CN116731459A - 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用 - Google Patents

一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN116731459A
CN116731459A CN202310755213.4A CN202310755213A CN116731459A CN 116731459 A CN116731459 A CN 116731459A CN 202310755213 A CN202310755213 A CN 202310755213A CN 116731459 A CN116731459 A CN 116731459A
Authority
CN
China
Prior art keywords
starch
ionic liquid
hydrogel
polyvinyl alcohol
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310755213.4A
Other languages
English (en)
Inventor
刘丽芳
徐秋玉
刘蕴莹
候茉晗
李萌萌
王丽芳
张学澎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202310755213.4A priority Critical patent/CN116731459A/zh
Publication of CN116731459A publication Critical patent/CN116731459A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用,利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,以聚乙烯醇和淀粉作为水凝胶复合骨架,通过冻融循环进行物理交联而得高性能复合水凝胶。本发明以聚乙烯醇和淀粉复配作为双网络水凝胶支撑材料,利用三元低共熔溶剂体系改善双网络水凝胶内部材料相容性,调控水凝胶力电性能,并赋予水凝胶高保湿、抗冻等附加性能,拓展其应用范围,组建传感器等柔性电子器件用于人体运动健康监测。

Description

一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方 法和应用
技术领域
本发明属于高分子材料技术领域,特别涉及一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用。
背景技术
近年来,运动健康随身监测的理念愈发受到人们的欢迎,智能终端概念在人们日常生活中已经随处可见,柔性智能可穿戴器件由于微型、柔软及可穿戴等特点受到了研究学者的广泛关注与研究,其中,柔性压阻式应变传感器是一类通过将外界信号(如生理/运动信号)转化成电学信号进行输出的传感器件,在人体运动健康监测、软体机器人等领域具有潜在应用。
水凝胶是以溶剂小分子和聚合物分子网络等通过物理交联或化学交联作用所形成,是一类亲水性极强的三维网络结构材料,同时具备固体和液体的特性,性能类似于生物软组织,具有良好的柔韧性以及生物相容性,自1894年出现以来深受研究学者们的关注。导电水凝胶结合了水凝胶柔软特性和导电高分子的电化学特性,由于柔性水凝胶具备良好的柔性、高拉伸性以及生物相容性等特点,被认为是柔性应变传感器中倍有前景的材料。
淀粉是一种来源广泛、成本低廉可降解的可再生高分子,由结晶区和无定形区交替形成,其自身分子间和分子内氢键作用太强而难溶于传统溶剂如水,纯淀粉水凝胶不仅吸湿溶胀性能过强而导致机械性能较差,而且在低温下表现出脆性特点。聚乙烯醇是一种易于加工、可生物降解的水溶性聚合物高分子材料,但是成本较高且降解速率有限,淀粉和聚乙烯醇形成的复合水凝胶虽然可以在一定程度上改善单一组分的缺点,但是其半结晶结构限制了二者的相容性,结晶结构对于导电性能具有阻碍作用,虽然醇类溶剂如甘油、乙二醇等增塑剂被证明在改善淀粉和聚乙烯醇的相容性上有所帮助,但是依旧相容效果有限,且形成的水凝胶导电性能差而极大限制了其应用范围。因此,如何在进一步有效改善淀粉/聚乙烯醇水凝胶的相容性以提高其机械性能和导电性能的同时,仍可对宽范围应变信号做出精准线性响应是淀粉/聚乙烯醇水凝胶应变传感器的关键问题,此外还需解决水凝胶在低温环境中使用受限的问题。
发明内容
本发明所要解决的技术问题是提供一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用,该复合水凝胶在柔性传感应用中具有宽应变范围高传感灵敏特性。
本发明提供了一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶,利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,以聚乙烯醇和淀粉作为水凝胶复合骨架,通过冻融循环进行物理交联而得。
优选的,所述离子液体为1-烯丙基-3-甲基咪唑氯盐([AMim]Cl)。在本发明中,离子液体不仅增加水凝胶体系的导电性能,并且复配乙二醇和水的混合溶剂改善体系聚合物间的相容性,增加体系内交联作用,大大提高水凝胶的机械性能并赋予保湿抗冻等附加性能。
优选的,所述淀粉为玉米淀粉。
本发明还提供了一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶的制备方法,包括如下步骤:
(1)制备质量浓度为1-10wt%的淀粉水溶液,在80-90℃油浴加热条件下进行初步预糊化;
(2)在淀粉水溶液加入离子液体和乙二醇,常温搅拌混合5-15min;
(3)在上述溶液中按质量浓度10-15wt%加入聚乙烯醇PVA颗粒,常温搅拌溶胀20-40min后,90-95℃条件下加热搅拌2-3h,使得材料充分溶解混合,得到水凝胶前驱体溶液;
(4)将水凝胶前体溶液倒入模具中,在冰箱中进行冻融循环,最后得到淀粉/离子液体/聚乙烯醇高性能复合水凝胶。
所述步骤(2)中的离子液体和乙二醇的质量比为1:9-9:1。
所述步骤(2)中的淀粉与(离子液体和乙二醇)的质量比为0.2:10-2:10。
所述步骤(4)中的冻融循环为在-20℃和20℃环境下进行多次冻融循环。
所述步骤(2)中常温搅拌转速为300r/min;所述步骤(3)中加热搅拌转速为400r/min。
本发明还提供了一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶在柔性可穿戴多功能传感器中的应用。
本发明利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,咪唑基离子液体作为氢键受体,乙二醇作为氢键第一供体,去离子水在降低体系粘度的同时充当第二个氢键供体,大大改善聚乙烯醇和淀粉两种半结晶聚合物的相容性,增强水凝胶体系中的交联作用,从而提高聚乙烯醇/淀粉水凝胶的机械力学性能,离子液体在水凝胶体系中发挥多重作用,在赋予水凝胶优异导电性能的同时,复配所得的三元低共熔溶剂体系使得水凝胶兼具低温抗冻性及防干高保湿等附加性能,制得的离子水凝胶在柔性传感应用中具有宽应变范围高传感灵敏特性。
本发明双网络水凝胶中的双网络结构是指淀粉大分子网络和PVA物理网络:第一层为淀粉大分子网络,但是淀粉单层网络水凝胶材料的力学性能较差,难以满足工业生产的需求,通过引入第二层PVA物理网络进行氢键缔合,利用多重强弱氢键的协同作用增强凝胶网络结构的交联方式,以淀粉/聚乙烯醇双网络水凝胶作为基体支撑材料。
有益效果
1、本发明制备方法简单环保,对环境绿色无污染,材料来源丰富;
2、本发明制备的水凝胶体系内的咪唑基离子液体复配乙二醇和水作为三元低共熔溶剂系统使得淀粉和聚乙烯醇具有高度相容性(水凝胶体系结晶度低至9.89%),使得淀粉/聚乙烯醇基水凝胶的力学性能得到了很大提升(断裂伸长率高达1250.29%,拉伸强度增至1324.43kPa)。
3、本发明中咪唑基离子液体的引入发挥了多重作用,不仅增强淀粉/聚乙烯醇基水凝胶机械性能,而且与乙二醇协同作用赋予水凝胶导电、低温抗冻、抗溶胀高保湿(失重率约17%)等优异附加性能,极大拓宽了其应用范围。
4、本发明制备的水凝胶具有超宽应变范围传感性能,可以在宽应变范围内稳定检测出人体关节运动信号,在人体健康监测方面具有潜在应用。
附图说明
图1为未添加乙二醇和添加乙二醇的淀粉/聚乙烯醇水凝胶拉伸曲线。
图2为不同离子液体/乙二醇质量比的淀粉/离子液体/聚乙烯醇高性能复合水凝胶的拉伸曲线。
图3为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的X-射线衍射图和结晶度。
图4为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的结晶度对比图。
图5为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的失水曲线图。
图6为淀粉/离子液体/聚乙烯醇高性能复合水凝胶冷冻图示。
图7为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的应变传感曲线。
图8为淀粉/离子液体/聚乙烯醇高性能复合水凝胶检测人体手指关节运动的信号图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
对比例1
称取0.25g玉米淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,再加入0.5g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/聚乙烯醇(SP)水凝胶。
对比例2
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入5.55g乙二醇,常温搅拌混合15min后加入1.055g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到添加乙二醇不添加离子液体的淀粉/聚乙烯醇(SEP或SA0E10P)复合水凝胶。
实施例1
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入0.555g离子液体和4.995g乙二醇,常温搅拌混合15min后加入1.055g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(SA1E9P)高性能复合水凝胶。
实施例2
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入1.11g离子液体和4.44g乙二醇,常温搅拌混合15min后加入1.055g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(SA2E8P/SAEP)高性能复合水凝胶。
实施例3
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入1.665g离子液体和3.885g乙二醇,常温搅拌混合15min后加入1.055g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(SA3E7P)高性能复合水凝胶.
实施例4
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入2.22g离子液体和3.33g乙二醇,常温搅拌混合15min后加入1.055g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(SA4E6P)高性能复合水凝胶。
实施例5
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入2.775g离子液体和2.775g乙二醇,常温搅拌混合15min后加入1.055g PVA颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(SA5E5P)高性能复合水凝胶。
淀粉/离子液体/聚乙烯醇高性能复合水凝胶性能分析:
(1)将标准哑铃型水凝胶样品固定在万能拉伸试验机上,控制拉伸速率为100mm/min,检测其力学性能。如图1所示为对比例1和对比例2的水凝胶拉伸应力-应变曲线,乙二醇的加入使得水凝胶力学性能得到明显增强,SEP水凝胶的断裂伸长率和拉伸强度从SP水凝胶的411.13%和289.18kPa增加至613.24%和654.63kPa,这主要是乙二醇起到的增塑剂作用。
(2)图2为不同乙二醇/离子液体含量的淀粉/离子液体/聚乙烯醇高性能复合水凝胶拉伸曲线。随着离子液体的增加,淀粉/离子液体/聚乙烯醇水凝胶的断裂伸长率和拉伸强度也随之增加,这可能是由于体系间的相互作用增强,水凝胶的交联密度和网络结构逐渐达到最优,实施例2的水凝胶具有优异的机械性能,断裂伸长率高达1250.29%,拉伸强度也增至1324.43kPa。而随着离子液体的进一步增加,淀粉/离子液体/聚乙烯醇水凝胶的机械性能表现出下降趋势,这可能是水凝胶体系中交联程度过大导致。
(3)利用X-射线衍射研究淀粉/离子液体/聚乙烯醇高性能复合水凝胶的结晶度,如图3,可以发现,乙二醇可以在一定程度上破坏聚乙烯醇的半结晶结构以及淀粉固有的A型晶体结构,而加入离子液体后淀粉/聚乙烯醇的结晶结构进一步被显著破坏,表现出更弱的衍射峰而出现弥散型峰形,如图4所示,淀粉和聚乙烯醇本身具有较高的结晶度,由于二者皆为半结晶物质,相容性有限,乙二醇的加入降低了体系的结晶度,而离子液体进一步破坏了淀粉和聚乙烯醇的结晶结构,增加了二者的相容性,淀粉/离子液体/聚乙烯醇水凝胶体系结晶度低至9.89%,这可能是由于咪唑基离子通过与淀粉和聚乙烯醇分子链形成了新的交联作用而抑制了淀粉的回生以及淀粉/聚乙烯醇的结晶。
(4)将实施例2中的淀粉/离子液体/聚乙烯醇高性能复合水凝胶以及对比例1中未含有离子液体/乙二醇溶剂的淀粉/聚乙烯醇水凝胶用滤纸吸除表面的残余水分后进行称重,得到初始质量W0,在恒温恒湿条件下放置20天,每天同一时间进行称重,第i天失水后质量Wi,水凝胶失水率为(W0-Wi)/W0×100%。如图5所示,相同储存时间下,离子液体/乙二醇/水三元低共熔溶剂的淀粉/离子液体/聚乙烯醇高性能复合水凝胶失水更少,20天后仍然保持了约83%重量。此外,将含有离子液体/乙二醇/水三元低共熔溶剂以及未含有离子液体/乙二醇溶剂的水凝胶利用DSC测试其冷冻温度,如图6所示,实施例2的冷冻温度可低至-128.9℃,证明其在低温下仍可表现出优异的抗冻行为。
(5)将实施例2中的水凝胶固定在万能拉伸试验机上,拉伸速度为100mm/min,铜片做电极,与上海辰华电化学工作站CHI660E联用,实施记录水凝胶随拉伸应变产生的电阻变化,计算应变传感器的灵敏度GF=(R-R0/R0)/ε(即曲线斜率)。如图7所示,实施例2中的淀粉/离子液体/聚乙烯醇高性能复合水凝胶表现出超宽范围的应变敏感性,在0-55%、55%-250%、250%-650%、650%-1000%的应变灵敏度分别为0.99、2.19、2.49和3.28,且电阻信号变化平稳具有高线性。
(6)将实施例2所得水凝胶组装所得应变传感贴片应用于人体手指关节部位进行运动信号检测,图8所示可以发现,在不同手指弯曲角度下相对电阻变化率表现出明显差异性变化,表明该水凝胶可以有效作为柔性可穿戴应变传感器件,在运动健康监测领域进行应用。

Claims (9)

1.一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶,其特征在于:利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,以聚乙烯醇和淀粉作为水凝胶复合骨架,通过冻融循环进行物理交联而得。
2.根据权利要求1所述的复合水凝胶,其特征在于:所述离子液体为1-烯丙基-3-甲基咪唑氯盐。
3.根据权利要求1所述的复合水凝胶,其特征在于:所述淀粉为玉米淀粉。
4.一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶的制备方法,包括如下步骤:
(1)制备质量浓度为1-10wt%的淀粉水溶液,在80-90℃油浴加热条件下进行初步预糊化;
(2)在淀粉水溶液加入离子液体和乙二醇,常温搅拌混合5-15min;
(3)在上述溶液中按质量浓度10-15wt%加入聚乙烯醇PVA颗粒,常温搅拌溶胀20-40min后,90-95℃条件下加热搅拌2-3h,使得材料充分溶解混合,得到水凝胶前驱体溶液;
(4)将水凝胶前体溶液倒入模具中,在冰箱中进行冻融循环,最后得到淀粉/离子液体/聚乙烯醇高性能复合水凝胶。
5.根据权利要求4所述的制备方法,其特征在于:所述步骤(2)中的离子液体和乙二醇的质量比为1:9-9:1。
6.根据权利要求4所述的制备方法,其特征在于:所述步骤(2)中的淀粉与(离子液体和乙二醇)的质量比为0.2:10-2:10。
7.根据权利要求4所述的制备方法,其特征在于:所述步骤(4)中的冻融循环为在-20℃和20℃环境下进行多次冻融循环。
8.根据权利要求4所述的制备方法,其特征在于:所述步骤(2)中常温搅拌转速为300r/min;所述步骤(3)中加热搅拌转速为400r/min。
9.一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶在柔性可穿戴多功能传感器中的应用。
CN202310755213.4A 2023-06-25 2023-06-25 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用 Pending CN116731459A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310755213.4A CN116731459A (zh) 2023-06-25 2023-06-25 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310755213.4A CN116731459A (zh) 2023-06-25 2023-06-25 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116731459A true CN116731459A (zh) 2023-09-12

Family

ID=87900947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310755213.4A Pending CN116731459A (zh) 2023-06-25 2023-06-25 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116731459A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117756973A (zh) * 2024-01-09 2024-03-26 北京工商大学 一种耐极端温度传感有机离子凝胶及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117756973A (zh) * 2024-01-09 2024-03-26 北京工商大学 一种耐极端温度传感有机离子凝胶及其制备方法和应用

Similar Documents

Publication Publication Date Title
Xu et al. A wide temperature-tolerant hydrogel electrolyte mediated by phosphoric acid towards flexible supercapacitors
Wang et al. High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics
CN110776654B (zh) 芳纶纳米纤维/聚乙烯醇/聚苯胺复合水凝胶及其制备方法和应用
Peng et al. High strength, antifreeze, and moisturizing conductive hydrogel for human‐motion detection
CN109503765B (zh) 纤维素离子导电水凝胶的制备方法及制备得到的水凝胶
Zhang et al. Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors
Mondal et al. Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications
CN116731459A (zh) 一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用
CN111763334B (zh) 双网络导电水凝胶的制备及其在应变传感器中的应用
Zhang et al. Stretchable, Antifreezing, Non‐Drying, and Fast‐Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection
Zhou et al. Dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydrogels for flexible electronic devices
Peng et al. A moisture self-regenerative, ultra-low temperature anti-freezing and self-adhesive polyvinyl alcohol/polyacrylamide/CaCl2/MXene ionotronics hydrogel for bionic skin strain sensor
Yao et al. Flexible, programable sensing system with poly (AAm-HEMA-SA) for human motion detection
CN112820553A (zh) 纤维素质子型离子液体复合凝胶电解质的制备方法及应用
Zhang et al. Design of co-continuous structure of cellulose/PAA-based alkaline solid polyelectrolyte for flexible zinc-air battery
Chen et al. Competitive proton-trapping strategy enhanced anti-freezing organohydrogel fibers for high-strain-sensitivity wearable sensors
Yue et al. Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on phytic acid and cellulose nanocrystals for high strain sensing applications
Zhang et al. Construction of Alkaline Gel Polymer Electrolytes with a Double Cross-Linked Network for Flexible Zinc–Air Batteries
CN113185715B (zh) 一种自愈合导电聚乙烯醇基水凝胶及其制备方法与应用
Huang et al. Mussel-inspired lignin decorated cellulose nanocomposite tough organohydrogel sensor with conductive, transparent, strain-sensitive and durable properties
Li et al. High mass loading of polypyrrole in conductive hydrogels for stretchable all-in-one supercapacitors and self-powered strain sensing system
Finkenstadt et al. Preparation and characterization of electroactive biopolymers
Ge et al. A wide-temperature-range sensor based on wide-strain-range self-healing and adhesive organogels
Wu et al. Electrical conductivities and sensing mechanisms of low-temperature 3D printing conductive hydrogels with good sensitivity
CN112113498B (zh) 一种高灵敏度压阻式应变传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination