et al. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
Ding et al. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor
Sun et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness
Li et al. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors
Sun et al. Highly transparent, adhesive, stretchable and conductive PEDOT: PSS/polyacrylamide hydrogels for flexible strain sensors
CN110760075B (zh) 一种Ti3C2Tx复合双网络水凝胶及其制备和应用
CN111040194A (zh) 导电水凝胶及其制备方法和应用
Pan et al. Highly sensitive, stretchable and durable strain sensors based on conductive double‐network polymer hydrogels
Irfan et al. Polyaniline-NBR blends by in situ polymerization: Application as stretchable strain sensors
CN113336971B (zh) 一种纳米结构聚苯胺复合水凝胶及其制备方法及应用
CN110540658B (zh) 一种基于丙烯酰胺/氧化碳纳米管纳米复合水凝胶传感器及其制备方法
CN109180962A (zh) 一种paa类果胶自愈合水凝胶及其电容式传感器的制备方法
CN112979848B (zh) 一种液态金属水凝胶及其制备方法和应用
Shekh et al. Dynamically bonded, tough, and conductive MXene@ oxidized sodium alginate: Chitosan based multi-networked elastomeric hydrogels for physical motion detection
Yao et al. Flexible, programable sensing system with poly (AAm-HEMA-SA) for human motion detection
Li et al. A stretchable and self-healable conductive hydrogels based on gelation/polyacrylamide/polypyrrole for all-in-one flexible supercapacitors with high capacitance
Zhang et al. Mechanically robust, self-healing and conductive rubber with dual dynamic interactions of hydrogen bonds and borate ester bonds
CN115219078A (zh) 一种基于刺槐豆胶水凝胶的压阻传感器及其制备方法和应用
Li et al. Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors
CN113185715A (zh) 一种自愈合导电聚乙烯醇基水凝胶及其制备方法与应用
Gao et al. Stretchable polyaniline@ epoxidized natural rubber composites with strong 3D conductive networks for high performance strain sensors
Wu et al. Movable-crosslinking tough hydrogels with lithium ion as sensitive and durable compressive sensor
Zhan et al. Preparation and application of a stretchable, conductive and temperature-sensitive dual-network nanocomposite hydrogel
CN114349980B (zh) 一种导电水凝胶及其制备方法和应用
Heo et al. Polyelectrolyte-derived adhesive, super-stretchable hydrogel for a stable, wireless wearable sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant