CN110776654B - 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用 - Google Patents

芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN110776654B
CN110776654B CN201911100979.9A CN201911100979A CN110776654B CN 110776654 B CN110776654 B CN 110776654B CN 201911100979 A CN201911100979 A CN 201911100979A CN 110776654 B CN110776654 B CN 110776654B
Authority
CN
China
Prior art keywords
pva
solution
composite hydrogel
hydrogel
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911100979.9A
Other languages
English (en)
Other versions
CN110776654A (zh
Inventor
贾红兵
王晶
林炎坤
尹清
张旭敏
宋万诚
李雪雨
陆少杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911100979.9A priority Critical patent/CN110776654B/zh
Publication of CN110776654A publication Critical patent/CN110776654A/zh
Application granted granted Critical
Publication of CN110776654B publication Critical patent/CN110776654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用。所述的复合水凝胶是以芳纶纳米纤维和聚乙烯醇水凝胶为基质,并在酸性条件下原位聚合聚苯胺制得。在多种氢键的相互作用下,复合水凝胶的力学强度和韧性显著提升。同时,由于存在导电聚苯胺,本发明的复合水凝胶具有较高的灵敏度,并且在实际应用中能重复稳定的检测出电信号的变化。本发明的复合水凝胶具有高力学强度、高韧性和高灵敏度,适用于可穿戴式应变传感器领域。

Description

芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和 应用
技术领域
本发明属于聚合物复合材料制备技术领域,涉及一种芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用。
背景技术
应变传感材料是指以信号传导的形式将外界刺激(如拉伸、压缩等)转化为可传输的电信号来实现对外界刺激实时检测的功能材料。该类材料在人体临床诊断、健康监控评估、柔性触摸屏、柔性电子皮肤以及工业机器人等领域拥有极大的应用潜力。水凝胶是一种柔软和湿润聚合物,通过物理或者化学交联相互缠结形成三维空间网状结构的固体物质,不仅具有与生物组织相似的良好柔韧性,而且与传统的刚性聚合物材料相比,具有良好的拉伸性和恢复能力,是制备可穿戴或植入设备的理想选择。文献《J.Mater.Chem.C,2018,6,9200-9207》中将聚丙烯酸(PAA)和导电聚苯胺(PANI)复合制备了一类具有双重协同网络的极易拉伸和导电的水凝胶。该水凝胶可用于制造应变传感器,具有良好的灵敏度(GF=0.48~0.63)和宽广的感应范围(0~1130%),但是其最大拉伸强度仅为0.3MPa。因此,实现高强度,高韧性和高传感灵敏度是应变传感器发展的一个重要方向。
聚对苯二甲酰对苯二胺(PPTA)是一种高性能芳纶纤维(ANF),自七十年代以来其已作为一种轻质高强材料被广泛应用于军事领域。经溶液处理的ANF保留其宏观母体的高机械性能,可以作为高强度柔性导体和电池隔膜的构件。文献《Advanced Materials,2018,30(1):1703343-1703348》采用简单的溶剂交换法可以实现ANF纳米纤维的凝胶化,同时通过引入聚乙烯醇(PVA)与纳米纤维复合制备出的水凝胶材料在具有高持水量的同时,其拉伸模量、断裂伸长率、压缩强度分别可达9.1MPa、325%、26MPa。目前,对基于ANF纳米纤维水凝胶的研究相对缺乏,仍然主要集中于其优异的力学性能。
发明内容
本发明的目的在于提供一种芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用。
实现本发明目的的技术解决方案为:
芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶(ANF/PVA/PANI)的制备方法,具体步骤如下:
(1)采用二甲基亚砜(DMSO)/KOH体系将PPTA纺丝纤维溶解制成芳纶纳米纤维溶液;
(2)将PVA溶解于DMSO中制成PVA溶液;
(3)将芳纶纳米纤维溶液与PVA溶液搅拌混合均匀,并将得到的混合溶液真空干燥除去多余的溶剂,控制固体含量为10~15%;
(4)将步骤(3)得到的混合体系浇铸在模具中,然后浸入水中,得到具有特定几何形状的ANF/PVA水凝胶;
(5)将ANF/PVA水凝胶浸泡在含有0.3~0.4M苯胺(ANI)的盐酸溶液中,冰水浴下浸渍24小时以上,然后加入预冷的含有过硫酸铵的盐酸水溶液,冰水浴下反应12~24h,反应结束后洗涤除去未反应的单体,得到ANF/PVA/PANI复合水凝胶。
进一步的,步骤(1)中,所述的芳纶纳米纤维溶液的浓度为10~20mg/mL,溶解时间为四周以上,溶解温度为室温。
进一步的,步骤(2)中,所述的PVA溶液的浓度为80~100mg/mL。PVA溶液的配制如下:将分子量为145000~165000的PVA置于DMSO中室温充分溶胀,然后在90~95℃的高温下溶解至完全透明,静置至气泡完全消失。
进一步的,步骤(3)中,所述的芳纶纳米纤维溶液和PVA溶液的质量比为1:5;搅拌混合温度为50~60℃,搅拌时间为4~6h;真空干燥为90~100℃。
进一步的,步骤(4)中,水中的浸渍时间为24h以上。
进一步的,步骤(5)中,所述的过硫酸铵的浓度0.1~0.15M,盐酸溶液的浓度为1~1.5M。
进一步的,步骤(5)中,洗涤方法为将ANF/PVA/PANI复合水凝胶放入水中,浸泡24h以上。
本发明与现有技术相比,其显著优点是:
(1)本发明将芳纶纳米纤维应用至水凝胶中,并将其与聚乙烯醇混合,实现了硬相和软相的完美结合,提高了水凝胶的机械性能。
(2)以芳纶纳米纤维和聚乙烯醇作为基质,并在其上原位聚合聚苯胺作为导电活性材料。同时,三元复合物存在的多种氢键作用,进一步提高了水凝胶的力学强度。
(3)本发明的ANF/PVA/PANI复合水凝胶具有导电性、高强度、高韧性和高应变灵敏度等优点,在大应变和小应变下都能重复多次检测出稳定的电信号,可以作为可穿戴式应变传感器,用于人体各关节的运动检测。
附图说明
图1是ANF/PVA/PANI复合水凝胶的制备流程示意图;
图2是ANF/PVA/PANI复合水凝胶的应力-应变曲线图;
图3是ANF/PVA/PANI复合水凝胶应变传感器的相对电阻变化率(ΔR/R0)与拉伸应变的关系曲线;
图4是ANF/PVA/PANI复合水凝胶应变传感器应用于监测人体脉搏和手指关节活动的相对电阻变化率(ΔR/R0)曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
本发明的ANF/PVA/PANI复合水凝胶的制备流程示意图如图1所示。
下述实施例采用的PPTA为商业购买得到的凯夫拉纺丝纤维。
实施例1
称取1g凯夫拉纺丝纤维和1.5gKOH,加入DMSO,在室温下搅拌四周,得到20mg/mL的芳纶纳米纤维溶液。
称取5g分子量为145000~165000的聚乙烯醇,加入DMSO,室温充分溶胀,然后在90~95℃的高温下溶解至完全透明,静置至气泡完全消失,得到100mg/mL的PVA溶液。
将等体积的20mg/mL芳纶纳米纤维溶液和100mg/mL PVA溶液(质量比ANF:PVA=1:5),在60℃下搅拌混合,搅拌时间为4h;所得到的混合体系在真空干燥箱中干燥,除去多余的溶剂,控制固体含量在10%。
将上述混合体系浇铸在模具中,然后浸入水中溶剂交换24h,形成具有特定几何形状的ANF/PVA水凝胶。
将ANF/PVA水凝胶裁剪成尺寸为1×3cm2,并将其置于含有1.1mL苯胺的20mL浓度为1M的盐酸溶液中,在冰水浴条件下浸渍24h。将预冷的含有0.72g过硫酸铵的20mL浓度为1M的盐酸溶液倒入上述混合物中,在冰水浴条件下再浸渍24h,最后将ANF/PVA/PANI复合水凝胶在水中浸泡24h,洗涤得到ANF/PVA/PANI复合水凝胶。该ANF/PVA/PANI复合水凝胶的断裂伸长率为186%,拉伸强度为2.18MPa,ΔR/R0最高可达19。
实施例2
称取1g凯夫拉纺丝纤维和1.5g KOH,加入DMSO,在室温下搅拌四周,得到20mg/mL的芳纶纳米纤维溶液。
称取5g分子量为145000~165000的聚乙烯醇,加入DMSO,室温充分溶胀,然后在90~95℃的高温下溶解至完全透明,静置至气泡完全消失,得到100mg/mL的PVA溶液。
将等体积的20mg/mL芳纶纳米纤维溶液和100mg/mL PVA溶液(质量比ANF:PVA=1:5),在50℃下搅拌混合,搅拌时间为6h;所得到的混合体系在真空干燥箱中干燥,除去多余的溶剂,控制固体含量在15%。
将上述混合体系浇铸在模具中,然后浸入水中溶剂交换24h,形成具有特定几何形状的ANF/PVA水凝胶。
将ANF/PVA水凝胶裁剪成尺寸为1×3cm2,并将其置于含有1.48mL苯胺的20mL浓度为1M的盐酸溶液中,在冰水浴条件下浸渍24h。将预冷的含有0.72g过硫酸铵的20mL浓度为1M的盐酸溶液倒入上述混合物中,在冰水浴条件下下再浸渍24h,最后将ANF/PVA/PANI复合水凝胶在水中浸泡24h,洗涤得到ANF/PVA/PANI复合水凝胶。该ANF/PVA/PANI复合水凝胶的断裂伸长率为125%,拉伸强度为2.5MPa,ΔR/R0最高可达21。
对比例1
按照指定的各组分含量重复实施例1的方法,但在材料组成中不含有聚苯胺,且固体含量控制在8~10%。该水凝胶的断裂伸长率30%,拉伸强度为0.37MPa,无导电性。
对比例2
按照指定的各组分含量重复实施例1的方法,但在材料组成中不含有聚苯胺。该水凝胶的断裂伸长率55%,拉伸强度为1.1MPa,无导电性。
对比例3
按照指定的各组分含量重复实施例1的方法,但在材料组成中含有0.37mL苯胺。该复合水凝胶的断裂伸长率为76%,拉伸强度为1.62MPa,ΔR/R0最高可达5.7。
对比例4
按照指定的各组分含量重复实施例1的方法,但材料组成中用聚(4-苯乙烯磺酸盐)水凝胶代替芳纶纳米纤维和聚乙烯醇水凝胶。该水凝胶的断裂伸长率300%,拉伸强度为10kPa,ΔR/R0最高可达11。
表1为实施例1-2和对比例1-4的性能测试数据。
表1
Figure BDA0002269856880000051
本发明采用芳纶纳米纤维/聚乙烯醇水凝胶为基础,在其上原位聚合聚苯胺为导电网络制备了复合水凝胶应变传感器,这相比于其它类型的水凝胶传感器极大地提高了其拉伸强度、断裂伸长率和传感灵敏度,弥补了水凝胶应变传感器机械性弱这一方面的短板,达到了高机械性能和高灵敏度的统一。

Claims (10)

1.芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶的制备方法,其特征在于,具体步骤如下:
(1)采用DMSO/KOH体系将PPTA纺丝纤维溶解制成芳纶纳米纤维溶液;
(2)将PVA溶解于DMSO中制成PVA溶液;
(3)将芳纶纳米纤维溶液与PVA溶液搅拌混合均匀,并将得到的混合溶液真空干燥除去多余的溶剂,控制固体含量为10~15%;
(4)将步骤(3)得到的混合体系浇铸在模具中,然后浸入水中,得到具有特定几何形状的ANF/PVA水凝胶;
(5)将ANF/PVA水凝胶浸泡在含有0.3~0.4M苯胺的盐酸溶液中,冰水浴下浸渍24小时以上,然后加入预冷的含有过硫酸铵的盐酸水溶液,冰水浴下反应12~24h,反应结束后洗涤除去未反应的单体,得到ANF/PVA/PANI复合水凝胶。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的芳纶纳米纤维溶液的浓度为10~20mg/mL,溶解时间为四周以上,溶解温度为室温。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的PVA溶液的浓度为80~100mg/mL。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,PVA溶液的配制如下:将分子量为145000~165000的PVA置于DMSO中室温充分溶胀,然后在90~95℃的高温下溶解至完全透明,静置至气泡完全消失。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述的芳纶纳米纤维溶液和PVA溶液的质量比为1:5;搅拌混合温度为50~60℃,搅拌时间为4~6h;真空干燥为90~100℃。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,水中的浸渍时间为24h以上。
7.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,所述的过硫酸铵的浓度0.1~0.15M,盐酸溶液的浓度为1~1.5M。
8.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,洗涤方法为将ANF/PVA/PANI复合水凝胶放入水中,浸泡24h以上。
9.根据权利要求1至8任一所述的制备方法制得的芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶。
10.根据权利要求9所述的芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶在制备应变传感器中的应用。
CN201911100979.9A 2019-11-12 2019-11-12 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用 Active CN110776654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911100979.9A CN110776654B (zh) 2019-11-12 2019-11-12 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911100979.9A CN110776654B (zh) 2019-11-12 2019-11-12 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110776654A CN110776654A (zh) 2020-02-11
CN110776654B true CN110776654B (zh) 2022-06-28

Family

ID=69390482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911100979.9A Active CN110776654B (zh) 2019-11-12 2019-11-12 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110776654B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776654B (zh) * 2019-11-12 2022-06-28 南京理工大学 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用
CN112212779B (zh) * 2020-09-04 2022-05-17 厦门大学 一种水凝胶柔性应变传感器的制备方法
CN115073774B (zh) * 2021-03-12 2023-08-08 国科广化精细化工孵化器(南雄)有限公司 一种芳纶增强pva水凝胶的制备方法及其应用
CN113325141A (zh) * 2021-07-13 2021-08-31 浙江农林大学 一种室温下检测氨气的高灵敏度柔性气体传感材料的制备方法
CN113416414B (zh) * 2021-07-30 2022-04-22 湖南大学 高力学强度芳纶纳米纤维/多孔石墨烯/聚苯胺组合物、水凝胶及薄膜的制备方法和应用
CN114395250B (zh) * 2022-02-28 2023-09-19 陕西科技大学 一种ANF/CNT/PPy纳米线传感器及其制备方法
CN115075011B (zh) * 2022-05-25 2023-03-21 重庆大学 一种高强韧性的各向异性纤维基水凝胶及其制备方法与离子导电水凝胶
CN115368625B (zh) * 2022-09-23 2023-07-25 中国科学院苏州纳米技术与纳米仿生研究所 一种芳纶辅助的聚乙烯醇气凝胶、其制备方法及应用
CN116836498B (zh) * 2023-07-05 2024-08-06 青岛农业大学 一种复合柔性导电水凝胶、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116598A1 (en) * 2015-12-30 2017-07-06 The Regents Of The University Of Michigan Gels and nanocomposites containing aramid nanofibers
CN106977763A (zh) * 2017-04-20 2017-07-25 哈尔滨工业大学 一种芳纶纳米纤维气凝胶的制备方法
CN110776654A (zh) * 2019-11-12 2020-02-11 南京理工大学 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116598A1 (en) * 2015-12-30 2017-07-06 The Regents Of The University Of Michigan Gels and nanocomposites containing aramid nanofibers
CN108699259A (zh) * 2015-12-30 2018-10-23 密执安州立大学董事会 含anf的凝胶和纳米复合材料
CN106977763A (zh) * 2017-04-20 2017-07-25 哈尔滨工业大学 一种芳纶纳米纤维气凝胶的制备方法
CN110776654A (zh) * 2019-11-12 2020-02-11 南京理工大学 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrically Conductive Composite of Polyaniline-Aramid and Its Application as a Cathode Material for Secondary Battery;Keiko KOGA et al.;《Polymer Journal》;19891231;第21卷(第9期);结论部分 *
high strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers;Lyu Jing et al.;《ADVANCED FUNCTIONAL MATERIALS》;20161021;第26卷(第46期);实验部分 *
water-rich biomimetic composites with abiotic self-organizing nanofiber network;Xu Lizhi et al.;《ADVANCED MATERIALS》;20180327;第30卷(第1期);实验部分 *

Also Published As

Publication number Publication date
CN110776654A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
CN110776654B (zh) 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用
Wang et al. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles
CN110172161B (zh) 一种三重网状结构水凝胶的制备方法及其应用
Yan et al. Freeze-resistant, rapidly polymerizable, ionic conductive hydrogel induced by Deep Eutectic Solvent (DES) after lignocellulose pretreatment for flexible sensors
Gao et al. A highly adhesive, self-healing and perdurable PEDOT: PSS/PAA–Fe 3+ gel enabled by multiple non-covalent interactions for multi-functional wearable electronics
Wan et al. Recent progress in flexible nanocellulosic structures for wearable piezoresistive strain sensors
Li et al. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity
Wang et al. Polypyrrole-doped conductive self-healing multifunctional composite hydrogels with a dual crosslinked network
Tang et al. Design of a DNA‐based double network hydrogel for electronic skin applications
Li et al. Adaptable ionic liquid-containing supramolecular hydrogel with multiple sensations at subzero temperatures
CN108659237B (zh) 一种导电性能随温度调谐的纳米纤维复合水凝胶及其制备方法和应用
Zhang et al. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix
Yue et al. Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on phytic acid and cellulose nanocrystals for high strain sensing applications
Wu et al. Electrical conductivities and sensing mechanisms of low-temperature 3D printing conductive hydrogels with good sensitivity
Feng et al. Cryo‐spun encapsulation of polyaniline‐based conducting hydrogels with high sensitivity, wide‐range linearity, and environmental stability for fibrous strain sensors
Chen et al. Tough, conductive hydrogels with double-network based on hydrophilic polymer assistant well-dispersed carbon nanotube for innovative force sensor
Li et al. Mussel-inspired PDA@ PEDOT nanocomposite hydrogel with excellent mechanical strength, self-adhesive, and self-healing properties for a flexible strain sensor
CN116731459A (zh) 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用
CN117430904A (zh) 综合性能优异的耐水型导电水凝胶及其制备方法和应用
Pan et al. High‐strength, ultrastretchable hydrophobic association hydrogel reinforced by tailored modified carboxymethyl cellulose
CN112113498B (zh) 一种高灵敏度压阻式应变传感器的制备方法
CN110964214B (zh) 一种电刺激响应型芳纶纳米纤维复合水凝胶的制备方法
CN114907661B (zh) 一种可用于柔性应变传感器的水凝胶及其制备方法和应用
CN114716718B (zh) 双网络导电水凝胶及其制备方法
Cui et al. Strong and tough conductive hydrogels via an amphiphilic macromolecular crosslinker for flexible strain sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant