CN114907661B - 一种可用于柔性应变传感器的水凝胶及其制备方法和应用 - Google Patents

一种可用于柔性应变传感器的水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN114907661B
CN114907661B CN202210666142.6A CN202210666142A CN114907661B CN 114907661 B CN114907661 B CN 114907661B CN 202210666142 A CN202210666142 A CN 202210666142A CN 114907661 B CN114907661 B CN 114907661B
Authority
CN
China
Prior art keywords
hydrogel
galactomannan
folic acid
preparing
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210666142.6A
Other languages
English (en)
Other versions
CN114907661A (zh
Inventor
凌喆
勇强
马俊美
王欣妍
黄曹兴
赖晨欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202210666142.6A priority Critical patent/CN114907661B/zh
Publication of CN114907661A publication Critical patent/CN114907661A/zh
Application granted granted Critical
Publication of CN114907661B publication Critical patent/CN114907661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种可用于柔性应变传感器的水凝胶及其制备方法和应用。制备步骤包括:制备半乳甘露聚糖粉末;制备半乳甘露聚糖‑叶酸共溶剂;向半乳甘露聚糖‑叶酸共溶剂中加入聚丙烯酰胺和N,N‑亚甲基双丙烯酰胺;将混合液置于模具中,加热固化成形制备获得水凝胶。本发明利用半乳甘露聚糖、叶酸、和聚丙烯酰胺制备出双网络结构的水凝胶,具有良好的导电性能、抗菌性能且高抗疲劳性、高韧性、高拉伸压缩强度,可用于导电传感,监测细微应力应变,在柔性传感器件和可穿戴电子设备等领域有广泛的应用潜能。

Description

一种可用于柔性应变传感器的水凝胶及其制备方法和应用
技术领域
本发明属于高分子复合导电材料技术领域,具体涉及一种可用于柔性应变传感器的水凝胶及其制备方法和应用。
背景技术
现代社会的发展促使人类对具有多种应用功能的先进材料有了深刻的认识。作为一种有前途的材料,具有三维交联亲水网络的水凝胶近来受到了极大的关注。独特的柔软湿润材料提供了一系列有用的特性,包括高渗透性、生物相容性、可成型性和低摩擦系数。因此,水凝胶材料在组织工程、生物医学、仿生材料、药物递送、航空航天以及生物传感器领域得到了广泛应用。同时,水凝胶作为一种由高分子聚合物通过化学交联或物理交联形成的具有三维网状结构的软物质材料,具有良好的生物相容性和可拉伸性,成为了制备柔性应变传感器的候选材料,已被广泛应用在人机交互、人体运动和健康监测和软机器人。例如,CN110183688公开了一种基于纳米纤维素碳纳米管/聚丙烯酰胺导电水凝胶的柔性应变传感器,CN110105590公开了一种基于羧甲基纤维素/氯化锂-聚丙烯酰胺水凝胶的性应变传感器的制备方法及其应用。
但是,在已经公开的发明专利中,导电传感的水凝胶大多须掺杂石油基高聚物,来源成本较高,具有不可再生利用、污染环境等缺点。此外,其制备流程大多较为繁杂,操作复杂。因此,寻求生物基分子作为水凝胶骨架,通过化学、物理交联便捷制备多功能水凝胶,具有重大意义。目前,可参与水凝胶传感器制备的生物大分子种类有限,且大多受限于较低的机械强度和较弱的抗菌性能,成为阻碍其实际应用的一个问题。在众多生物分子中,半纤维多糖被认为是制备水凝胶的理想材料,因为其表面大量的羟基赋予其与其他分子接枝、交联的无限潜力。
发明内容
为了克服现有技术中的不足,本发明所要解决的技术问题是提供一种可用于柔性应变传感器的水凝胶,具有机械强度、抗菌能力和抗疲劳性高,同时可以通过改变拉伸变形的程度来调节导电性等特性。本发明所要解决的另一技术问题是提供一种上述可用于柔性应变传感器的水凝胶的制备方法。本发明还要解决的一个技术问题是提供一种上述水凝胶的应用。
为解决上述技术问题,本发明采用的技术方案为:
一种可用于柔性应变传感器的水凝胶,制备原料中含有半乳甘露聚糖和叶酸组分。
所述的半乳甘露聚糖的用量为0.045~0.36g,其中优选的用量为0.27g。
一种制备所述的可用于柔性应变传感器的水凝胶的方法,包括以下步骤:
1)制备半乳甘露聚糖粉末;
2)制备半乳甘露聚糖-叶酸共溶剂;
3)将半乳甘露聚糖-叶酸共溶剂加入丙烯酰胺,加入过硫酸铵和N,N-亚甲基双丙烯酰胺;
4)将混合液置于模具中,加热固化获得水凝胶。
步骤1)的具体过程为:将田菁种子的胚乳在蒸馏水中润涨24小时;研磨成粉末,从温水中重新分散并离心;用体积分数95%的乙醇沉淀,冷冻干燥制备半乳甘露聚糖粉末。半乳甘露聚糖粉末的重均分子量为4.0×105da,聚合物分散性指数(PDI)为1.47,甘露糖与半乳糖比值为1.5。
步骤2)的具体过程为:将0.03mmol叶酸溶解在15mL 0.06M盐酸中,添加0.045~0.36g半乳甘露聚糖;超声处理30分钟使混合溶液完全溶解;在室温下进行磁搅拌24小时。
步骤3)的具体过程为:将2.84g丙烯酰胺溶解到半乳甘露聚糖-叶酸共溶剂中;加入0.1g过硫酸铵和0.02gN,N-亚甲基双丙烯酰胺,并快速搅拌。
步骤4)中,在55℃下烘箱加热固化1小时终止反应。
所述的水凝胶在制备用于监测细微关节运动的导电传感器和/或可穿戴电子设备中的应用。
所述的水凝胶在抗菌中的应用。
本申请为了提高水凝胶的机械强度,采用的解决方案是制备双网络水凝胶,该水凝胶由两个具有不对称结构的不同聚合物网络组成,包括一个刚性和脆性的第一网络和另一个柔性和可拉伸的第二网络。同时,为了克服重复加载和卸载下疲劳抗力差的问题,本申请引入可逆的非共价键来取代第一个网络中的牺牲共价键是主要策略,该思路集合了化学和物理交联网络的优势,显示出混合双网络水凝胶具有良好的抗疲劳性。因此,本申请首先通过将半乳甘露糖与叶酸结合来制备基于转基因的水凝胶,以引入物理连接作为第一网络。此外,聚丙烯酰胺是韧性和韧性的第二网络,用于耗散能量、承受应力,从而提高韧性,尤其是抗疲劳性。此外,本申请证明基于半乳甘露聚糖的水凝胶具有良好的抗菌能力,并将其用作监测人体细微运动的导电传感器。
有益效果:与现有技术相比,本发明的技术优势包括:
1)本发明所提供的水凝胶制备方法操作简单,反应条件温和、无污染、成本低,可进行批量生产。
2)本申请的水凝胶引入第二个共价网络,由丙烯酰胺单体和N,N-亚甲基双丙烯酰胺交联剂通过自由基聚合形成,存在直径约300nm的胶束,比溶解的纯半乳甘露聚糖和添加叶酸的半乳甘露聚糖的结构大;同时,胶束通过纳米纤维结构连接,可以被塑造成各种形状且韧性强。
3)结合弹性和刚度的水凝胶的粘弹性表明,所有水凝胶样品都具有典型的弹性行为,且双网络中的分子连接良好,从而提供了材料稳定的力学性能;所有样品均可见典型的多孔微结构,从而有助于提高实际应用的机械性能。
4)制备的水凝胶在压力卸载后几乎没有应变损失,显示了显著的形状恢复,表现出优异的形状恢复和抗疲劳性能,可应用于监测细微关节运动的导电传感器和可穿戴电子设备。
5)本发明所得材料的伸长或恢复变化将导致聚合物网络和叶酸分布的中断或重建,从而导致材料的电阻变化,进而改变材料的导电性;这种对外界刺激的灵敏响应在应变传感器领域具有广阔的应用前景。此外,制成传感器对材料进行拉伸,这个过程材料可以循环使用。
6)基于半乳甘露聚糖制备的水凝胶在实际应用中可以防止微生物的攻击,可使细菌存活率下降至约20%,对80%以上的大肠杆菌具有抑制作用。
附图说明
图1(a)是水凝胶制备过程示意图;(b)热诱导成型前混合溶液的扫描电镜图像;(c)水凝胶被塑造成各种形状图;
图2是水凝胶的流变特性随剪切应力(a)、频率(b)的动态变化图;
图3是水凝胶的机械性能图:(a)拉伸强度应变测试图,(b)拉伸模量和(c)计算韧性;
图4是水凝胶4在70%应变下对样品进行100个循环(a)的循环加载-卸载压缩试验,以及循环1(b)和循环100(c)的单曲线图;
图5是水凝胶的电导率比较(a);半乳甘露聚糖添加量为0.27g的水凝胶在初始和拉伸状态下的亮度现象(b);
图6是水凝胶4作为应变传感器的应用:(a)通过监测手臂弯曲度来测量传感器的I-t曲线;水凝胶应变传感器的重复I-t曲线变化粘附在食指上,以监测其弯曲(b)和手腕上,以监测排球手传球姿势(c);
图7是水凝胶的抗菌活性对照图(以大肠杆菌为对照):(a)细菌生长的照片,(b)细菌存活,以及(c)培养24小时后的抗菌区图;
图8是一定放大倍数的冻干半乳甘露聚糖基水凝胶的扫描电镜观察图;
图9是目前的半乳甘露聚糖基水凝胶与报道的木质纤维生物分子水凝胶材料的一系列适用性能比较结果图。
具体实施方法
下面结合附图和具体实施方式对本发明作进一步描述。
实施例1
1)提取半乳甘露聚糖粉末:取田菁的胚乳在蒸馏水中润胀24h,然后研磨成粉末。用温水将粉末重新分散和离心,离心机8000转离心5min。用95%(v/v)乙醇沉淀离心获得的上清液,然后冷冻干燥制备半乳甘露聚糖粉末。
通过凝胶渗透色谱法,将粉末样品配制成溶液,根据紫外检测的洗脱峰位置,量出洗脱体积V0,计算待测蛋白的Kav值,测定半乳甘露聚糖粉末的重均分子量和聚合物分散性指数(PDI)分别为~4.0×105da和1.47,甘露糖与半乳糖比值为1.5。
2)半乳甘露聚糖基水凝胶的制备:首先,将0.03mmol的叶酸溶解在15mL HCl(0.06M)溶剂中,加入表1用量的半乳甘露聚糖,混合的溶液通过超声处理30分钟至完全溶解,在室温下进行磁搅拌24小时,获得半乳甘露聚糖-叶酸共溶剂。将40mmol丙烯酰胺溶解到上述半乳甘露聚糖-叶酸共溶剂中,加入0.1g过硫酸铵和0.02g N,N-亚甲基双丙烯酰胺并快速搅拌后,将均相溶液移至具有不同形状的反应模具中。通过在55℃下烘箱加热固化1h终止反应,形成稳定的水凝胶。
表1半乳甘露聚糖的用量
产品 水凝胶1 水凝胶2 水凝胶3 水凝胶4 水凝胶5
GM用量(g) 0.045 0.09 0.18 0.27 0.36
图1为本申请的水凝胶制备原理图,其中,(a)半乳甘露聚糖基水凝胶制备过程示意图;(b)热诱导成型前混合溶液的电镜图像;(c)半乳甘露聚糖基水凝胶被塑造成各种形状。具有高分子量和丰富侧链羟基的半乳甘露聚糖大分子随着叶酸的插层而溶解,该反应产生大量氢键连接,作为水凝胶的第一个非共价网络。这种胶体复合材料缺乏机械强度和成型性。因此,本申请引入了第二个共价网络,它是由丙烯酰胺单体和N,N’-亚甲基双丙烯酰胺交联剂通过自由基聚合形成的。从电镜图观察到,存在直径约300nm的胶束,比溶解的纯半乳甘露聚糖和添加叶酸的半乳甘露聚糖的结构大。同时,胶束通过纳米纤维结构连接,表明聚合过程。这种独特的结构可能是由于添加了聚丙烯酰胺共价键以及半乳甘露聚糖、聚丙烯酰胺和叶酸的非共价和物理交联网络。
实施例2
对实施例1制备的产品进行性能检测和分析,具体如下:
1、流变学测试,方法的主要步骤包括:使用流变仪对加入水凝胶进行流变测试。在室温下测试流变参数(对数模式),包括储能模量和损耗模量,作为应力扫描测试的函数,范围为1-103Pa,角频率为0.1-5Hz。
图2是添加不同半乳甘露聚糖的水凝胶的流变特性随剪切应力(a)、频率(b)的动态变化图,结果表明,随着频率的升高,GM-4的储能模量呈上升趋势,最高储能模量超过30kPa;
2、机械测试,复合水凝胶的机械性能通过配备100N称重传感器的通用电气材料试验机进行测试,方法的主要步骤包括:以2mm/min的十字头速度进行拉伸试验,并根据应力下的面积计算水凝胶的韧性-应变曲线。在5mm/min的压缩范围内对圆柱形样品进行压缩试验。为了确定疲劳抗力,循环压缩不断进行测试,最大变形为70%应变。每一条曲线都是通过三次测试获得的。
图3是添加不同半乳甘露聚糖的水凝胶的机械性能图:(a)拉伸强度应变测试图,(b)拉伸模量和(c)计算韧性,所有样品在极限伸长率高于50kPa时均呈现拉伸应力。随着更多半乳甘露聚糖的引入,以及断裂伸长率的提高,该值得到提升。
样品在极限伸长率高于50kPa时均呈现拉伸应力,半乳甘露聚糖添加量为0.045g的水凝胶的模量高达300kPa。
半乳甘露聚糖添加量为0.27g时,随着频率的升高,该水凝胶的储能模量呈上升趋势,最高储能模量超过30kPa,这表明双网络中的分子连接良好,从而提供了材料稳定的力学性能。
半乳甘露聚糖添加量为0.36g时,水凝胶的储能模量的最大值为44kPa,达到之前报道的聚丙烯酸(PAA)水凝胶的值。
所有样品在极限伸长率高于50kPa时均呈现拉伸应力。随着更多半乳甘露聚糖的引入,以及断裂伸长率的提高,该值得到提升。半乳甘露聚糖添加量为0.36g的水凝胶最佳强度为80kPa,断裂伸长率为340%。
对半乳甘露聚糖添加量为0.27g的水凝胶一起进行压缩试验与圆柱形循环加载-卸载试验。图4是水凝胶4在70%应变下对样品进行100个循环(a)的循环加载-卸载压缩试验,以及循环1(b)和循环100(c)的单曲线;发现卸载后水凝胶几乎没有应变损失,显示了显著的形状恢复。此外,压缩应变循环可达到100倍,比较第1次循环和第100次循环的单独曲线,发现两次循环表现出了优异的形状恢复和抗疲劳性能。
3、导电测量,方法的主要步骤包括:使用四点探针法测定复合水凝胶的电导率。使用公式R=U/I,其中R、U和I分别是电阻(Ω)、开路电位(V)和电流(A),获得样品电阻。使用公式δ=L/RS,其中δ是电导率(S m-1),R是电阻(Ω),L是两个电极的距离(cm),S是横截面积(cm2)。获得电导率。
图5是水凝胶的电导率比较(a);半乳甘露聚糖添加量为0.27g的水凝胶在初始和拉伸状态下的亮度现象(b),,表明叶酸的均匀分布对网络电导率的贡献。同时表明伸长变化或恢复将导致聚合物网络和叶酸分布的中断或重建,从而导致材料的电阻变化。
对半乳甘露聚糖添加量为0.27g的水凝胶4进行进一步的电导率和传感器检测,其具体方法步骤包括:
1)将水凝胶连接到一个简单的电路上,用于直观地评估发光二极管灯泡的发光强度。2)将水凝胶贴在木偶的膝盖上,并连接到电化学工作站。膝盖弯曲,角度增加(0°、30°、45°、60°和80°),同时水凝胶样品拉伸。3)将水凝胶贴在排球运动员手腕处,以监测排球设置的姿势。
图6是水凝胶4作为应变传感器的应用:(a)通过监测手臂弯曲度来测量传感器的I-t曲线;水凝胶应变传感器的重复I-t曲线变化粘附在食指上,以监测其弯曲(b)和手腕上,以监测排球手传球姿势(c);结果说明,伸长变化或恢复将导致聚合物网络和叶酸分布的中断或重建,从而导致材料的电阻变化。这种对外界刺激的灵敏响应在应变传感器领域具有广阔的应用前景。根据检测,电流随着弯曲角度的逐步增大而减小,并且在每个角度阶段都可以保持稳定。同样,在检测到食指反复弯曲的情况下,当拉伸80°时,电流减少0.35mA,并在笔直状态下恢复。
4、抗菌测试,方法的主要步骤包括:在琼脂培养基中培养大肠杆菌,通过平板计数法和抑制区法评估半乳甘露聚糖基复合水凝胶的抗菌性能。以菌落形成单位(CFU)计数为评价指标。将传代至对数期的大肠杆菌稀释至106CFU/mL,然后将溶液与不同类型和不同浓度的材料在无菌管中以1∶1的体积比混合。样品组在37℃恒温摇瓶培养箱(250rpm)中培养24小时,无菌生理盐水组作为对照。将水凝胶材料切成直径为6mm的小块,并在涂有大肠杆菌悬浮液(浓度约为106CFU/mL)的琼脂板上通过紫外线照射灭菌。在37℃培养箱中放置24小时后,观察培养皿,并对每个水凝胶样品进行一式三份测试。
图7是水凝胶的抗菌活性对照图(以大肠杆菌为对照):(a)细菌生长的照片,(b)细菌存活,以及(c)培养24小时后的抗菌区图片。不同的半乳甘露聚糖添加可导致细菌生长的不同表现。半乳甘露聚糖添加量为0.045g以上的水凝胶表现出令人满意的抗菌性能,可使细菌存活率下降至约20%。
实施例3
对实施例1制备的不同用量比例的产品进行性能检测和对比,具体如下:
1、对比机械性能。冻干的半乳甘露聚糖水凝胶的扫描电镜观察如图8所示。所有样品均可见典型的多孔微结构。随着凝胶中半乳甘露聚糖含量的增加,孔变得更加致密,孔边变得更厚。证实了半乳甘露聚糖分子链在辅助物理网络交联中的重要性。此外,样品GM-3、GM-4和GM-5的孔分布更均匀,这意味着交联点均匀且密集。因此,通过调整半乳甘露聚糖添加量,形成了更紧密的网络,从而有助于提高实际应用的机械性能。
2、通过比较目前已有的木质纤维素基水凝胶的系列适用功能和其他报道的研究,可以进一步表明半乳甘露聚糖-叶酸复合水凝胶的潜力。图9为产品与现有的其他水凝胶性能对比,对比结果表明,通过将叶酸与半乳甘露聚糖以及聚丙烯酰胺结合,3D交联网络很好地解决了木质纤维素基水凝胶机械强度弱的常见问题。GM-4平衡了最大拉伸应力和韧性的高值,分别为76kPa和143kJ/m3。将这些功能整合到半乳甘露聚糖-叶酸复合水凝胶中,可以保证其在多变的外部环境中的进一步应用。
图9中其他水凝胶的制备文献如下:
W.Zhang,J.Y.Wen,M.G.Ma,M.F.Li,F.Peng,J.Bian,Anti-freezing,water-retaining,conductive,and strain-sensitive hemicellulose/polypyrrole compositehydrogels for flexible sensors,J.Mater.Res.Technol.14(2021)555-566.
Q.Chen,L.Zhu,H.Chen,H.Yan,L.Huang,J.Yang,J.Zheng,A novel designstrategy for fully physically linked double network hydrogels with tough,fatigue resistant,and self-Healing properties,Adv.Funct.Mater.25(2015)1598-1607.
Y.Gao,S.Zong,Y.Huang,N.Yang,H.Wen,J.Jiang,J.Duan,Preparation andproperties of a highly elastic galactomannan-poly(acrylamide-N,N-bis(acryloyl)cysteamine)hydrogel with reductive stimuli-responsive degradableproperties,Carbohydr.Polym.231(2020)115690.
C.Shao,M.Wang,H.Chang,F.Xu,J.Yang,A self-healing cellulosenanocrystal-poly(ethylene glycol)nanocomposite hydrogel via Diels-Alder clickreaction,ACS Sustain.Chem.Eng.5(2017)6167-6174.
C.Ma,H.Pang,H.Liu,Q.Yan,J.Li,S.Zhang,A tough,adhesive,self-healable,and antibacterial plant-inspired hydrogel based on pyrogallol-borax dynamiccross-linking,J.Mater.Chem.B.9(2021)4230-4240.
X.Liu,K.Yang,M.Chang,X.Wang,J.Ren,Fabrication of cellulosenanocrystal reinforced nanocomposite hydrogel with self-healing properties,Carbohydr.Polym.240(2020)116289.

Claims (5)

1.一种制备可用于柔性应变传感器的水凝胶的方法,其特征在于,包括以下步骤:
1)制备半乳甘露聚糖粉末;半乳甘露聚糖粉末的重均分子量为4.0×105da,聚合物分散性指数为1.47,甘露糖与半乳糖比值为1.5;
2)制备半乳甘露聚糖-叶酸共溶剂;具体过程为:将0.03mmol叶酸溶解在15mL 0.06M盐酸中,添加0.045~0.36g半乳甘露聚糖;超声处理30分钟使混合溶液完全溶解;在室温下进行磁搅拌24小时;
3)将半乳甘露聚糖-叶酸共溶剂加入丙烯酰胺,加入过硫酸铵和N,N-亚甲基双丙烯酰胺;具体过程为:将2.84g丙烯酰胺溶解到半乳甘露聚糖-叶酸共溶剂中;加入0.1g过硫酸铵和0.02g N,N-亚甲基双丙烯酰胺,并快速搅拌;
4)将混合液置于模具中,加热固化获得水凝胶。
2.根据权利要求1所述的制备可用于柔性应变传感器的水凝胶的方法,其特征在于,步骤1)的具体过程为:将田菁种子的胚乳在蒸馏水中润涨24小时;研磨成粉末,从温水中重新分散并离心;用体积分数95%的乙醇沉淀,冷冻干燥制备半乳甘露聚糖粉末。
3.根据权利要求1所述的制备可用于柔性应变传感器的水凝胶的方法,其特征在于,步骤4)中,在55℃下烘箱加热固化1小时终止反应。
4.权利要求1所述的方法获得的水凝胶在制备用于监测细微关节运动的导电传感器和/或可穿戴电子设备中的应用。
5.权利要求1所述的方法获得的水凝胶在制备抗菌材料中的应用。
CN202210666142.6A 2022-06-13 2022-06-13 一种可用于柔性应变传感器的水凝胶及其制备方法和应用 Active CN114907661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210666142.6A CN114907661B (zh) 2022-06-13 2022-06-13 一种可用于柔性应变传感器的水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210666142.6A CN114907661B (zh) 2022-06-13 2022-06-13 一种可用于柔性应变传感器的水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114907661A CN114907661A (zh) 2022-08-16
CN114907661B true CN114907661B (zh) 2023-08-22

Family

ID=82769911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210666142.6A Active CN114907661B (zh) 2022-06-13 2022-06-13 一种可用于柔性应变传感器的水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114907661B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525882A (zh) * 2012-02-28 2012-07-04 上海市肿瘤研究所 一种纳米复合温敏凝胶剂及其制备方法和应用
CN112341573A (zh) * 2020-12-18 2021-02-09 郑州大学 一种多功能复合水凝胶的制备方法及应用
CN113563534A (zh) * 2021-08-12 2021-10-29 深圳市第二人民医院(深圳市转化医学研究院) 一种复合聚丙烯酰胺凝胶及其制备方法和应用
CN114112123A (zh) * 2020-08-26 2022-03-01 北京大学 一种叶酸-金属离子水凝胶的用途、一种双网络凝胶及其制备方法和应用
CN114195838A (zh) * 2021-12-15 2022-03-18 中北大学 基于双分子半乳糖衍生物的水凝胶及其制备方法
WO2022101490A1 (en) * 2020-11-13 2022-05-19 Universidade Do Minho Eutectic compositions, methods and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340290B1 (ko) * 2011-09-14 2013-12-11 한국과학기술원 유전자 표적용 siRNA 하이드로젤 및 그 제조방법
US10336896B2 (en) * 2013-04-25 2019-07-02 The University Of Akron One-pot synthesis of highly mechanical and recoverable double-network hydrogels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525882A (zh) * 2012-02-28 2012-07-04 上海市肿瘤研究所 一种纳米复合温敏凝胶剂及其制备方法和应用
CN114112123A (zh) * 2020-08-26 2022-03-01 北京大学 一种叶酸-金属离子水凝胶的用途、一种双网络凝胶及其制备方法和应用
WO2022101490A1 (en) * 2020-11-13 2022-05-19 Universidade Do Minho Eutectic compositions, methods and uses thereof
CN112341573A (zh) * 2020-12-18 2021-02-09 郑州大学 一种多功能复合水凝胶的制备方法及应用
CN113563534A (zh) * 2021-08-12 2021-10-29 深圳市第二人民医院(深圳市转化医学研究院) 一种复合聚丙烯酰胺凝胶及其制备方法和应用
CN114195838A (zh) * 2021-12-15 2022-03-18 中北大学 基于双分子半乳糖衍生物的水凝胶及其制备方法

Also Published As

Publication number Publication date
CN114907661A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
Zhang et al. Mimicking skin cellulose hydrogels for sensor applications
Jiao et al. Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
Li et al. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity
Hua et al. A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances
Pang et al. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance
He et al. Self-Healing, Anti-Fatigue, antimicrobial ionic conductive hydrogels based on Choline-Amino acid polyionic liquids for Multi-Functional sensors
Li et al. Gelatin effects on the physicochemical and hemocompatible properties of gelatin/PAAm/laponite nanocomposite hydrogels
CN112341573B (zh) 一种多功能复合水凝胶的制备方法及应用
Di et al. Bioinspired tough, conductive hydrogels with thermally reversible adhesiveness based on nanoclay confined NIPAM polymerization and a dopamine modified polypeptide
Gan et al. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels
Shan et al. Adhesive hydrogels tailored with cellulose nanofibers and ferric ions for highly sensitive strain sensors
Zhang et al. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors
CN112159535A (zh) 部分还原氧化石墨烯-纳米纤维素晶-聚乙烯醇复合导电水凝胶及其制备方法和应用
Yang et al. Highly stretchable and self-healing hydrogels based on poly (acrylic acid) and functional POSS
Yin et al. Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties
Zeng et al. Super stretchability, strong adhesion, flexible sensor based on Fe3+ dynamic coordination sodium alginate/polyacrylamide dual-network hydrogel
Shi et al. Tough and self-healing chitosan/poly (acrylamide-co-acrylic acid) double network hydrogels
Bai et al. Photo-crosslinking ionic conductive PVA-SbQ/FeCl3 hydrogel sensors
Atifi et al. Mechanically tunable nanocomposite hydrogels based on functionalized cellulose nanocrystals
Chen et al. A conductive bio-hydrogel with high conductivity and mechanical strength via physical filling of electrospinning polyaniline fibers
Chen et al. Dual-network sodium alginate/polyacrylamide/laponite nanocomposite hydrogels with high toughness and cyclic mechano-responsiveness
Ling et al. Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application
Chang et al. Ionic conductive hydrogels toughened by latex particles for strain sensors
CN110423363B (zh) 一种高强度超高弹力水凝胶的制备方法及其应用
Ding et al. Synthesis and characterisation of high resilience collagen-polyacrylamide semi-interpenetrating network hydrogel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant