CN114788037A - 用于对多个阳极进行预锂化的方法 - Google Patents

用于对多个阳极进行预锂化的方法 Download PDF

Info

Publication number
CN114788037A
CN114788037A CN202080082964.9A CN202080082964A CN114788037A CN 114788037 A CN114788037 A CN 114788037A CN 202080082964 A CN202080082964 A CN 202080082964A CN 114788037 A CN114788037 A CN 114788037A
Authority
CN
China
Prior art keywords
sheet
lithium
anode
anode sheet
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080082964.9A
Other languages
English (en)
Inventor
娄凤柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boda Co ltd
Original Assignee
Boda Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boda Co ltd filed Critical Boda Co ltd
Publication of CN114788037A publication Critical patent/CN114788037A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Discharge Heating (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本申请涉及一种预锂化阳极的方法,其中该方法包括以下步骤:将阳极片(1)与含锂片(5)在电解液(15)中堆积成果冻卷(11)或堆叠体;通过阳极片(1)和含锂片(5)之间的直接接触,或通过使阳极片(1)朝向含锂片(5)放电或充电,将锂离子转移至阳极片(1),得到经预锂化的阳极片;将经预锂化的阳极片分割成多个具有所需尺寸和形状的经预锂化的阳极。本发明还涉及电化学电池,其包括通过该方法进行预锂化的阳极。

Description

用于对多个阳极进行预锂化的方法
本发明涉及一种用于对阳极进行预锂化(pre-lithiating)的方法,以及一种电化学电池,其包括通过该方法进行了预锂化的阳极。
通常在使用锂离子的电化学电池中对阳极进行预锂化以提高电池的性能。金属锂是阳极预锂化中使用最广泛的锂源,尽管它的成本和风险很高。根据锂是用作第三电极还是直接涂覆在阳极表面,该技术可分为两类。当使用锂箔作为第三电极时,需要长达20天的长的预锂化时间才能获得令人满意的阳极锂化程度(US6461769和US6740454)。这不仅增加了生产成本,而且限制了生产率。此外,还需要多孔集流体来穿透锂离子,这进一步增加了生产成本。另一方面,已经开发了多种方法以在阳极表面包覆锂,例如物理气相沉积、熔融锂包覆、超薄锂箔压制和稳定化的锂金属粉末。然而,除了高成本之外,这些方法还具有较差的灵活性和较差的预锂化均匀性(US20170324073A1和ECS Transactions,2007.3(27):15)。
还有其他的预锂化方法,如电化学预锂化和内部短路预锂化,其在学术界已被广泛探索和应用,但被认为不适合工业应用。这些方法的主要障碍是,仅仅为了阳极的预锂化而组装每个电池,然后在最终电池组装之前再次拆卸它们是不切实际的。
US 2016141596 A1、US 2013003261 A1、KR 20150014877 A、WO2017100415 A1和CN 110335992 A公开了多种用于锂化电极的方法。
本发明的目的是弥补或减少现有技术的至少一个缺点,或至少提供现有技术的有用替代方案。该目的通过以下说明书和所附权利要求中描述的特征来实现。本发明由独立权利要求限定,而从属权利要求限定本发明的有利实施方案。
在第一方面,本发明更具体地涉及一种用于对多个阳极进行预锂化的方法,其中该方法包括以下步骤:将阳极片与含锂片在电解液中堆积(pack)成果冻卷(jelly roll)或堆叠体(stack);通过阳极片与含锂片之间的直接接触或通过使阳极片朝向含锂片放电或充电,将锂离子转移至阳极片以获得经预锂化的阳极片;将经预锂化的阳极片分割成多个具有所需尺寸和形状的经预锂化的阳极。
含锂片应该能够向电解液提供锂离子以用于阳极的预锂化。含锂片通常可以是锂箔,但它也可以是包含锂的另一种材料的片,例如涂有锂的铜箔。或者,含锂片可包含可提供锂离子的化合物,例如钴酸锂、锰酸锂、镍锰钴酸锂、磷酸铁锂、钛酸锂、叠氮化锂、方酸锂、草酸锂、酮基丙二酸锂或二酮基琥珀酸锂。片可以成形为非常长的条带,其可以绕着合适的芯材卷成果冻卷。或者,条带可以是Z型堆叠体,或者多个阳极片和含锂片可以彼此在其上堆叠。通过这种方式,片将具有彼此靠近的大表面积,以减少锂离子通过电解液扩散所需的距离,从而通过减少预锂化阳极片所需的时间来提高方法的效率。将阳极片和含锂片在电解液中堆积意味着在该方法的下一步骤之前应存在电解液,即可在添加电解液之前或之后组装果冻卷或堆叠体。如果阳极片和含锂片接触,则预锂化可在将阳极片和含锂片在电解液中堆积后自发发生。或者,如果需要,可在阳极片和含锂片之间放置一层隔膜,在这种情况下,阳极片应朝含锂片放电,以转移锂离子。经预锂化的阳极片通常可在其被分割之前用合适的溶剂清洗,通常通过切割(cutting)或划撕(slitting)。
生产电化学电池的过程通常包括混合电极组分、在干燥前将所得电极浆料涂在金属箔上、压延电极以使其致密并增强其在金属箔上的附着力、将电极划撕/切割成合适的尺寸,使每个阳极进行预锂化,最后是电池组装和形成步骤。
使用根据本发明的方法的一个优点是,不是像现有技术那样将多个阳极中的每一个与单独的锂箔堆积到单独的电池中以对每个阳极进行预锂化,而是可以将更大的阳极片堆积在具有相应的大的含锂片的更大电池中。用于大规模生产的阳极片可以是例如0.01-2m宽和1-1000m长。阳极片的尺寸和形状可能取决于阳极片在电解液中的堆积情况。如果堆积成果冻卷,阳极片可以很长,例如1m宽和1000m长。在将经预锂化的阳极片分割之后,通过该方法获得的每个预锂化的阳极然后可以与合适的阴极、隔膜和电解液一起堆积以生产电化学电池,例如锂离子电池或锂离子电容器。这将显著减少预锂化所需的电池数量,从而降低工艺的复杂性,使其在工业上适用于大规模生产。此外,该方法还具有灵活性高、预锂化程度控制精确等优点。
在一个实施方案中,将阳极片与含锂片在电解液中堆积成果冻卷或堆叠体的步骤可包括在将阳极片和含锂片组装成果冻卷或堆叠体之前使阳极片和含锂片经受电解液的步骤。这确保了片的高润湿性,即电解液覆盖片的所有区域,或至少具有与片的更大接触表面。片可以例如浸入电解液中,同时它们被组装成果冻卷或堆叠体。如果果冻卷或堆叠体在经受电解液之前组装,则阳极片和含锂片的紧密接触可能会阻止电解液进入片之间的某些区域,或至少增加电解液到达这些区域所需的时间。对于较大的堆叠体或果冻卷,此问题可能更为明显。阳极片和含锂片之间的合适隔膜也可以增加片的润湿速率和/或程度。合适的隔膜可以例如包括微孔聚合物膜。
如果将锂离子转移到阳极片以获得经预锂化的阳极片的步骤包括将阳极片朝向含锂片放电的步骤,这将为带正电的锂离子到阳极片的转移提供驱动力。该步骤可以通过将阳极片和含锂片连接到电池分析仪来进行。将锂离子转移到阳极片以获得经预锂化的阳极片的步骤还可以包括在阳极片和含锂片之间施加预定义的充电或放电程序的步骤。这样可以精确控制预锂化程度。此外,可以通过控制电流和充放电程序以及温度和压力来优化和控制固体电解质界面的性质。这提供了该方法的高度灵活性。作为电池分析仪的替代方案,可以使用具有预定电阻的电阻器来实现类似的效果。
在一个实施方案中,该方法可以另外包括在将阳极片与含锂片在电解液中进行堆积的步骤之前用聚合物膜层掩蔽阳极片的预定区域的步骤。在阳极上通常需要一个与金属极耳(tab)连接的集流体区域,用于将其与外部电路连接起来,而这个极耳区域在预锂化过程中会被电解液污染。通过用聚合物膜层(例如聚乙烯(PE)或聚丙烯(PP))掩蔽极耳区域,并在预锂化后去除该薄膜,可以防止或减轻极耳区域的污染。集流体区域可以用有机溶剂清洗,例如碳酸二甲酯(DMC)或碳酸二乙酯(DEC)或激光,以确保其与金属极耳的高焊接质量。
在一个实施方案中,将锂离子转移到阳极片以获得经预锂化的阳极片的步骤可以通过将果冻卷挤压通过外部夹具来增强。这将确保阳极和锂箔之间的距离均匀,从而提高预锂化的均匀性。此外,由于在预锂化过程中可能会产生气体,这可能会形成气泡并影响预锂化的均匀性,因此施加增加的外部压力可以促进气体传输远离电极表面。施加的外部压力可高达1MPa,例如0.1、0.5或1MPa。
在一个实施方案中,将阳极片与含锂片在电解液中堆积的步骤包括将阳极片和含锂片绕着大芯材卷绕以减小阳极片的曲率。芯材可以例如具有5、25、50或100cm的直径,或任何实际合适的值。芯材越大,曲率越小。这样,在预锂化过程中由于体积膨胀导致的经预锂化的阳极的弯曲将不那么严重。减少弯曲的替代方法是将阳极片和含锂片Z型堆叠,交替堆叠多个大片,或使用具有至少一个平面的果冻卷芯材以提供阳极区域,该区域在围绕芯材缠绕时是平坦的。
在第二方面,本发明涉及一种电化学电池,其中该电化学电池包括通过根据本发明第一方面的方法进行预锂化的阳极。电化学电池可以例如是锂离子电容器或锂离子电池。
下面描述附图中所示的优选实施方案的示例,其中:
图1示出了作为圆柱形果冻卷的阳极片和含锂片的制备(图1a,沿圆柱体轴线观察),以及将卷绕的果冻卷在具有电解液的容器中堆积(图1b,从垂直于圆柱体轴线观察);
图2示出了阳极片和含锂片作为矩形果冻卷的另一种制备方法(图2a,沿果冻卷的旋转轴线观察),以及将果冻卷在电解液中堆积(图2b,从垂直于图1a的视图观察),同时连接到电池分析仪;
图3示出了可以堆积阳极片和含锂片的其他方式(图3a和b);
图4示出了根据本发明的方法的实施方案的流程图;
图5示出了实施例1中创建的锂离子电容器的循环稳定性,通过在7A的电流下在2至3.8V之间循环;和
图6示出了实施例1中创建的锂离子电容器的充电和放电电压曲线,通过在7A的电流下在2至3.8V之间循环。
在图中,附图标记1表示阳极片。附图以示意性方式示出,并且其中的特征不一定按比例绘制。
图1a显示了为阳极片卷3形式的细长阳极片1和为含锂片卷7形式的细长含锂片5,它们绕着圆柱形果冻卷芯材9卷绕以形成果冻卷11。沿圆柱体轴线观察果冻卷11。在果冻卷11中,阳极片1的每一侧将与含锂片5接触。在某些实施方案中,含锂片5可以是例如锂箔或涂有锂的铜箔。在图1b中,来自图1a的果冻卷11(垂直于图1a中的视图观察)已浸入包含电解液15的容器13中,以允许锂离子转移至阳极片1。由于阳极片1和含锂片5直接接触,因此可以在阳极片1和含锂片5之间转移电子,从而可以氧化含锂片5中的锂金属并将锂离子释放入电解液15中以及阳极片1上。
图2显示了另一种堆积阳极片1和含锂片5的方式。在图2a中,将两个隔膜片19放置在阳极片1和含锂片5之间,因为它们绕着矩形芯材9缠绕以形成果冻卷11。隔膜片19在阳极片1和含锂片5之间提供电绝缘。以这种方式,电池分析仪17可以连接到阳极片1和含锂片5,如图2b所示(从垂直于图2a中的视图观察),以允许应用充电和放电程序。阳极片1和含锂片5从隔膜19的每一侧延伸以允许与电池分析仪17连接。隔膜19可以额外增加阳极片1和含锂片5上的电解液的润湿性。为了进一步增加润湿性,片1、5、19在浸入电解液15中的同时被卷成果冻卷11。由于果冻卷11的芯材9相对平坦,因此与芯材9的最大表面平行的阳极片1的区域也是平坦的。
图3显示了堆积阳极片1以获得阳极片1的平坦区域的其他方式。例如,如图3a所示,阳极片1可以以Z型堆叠体21的形式堆积在含锂片5之间,或者,如图3b所示,可以将多个大的阳极片1和含锂片5交替堆叠。
图4示出了根据本发明的方法的实施方案的流程图。在第一步中,由细长阳极片和含锂片制备果冻卷。在下一步中,将果冻卷在容器中堆积,并添加电解液。然后根据阳极片和含锂片是否直接接触,通过待机或放电/充电来执行阳极片的预锂化。在此步骤之后,将经预锂化的阳极片拆解,并清洗用于电连接的极耳区域。最后,将经预锂化的阳极片切割成多个预锂化的阳极,然后将其用作多个电池中的阳极。
下面描述了根据本发明的方法的实施方案的六个实施例。
在实施例1、2、5和6中,作为阳极片的石墨电极是通过工业规模的狭缝式挤压涂布(slot die coating)将可商购的石墨(BFC-18TM,购自BTR,中国)涂布在铜箔上生产的。羧甲基纤维素(CMC)和丁苯橡胶(SBR)用作粘合剂,而炭黑Timcal Super C65TM和Imerys石墨SFG-6LTM用作导电添加剂。石墨:CMC:SBR:Super C65TM:SFG-6LTM的质量比为90:1.5:3.5:3.2:1.8。随后进行冷压延以致密化电极并增强活化材料涂层在金属箔上的附着力。
在实施例3至4中,作为阳极片的硅/碳电极是通过工业规模的狭缝式挤压涂布在铜箔上涂布可商购的硅/碳复合材料(购自BTR,China的S-600TM)生产的。羧甲基纤维素(CMC)和丁苯橡胶(SBR)用作粘合剂,而Timcal Super C65TM和Imerys石墨SFG-6LTM用作导电添加剂。石墨:CMC:SBR:Super C65TM:SFG-6LTM的质量比为90:1.5:3.5:3.2:1.8。随后进行冷压延以致密化电极并增强活性材料涂层在金属箔上的附着力。
在实施例1、2、3、5和6中,作为阴极的活性炭电极是通过工业规模的狭缝式挤压涂布将可商购的活性炭(购自中国福建一环的YEC-8BTM)涂布在蚀刻的铝箔上生产的。羧甲基纤维素(CMC)和丁苯橡胶(SBR)用作粘合剂,而Timcal Super C65TM用作导电添加剂。活性炭:CMC:SBR:Super C65TM的质量比为86.5:1.5:4.0:8.0。随后进行冷压延以致密化电极并增强活化涂层在金属箔上的附着力。
在实施例4中,作为阴极的镍锰钴酸锂(NMC)电极是通过工业规模的狭缝式挤压涂布将可商购的NMC涂布在铝箔上制备的。聚偏二氟乙烯(PVdF)用作粘合剂,而Timcal SuperC65TM用作导电添加剂。NMC:PVdF:Super C65TM的质量比为88:8:4。随后进行冷压延以致密化电极并增强活化材料涂层在金属箔上的附着力。
在实施例5中,作为阴极的磷酸铁锂(LFP)电极是通过工业规模的狭缝式挤压涂布将市售LFP涂布在铝箔上制备的。聚偏二氟乙烯(PVdF)用作粘合剂,而Timcal Super C65TM用作导电添加剂。NMC:PVdF:Super C65TM的质量比为88:8:4。随后进行冷压延以致密化电极并增强活化材料涂层在金属箔上的附着力。
在实施例6中,方酸锂电极是通过实验室刮刀涂布法将可商购的方酸锂涂布在铝箔上制备的。聚偏二氟乙烯(PVdF)用作粘合剂,而Timcal Super C65TM用作导电添加剂。NMC:PVdF:Super C65TM的质量比为60:8:32。随后进行冷压延以致密化电极并增强活化材料涂层在金属箔上的附着力。
实施例1
将作为阳极片的双面涂布的石墨电极切成90mm宽,一侧有15mm未涂布区域。将2m长的阳极片和2m长的锂箔卷绕成果冻卷。将该卷绕体插入层压铝箔袋中。在密封袋之前添加足够的电解液以浸渍果冻卷。将卷绕体静置2小时,然后通过夹具在卷绕体上施加压力22小时。然后打开袋,将卷绕体展开。得到金色的经预锂化的阳极片。在经预锂化的阳极片干燥之后,然后用碳酸二甲酯冲洗未涂布的极耳区域。将经预锂化的阳极片切割成59×81mm的尺寸。将11片经预锂化的阳极和10片活性炭电极堆叠,中间夹有一层隔膜。然后将铝极耳和镍极耳分别超声焊接到阴极和预锂化的阳极上,然后将堆叠体堆积在层压铝壳内。在最终热封之前添加电解液。
图5显示了所创建的锂离子电容器在7A电流下在2至3.8V之间循环的循环稳定性,充电和放电电压曲线如图6所示。充电和放电之间有2分钟的复位。
实施例2
将作为阳极片的双面涂布的石墨电极切成90mm宽,一侧有15mm未涂布区域。将2m长的阳极片和2m长的锂箔卷绕成果冻卷,中间夹有一层隔膜。将该卷绕体插入层压铝箔袋中。在密封袋之前添加足够的电解液以浸渍果冻卷。将卷绕体静置2小时。将电缆线分别连接到阳极片和锂箔电极上,实现22小时的外部短路。打开袋,将卷绕体展开。得到金色的经预锂化的阳极片。在经预锂化的阳极片干燥之后,然后用碳酸二甲酯冲洗未涂布的极耳区域。将经预锂化的阳极片切割成59×81mm的尺寸。将11片预锂化的阳极和10片活性炭电极堆叠,中间夹有一层隔膜。然后将铝极耳和镍极耳分别超声焊接到阴极和阳极上,然后将堆叠体堆积在层压铝壳内。在最终热封之前添加电解液。
实施例3
将作为阳极片的双面涂布的硅/碳电极切成90mm宽,一侧有15mm未涂布区域。将2m长的阳极片和2m长的锂箔卷绕成果冻卷,中间夹有一层隔膜。将该卷绕体插入层压铝箔袋中。在密封袋之前添加足够的电解液以浸渍果冻卷。将卷绕体静置2小时。将卷绕体与电池分析仪连接,阳极片以C/10的速率放电8小时以实现预锂化。打开袋,将卷绕体展开。在经预锂化的阳极片干燥之后,然后用碳酸二甲酯冲洗未涂布的极耳区域。将经预锂化的阳极片切割成59×81mm的尺寸。将11片预锂化的阳极和10片活性炭电极堆叠,中间夹有一层隔膜。然后将铝极耳和镍极耳分别超声焊接到阴极和阳极上,然后将堆叠体堆积在层压铝壳内。在最终热封之前添加电解液。
实施例4
将作为阳极片的双面涂布的硅/碳电极切成90mm宽,一侧有15mm未涂布区域。将2m长的阳极片和2m长的锂箔卷绕成果冻卷,中间夹有一层隔膜。将该卷绕体插入层压铝箔袋中。在密封袋之前添加足够的电解液以浸渍果冻卷。将卷绕体静置2小时。将卷绕体与电池分析仪连接,阳极片以C/10的速率放电1小时以实现预锂化。打开袋,将卷绕体展开。在经预锂化的阳极片干燥之后,然后用碳酸二甲酯冲洗未涂布的极耳区域。将经预锂化的阳极片切割成59×81mm的尺寸。将11片预锂化的阳极和10片NMC电极堆叠,中间夹有一层隔膜。然后将铝极耳和镍极耳分别超声焊接到阴极和阳极上,然后将堆叠体堆积在层压铝壳内。在最终热封之前添加电解液。
实施例5
将作为阳极片的双面涂布的石墨电极切成90mm宽,一侧有15mm未涂布区域。将100m长的阳极片和100m长的磷酸铁锂卷绕成果冻卷,中间夹有一层隔膜。将该卷绕体插入圆柱形金属容器中。在密封盖之前添加足够的电解液以浸渍果冻卷。在施加真空之前将卷绕体静置2小时。将铜线和Al线分别连接到阳极片和磷酸铁锂电极,以2.5A充电20小时。打开容器,将卷绕体展开。得到金色的经预锂化的阳极片。在经预锂化的阳极片干燥之后,然后用碳酸二甲酯冲洗未涂布的极耳区域。将经预锂化的阳极片切割成59×81mm的尺寸。将11片预锂化的阳极和10片活性炭电极堆叠,中间夹有一层隔膜。然后将铝极耳和镍极耳分别超声焊接到阴极和阳极上,然后将堆叠体堆积在层压铝壳内。在最终热封之前添加电解液。
实施例6
将作为阳极片的双面涂布的石墨电极切成90mm宽,一侧有15mm未涂布区域。将2m长的阳极片和2m长的方酸二锂电极卷绕成果冻卷,中间夹有一层隔膜。将该卷绕体插入层压铝箔袋中。在密封袋之前添加足够的电解液以浸渍果冻卷。将卷绕体静置2小时。向电池施加0.1A电流,截止电压为4.2V。打开袋,将卷绕体展开。得到金色的经预锂化的阳极片。在经预锂化的阳极片干燥之后,然后用碳酸二甲酯冲洗未涂布的极耳区域。将经预锂化的阳极片切割成59×81mm的尺寸。将11片预锂化的阳极和10片活性炭电极堆叠,中间夹有一层隔膜。然后将铝极耳和镍极耳分别超声焊接到阴极和阳极上,然后将堆叠体堆积在层压铝壳内。在最终热封之前添加电解液。
应当注意,上述实施方案在于说明而不是限制本发明,并且本领域技术人员将能够在不脱离所附权利要求的范围的情况下设计许多替代实施方案。在权利要求中,放置在括号之间的任何参考符号不应被解释为限制权利要求。动词“包括”及其变化词形的使用不排除除了权利要求中所述之外的要素或步骤的存在。一个要素之前的冠词“一个”或“一个”不排除存在多个这样的要素。

Claims (9)

1.用于对多个阳极进行预锂化的方法,其特征在于,该方法包括以下步骤:
-将阳极片(1)与含锂片(5)在电解液(15)中堆积成果冻卷(11)或堆叠体;
-通过阳极片(1)和含锂片(5)之间的直接接触,或通过使阳极片(1)朝向含锂片(5)放电或充电,将锂离子转移至阳极片(1),得到经预锂化的阳极片;
-将经预锂化的阳极片分割成多个具有所需尺寸和形状的经预锂化的阳极。
2.根据权利要求1所述的方法,其中将所述阳极片(1)与所述含锂片(5)在电解液(15)中堆积成阳极片(1)的果冻卷(11)或堆叠体的步骤包括以下步骤:在组装成阳极片(1)和含锂片(5)的果冻卷(11)或堆叠体之前,使阳极片(1)和含锂片(5)经受电解液(15)。
3.根据前述权利要求中任一项所述的方法,其中将锂离子转移至阳极片(1)得到经预锂化的阳极片的步骤包括以下步骤:在阳极片(1)和含锂片(5)之间施加预定义的充电和放电程序。
4.根据前述权利要求中任一项所述的方法,其中所述方法还包括在将所述阳极片(1)与所述含锂片(5)在电解液(15)中堆积的步骤之前,用聚合物膜层掩蔽所述阳极片(1)的预定区域的步骤。
5.根据前述权利要求中任一项所述的方法,其中将锂离子转移至阳极片(1)得到经预锂化的阳极片的步骤在高于环境压力的压力下进行。
6.根据前述权利要求中任一项所述的方法,其中将所述阳极片(1)与所述含锂片(5)在电解液(15)中堆积的步骤包括将所述阳极片(1)和所述含锂片(5)堆叠成Z型堆叠体(21)。
7.根据权利要求1-5中任一项所述的方法,其中将所述阳极片(1)与所述含锂片(5)在所述电解液(15)中堆积的步骤包括将阳极片(1)和含锂片(5)绕着直径等于或大于5cm的芯材进行卷绕。
8.根据权利要求1-5中任一项所述的方法,其中将所述阳极片(1)与所述含锂片(5)在所述电解液(15)中堆积的步骤包括将所述阳极片(1)和含锂片(5)绕着扁平芯材进行卷绕。
9.一种电化学电池,其特征在于,所述电化学电池包括通过根据前述权利要求中任一项所述的方法进行预锂化的阳极。
CN202080082964.9A 2019-12-05 2020-12-03 用于对多个阳极进行预锂化的方法 Pending CN114788037A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20191439 2019-12-05
NO20191439A NO346289B1 (en) 2019-12-05 2019-12-05 Method for pre-lithiating an anode
PCT/NO2020/050297 WO2021112686A1 (en) 2019-12-05 2020-12-03 Method for pre-lithiating a plurality of anodes

Publications (1)

Publication Number Publication Date
CN114788037A true CN114788037A (zh) 2022-07-22

Family

ID=76221727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080082964.9A Pending CN114788037A (zh) 2019-12-05 2020-12-03 用于对多个阳极进行预锂化的方法

Country Status (7)

Country Link
US (1) US20230006186A1 (zh)
EP (1) EP4070394A1 (zh)
JP (1) JP2023509303A (zh)
CN (1) CN114788037A (zh)
AU (1) AU2020397798B2 (zh)
NO (1) NO346289B1 (zh)
WO (1) WO2021112686A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595837A (en) * 1995-04-12 1997-01-21 Valence Technology, Inc. Process for prelithiation of carbon based anodes for lithium batteries
KR20150014877A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 음극 전극의 전리튬화 방법
CN109103496A (zh) * 2018-08-24 2018-12-28 上海空间电源研究所 一种长贮存寿命锂离子电池及其制备方法
US20190036118A1 (en) * 2016-02-09 2019-01-31 Camx Power, L.L.C. Pre-lithiated electrode materials and cells employing the same
CN110335992A (zh) * 2019-07-11 2019-10-15 安普瑞斯(无锡)有限公司 一种锂离子电池极片预锂化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007320A (ko) * 2011-06-30 2013-01-18 삼성전기주식회사 리튬판, 전극의 리튬화 방법 및 에너지 저장장치
KR101820463B1 (ko) * 2013-07-30 2018-01-19 주식회사 엘지화학 음극 전극의 전리튬화 방법
US9837659B2 (en) * 2014-12-22 2017-12-05 GM Global Technology Operations LLC Process for lithiating negative electrodes for lithium ion electrochemical cells
KR20180091058A (ko) * 2015-12-09 2018-08-14 나노스캐일 컴포넌츠, 인코포레이티드 롤 애노드들을 알칼리화하기 위한 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595837A (en) * 1995-04-12 1997-01-21 Valence Technology, Inc. Process for prelithiation of carbon based anodes for lithium batteries
KR20150014877A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 음극 전극의 전리튬화 방법
US20190036118A1 (en) * 2016-02-09 2019-01-31 Camx Power, L.L.C. Pre-lithiated electrode materials and cells employing the same
CN109103496A (zh) * 2018-08-24 2018-12-28 上海空间电源研究所 一种长贮存寿命锂离子电池及其制备方法
CN110335992A (zh) * 2019-07-11 2019-10-15 安普瑞斯(无锡)有限公司 一种锂离子电池极片预锂化装置

Also Published As

Publication number Publication date
AU2020397798A1 (en) 2022-06-16
EP4070394A1 (en) 2022-10-12
WO2021112686A1 (en) 2021-06-10
US20230006186A1 (en) 2023-01-05
NO20191439A1 (en) 2021-06-07
AU2020397798B2 (en) 2023-08-10
NO346289B1 (en) 2022-05-23
JP2023509303A (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
US6451472B1 (en) Lithium battery and manufacturing method thereof
US6280873B1 (en) Wound battery and method for making it
WO2006106731A1 (ja) 円筒型リチウム二次電池
JP6038813B2 (ja) 電極の製造方法及び非水電解質電池の製造方法
JP2009163942A (ja) 非水系二次電池およびその製造方法
WO2011089722A1 (ja) 正極およびその製造方法
CN113346192A (zh) 一种锂离子电池复合隔膜及其制备方法和应用
KR101510509B1 (ko) 전지용 전극의 제조 방법
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
CN111527627B (zh) 制造负极的方法以及由此获得的负极
JP3774980B2 (ja) 非水電解質二次電池用電極の製造方法
WO2013098969A1 (ja) 電極の製造方法及び非水電解質電池の製造方法
CN114788037A (zh) 用于对多个阳极进行预锂化的方法
SE545847C2 (en) Anode fabrication by pattern lamination
KR102406390B1 (ko) 리튬 금속 음극의 제조 방법, 이에 따라 제조된 리튬 금속 음극, 및 이를 포함하는 리튬 이차 전지
JP4069988B2 (ja) リチウムイオン二次電池
CN116057749A (zh) 具有高的特定的能量密度的锂离子电池
JP7278989B2 (ja) 非水二次電池及び非水二次電池の製造方法
KR20190110348A (ko) 음극의 제조방법 및 이로부터 제조된 음극
JP4507300B2 (ja) 非水系ゲル2次電池とその製造方法
EP2421074B1 (en) Jelly roll and electrode assembly having the same
JP7035702B2 (ja) リチウムイオン二次電池
JPH07130394A (ja) 非水電解液二次電池
JPH11238527A (ja) 非水系二次電池
CN115084429A (zh) 一种正极片及锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination