CN114774297A - 产t-杜松醇的重组酿酒酵母及其应用 - Google Patents
产t-杜松醇的重组酿酒酵母及其应用 Download PDFInfo
- Publication number
- CN114774297A CN114774297A CN202210305472.2A CN202210305472A CN114774297A CN 114774297 A CN114774297 A CN 114774297A CN 202210305472 A CN202210305472 A CN 202210305472A CN 114774297 A CN114774297 A CN 114774297A
- Authority
- CN
- China
- Prior art keywords
- saccharomyces cerevisiae
- juniperol
- leu
- ala
- glu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01088—Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/07—Diphosphoric monoester hydrolases (3.1.7)
- C12Y301/07006—Farnesyl diphosphatase (3.1.7.6)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一株产T‑杜松醇的重组酿酒酵母及其应用,属于代谢工程和生物工程领域。本发明产T‑杜松醇的重组酿酒酵母菌株,其以酿酒酵母为宿主,异源表达了T‑杜松醇合酶,过表达了法尼基焦磷酸合成酶和3‑羟基‑3‑甲基戊二酰辅酶还原酶。通过将能够表达T‑杜松醇合酶基因、法尼基焦磷酸合成酶基因和3‑羟基‑3‑甲基戊二酰辅酶还原酶基因的重组质粒转入到酿酒酵母中得到产T‑杜松醇的重组酿酒酵母菌株。本发明在酿酒酵母中引入外源基因来生产T‑杜松醇,不需要药用植物来提取,减少了对环境的破坏和污染。本发明可高效生产T‑杜松醇,促进了T‑杜松醇在医药和农业等领域中的应用。
Description
技术领域
本发明属于代谢工程和生物工程领域,具体涉及产T-杜松醇的重组酿酒酵母及其应用。
背景技术
T-杜松醇,分子式C15H26O,分子量222.37,一种三环倍半萜,是一种重要的生物活性物质,天然存在于许多药用植物中。T-杜松醇作为一种重要的植物活性成分,广泛应用于医药和农业等领域,具有多种功能特性。T-杜松醇对金黄色葡萄球菌具有杀菌作用,已成为治疗伤口致病菌的广泛接受的药物。T-杜松醇具有平滑肌松弛作用,可用于治疗腹泻和帮助缓解胃痉挛。研究表明,T-杜松醇具有抗克氏锥虫活性,对哺乳动物细胞无细胞毒性,可作为查加斯病的候选新药。同时,T-杜松醇对多种癌细胞显示出细胞毒性活性,如人肝癌、结肠癌、肺癌和口腔癌细胞,T-杜松醇还表现出对革兰氏阳性菌的抗菌活性、抗真菌活性和抗霉菌活性。此外,T-杜松醇具有抗分枝杆菌活性,对哺乳动物细胞无毒性,因此可以用作抗结核的潜在药物。另外,富含T-杜松醇的精油对农业害虫棉叶虫具有很好杀灭效果,可以用作杀幼虫剂。
目前,T-杜松醇主要是通过传统的植物提取方法获得,然而,这种生产方式周期长且占用大量耕地,不合适用来大规模生产T-杜松醇。
微生物细胞因其生长周期短、操作简便、环境友好、大规模发酵可控等优势而被广泛研究用以替代传统的植物提取法。通过微生物来生产T-杜松醇具有重要的意义。
发明内容
本发明的目的在于克服现有技术存在的缺点与不足,提供产T-杜松醇的重组酿酒酵母及其应用,所述重组酿酒酵母可高效生产T-杜松醇,促进其在医药和农业上的应用。
本发明提供了产T-杜松醇的重组酿酒酵母菌株,其以酿酒酵母为宿主,异源表达了T-杜松醇合酶,过表达了法尼基焦磷酸合成酶和3-羟基-3-甲基戊二酰辅酶还原酶;所述的T-杜松醇合酶的氨基酸序列如SEQ ID No.1所示;所述的法尼基焦磷酸合成酶的氨基酸序列如SEQ ID No.2所示;所述的3-羟基-3-甲基戊二酰辅酶还原酶的氨基酸序列如SEQ IDNo.3所示。
优选的,所述的重组酿酒酵母菌株以酿酒酵母BY4741为宿主。
优选的,所述的重组酿酒酵母菌株含有能够表达T-杜松醇合酶基因、法尼基焦磷酸合成酶基因和3-羟基-3-甲基戊二酰辅酶还原酶基因的重组质粒。所述的T-杜松醇合酶基因、法尼基焦磷酸合成酶基因和3-羟基-3-甲基戊二酰辅酶还原酶基因的核苷酸序列分别如SEQ ID No.4、5、6所示。通过将所述的重组质粒转入到酿酒酵母中得到所述的重组酿酒酵母菌株。
优选的,所述的重组质粒以pY26TEF-GPD质粒为出发质粒。
优选的,所述的重组质粒中有1个T-杜松醇合酶基因和1个法尼基焦磷酸合成酶基因,T-杜松醇合酶和法尼基焦磷酸合成酶为独立表达或融合表达。融合表达T-杜松醇合酶和法尼基焦磷酸合成酶,可显著提高T-杜松醇产量。
优选的,所述的重组质粒中有1个或2个3-羟基-3-甲基戊二酰辅酶还原酶基因,3-羟基-3-甲基戊二酰辅酶为独立表达或两个融合表达。融合表达两个3-羟基-3-甲基戊二酰辅酶还原酶基因,可显著提高T-杜松醇产量。
本发明还提供了所述的重组酿酒酵母菌株在生产T-杜松醇中的应用。
本发明还提供了一种生产T-杜松醇的方法,其包括如下步骤:将所述的重组酿酒酵母菌株接种至培养基中进行培养,得到含T-杜松醇的发酵液。
优选的,所述的生产T-杜松醇的方法包括如下步骤:将所述的重组酿酒酵母菌株接种至YPD培养基中,于30℃、200rpm培养1-4天。
本发明还提供了所述的重组酿酒酵母菌株在生产含T-杜松醇的医药和农业方面的应用。
本发明的优点是在酿酒酵母中引入外源基因来生产T-杜松醇,不需要药用植物来提取,减少了对环境的破坏和污染,实现了可持续发展。同时,由于酿酒酵母生长、代谢速度快,易于代谢工程改造,不受天气、季节等因素影响,可以实现连续生产。采用本发明获得的T-杜松醇高产量酿酒酵母菌株及方法可高效生产T-杜松醇,促进其在医药和农业等领域中的应用。
附图说明
图1是质粒pY26TEF-GPD-LaCS的示意图,合成LaCS基因,在BglII位点克隆于pY26TEF-GPD上,得到质粒pY26TEF-GPD-LaCS。
图2是在酿酒酵母表达pY26TEF-GPD-LaCS质粒,发酵提取产物后用气相色谱质谱联用仪鉴定有T-杜松醇产生的图。
图3是质粒pY26TEF-GPD-LaCS-EGR20的示意图,酿酒酵母ERG20基因片段在BamHI位点克隆于pY26TEF-GPD-LaCS上,得到质粒pY26TEF-GPD-LaCS-EGR20。
图4是质粒pY26TEF-GPD-LaCS-L-EGR20的示意图,LaCS和ERG20基因片段在BglII位点克隆于pY26TEF-GPD上,得到LaCS和ERG20融合表达质粒pY26TEF-GPD-LaCS-L-EGR20。
图5是质粒pY26TEF-GPD-LaCS-L-EGR20-tHMG1示意图,酿酒酵母tHMG1基因片段在BamHI位点克隆于pY26TEF-GPD-LaCS-L-EGR20上,得到质粒pY26TEF-GPD-LaCS-L-EGR20-tHMG1。
图6是质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1-L-tHMG1示意图,两个酿酒酵母tHMG1基因片段在BamHI位点克隆于pY26TEF-GPD-LaCS-L-EGR20上,得到融合表达两个tHMG1的质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1-L-tHMG1。
具体实施方式
本发明的目的通过以下措施来达到:在酿酒酵母体内引入外源基因——T-杜松醇合酶基因,从而催化自身的法尼基焦磷酸得T-杜松醇。
以下实施例用于进一步说明本发明,但不应理解为对本发明的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
若未特别指明,下述实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例中选用一种酿酒酵母BY4741作为生产菌株,选用其表达载体pY26TEF-GPD。T-杜松醇合酶氨基酸序列如SEQ ID No.1所示,法尼基焦磷酸合成酶的氨基酸序列如SEQID No.2所示,3-羟基-3-甲基戊二酰辅酶还原酶的氨基酸序列如SEQ ID No.3所示。
实施例1
合成编码T-杜松醇合成酶的基因LaCS(核苷酸序列如SEQ ID No.4所示),以LaCS基因为模板,通过使用如下引物PCR扩增LaCS基因片段:
LaCS上游引物:ACTCCGGACCGCGGAGATCTATGGCGACCTCCGCGGTGGT,
LaCS下游引物:GAATTGTTAATTAAAGATCTTTAGAACACCAGCGGGTCCA。
用BglII酶对pY26TEF-GPD进行酶切,得到线性化的pY26TEF-GPD质粒,然后将扩增得到的LaCS基因片段和线性化的pY26TEF-GPD质粒进行同源重组连接(重组酶购买于南京诺唯赞公司,产品货号C115),得到质粒pY26TEF-GPD-LaCS,其示意图见图1。
将质粒pY26TEF-GPD-LaCS转入酿酒酵母BY4741,利用尿嘧啶营养缺陷筛选成功的转化子,得到菌株BY4741/pY26TEF-GPD-LaCS,将构建成功的重组菌命名为L1。挑取L1单克隆于10mL YPD培养基中30℃、200rpm培养12h后,转接2mL菌液入200mL YPD培养基中37℃、220rpm培养。
定性定量分析实验如下:
培养4天后,取20mL发酵液进行萃取分析。
萃取方法为:在20mL发酵液中,加入石竹烯作为内标,再加入20mL乙酸乙酯萃取10min,静置分层,将上层有机层转入50mL的旋蒸瓶进行旋转蒸发浓缩。待有机相浓缩至200μL左右,过滤后转移入样品瓶中。
将处理好的样品用气相色谱质谱联用仪(安捷伦7890-5977)检测,使用的柱子为Agilent HP-5ms柱子,氦气流速1mL/min,进样量为1μL,程序温度为:80℃维持1min,再以10℃/min升至260℃,维持3min,溶剂延迟4.5min。
定性和定量分析实验结果:气相色谱质谱联用仪结果(图2)表明,表达pY26TEF-GPD-LaCS质粒,酿酒酵母产生了T-杜松醇;由GC-MS定量分析得到,产生的T-杜松醇量为50.38±0.84mg/L。
该实施例结果证明在酿酒酵母体内表达LaCS基因,即编码T-杜松醇合成酶的基因,可生产得到T-杜松醇。
实施例2
同实施例1,不同的是进一步过表达法尼基焦磷酸合成酶基因(核苷酸序列如SEQID No.5所示)来提高酿酒酵母体内法尼基焦磷酸的量。
选取实施例1中构建好的质粒pY26TEF-GPD-LaCS。将编码法尼基焦磷酸合成酶基因ERG20构建到质粒pY26TEF-GPD-LaCS上,得到质粒pY26TEF-GPD-LaCS-ERG20。
以酿酒酵母BY4741的基因组为模板,通过使用如下引物PCR扩增ERG20基因片段:
ERG20上游引物:ATTCTAGAACTAGTGGATCCATGGCTTCAGAAAAAGAAAT,
ERG20下游引物:TCCTGCAGCCCGGGGGATCCTTATTTGCTTCTCTTGTAAA。
用BamHI酶对pY26TEF-GPD-LaCS进行酶切,得到线性化的pY26TEF-GPD-LaCS质粒,然后将扩增得到的ERG20基因片段和线性化的pY26TEF-GPD-LaCS质粒进行同源重组连接(重组酶购买于南京诺唯赞公司,产品货号C115),得到质粒pY26TEF-GPD-LaCS-EGR20,其示意图见图3。
将质粒pY26TEF-GPD-LaCS-EGR20转入酿酒酵母BY4741,利用尿嘧啶营养缺陷筛选成功的转化子,得到菌株BY4741/pY26TEF-GPD-LaCS-EGR20,将构建成功的重组菌命名为L2。挑取L2单克隆于10mL YPD培养基中30℃、200rpm培养12h后,转接2mL菌液入200mL YPD培养基中37℃、220rpm培养4天。
定量分析实验结果:由GC-MS定量分析得到,产生的T-杜松醇量为102.52±0.74mg/L。
该实施例结果证明在酿酒酵母体内过表达法尼基焦磷酸合成酶基因来提高法尼基焦磷酸的量,可以提高重组菌T-杜松醇的产量。
实施例3
同实施例2,不同的是融合表达T-杜松醇合酶和法尼基焦磷酸合成酶。
选取质粒pY26TEF-GPD。将编码法尼基焦磷酸合成酶的基因ERG20和编码T-杜松醇合成酶的基因LaCS构建到质粒pY26TEF-GPD上,得到质粒pY26TEF-GPD-LaCS-L-ERG20。
以LaCS基因为模板,通过使用如下引物PCR扩增LaCS基因片段:
LaCS上游引物:ACTCCGGACCGCGGAGATCTATGGCGACCTCCGCGGTGGT,
LaCS下游引物:AACACCAGCGGGTCCAGGAA。
以酿酒酵母BY4741的基因组为模板,通过使用如下引物PCR扩增ERG20基因片段:
ERG20上游引物:CCTGGACCCGCTGGTGTTCGGTTCTGGTATGGCTTCAGAAAAAG AAAT,
ERG20下游引物:AGAATTGTTAATTAAAGATCTTTATTTGCTTCTCTTGTAAA。
用BglII酶对pY26TEF-GPD进行酶切,得到线性化的pY26TEF-GPD质粒,然后将扩增得到的LaCS、ERG20基因片段和线性化的pY26TEF-GPD质粒进行同源重组连接(重组酶购买于南京诺唯赞公司,产品货号C115),得到LaCS和ERG20融合表达质粒pY26TEF-GPD-LaCS-L-ERG20,其示意图见图4。
将质粒pY26TEF-GPD-LaCS-L-ERG20转入酿酒酵母BY4741,利用尿嘧啶营养缺陷筛选成功的转化子,得到菌株BY4741/pY26TEF-GPD-LaCS-L-ERG20,将构建成功的重组菌命名为L3。挑取L3单克隆于10mLYPD培养基中30℃、200rpm培养12h后,转接2mL菌液入200mLYPD培养基中37℃、220rpm培养4天。
定量分析实验结果:由GC-MS定量分析得到,产生的T-杜松醇量为196.84±0.74mg/L。
该实施例结果证明在微生物体内融合表达T-杜松醇合酶和法尼基焦磷酸合成酶,可以进一步提高重组菌T-杜松醇的产量。
实施例4
同实施例3,不同的是进一步过表达3-羟基-3-甲基戊二酰辅酶还原酶。
选取实施例3中构建好的质粒pY26TEF-GPD-LaCS-L-ERG20。将编码3-羟基-3-甲基戊二酰辅酶还原酶的基因tHMG1(核苷酸序列如SEQ ID No.6所示)构建到质粒pY26TEF-GPD-LaCS-L-ERG20上,得到质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1。
以酿酒酵母BY4741的基因组为模板,通过使用如下引物PCR扩增tHMG1基因片段:
tHMG1上游引物:ATTCTAGAACTAGTGGATCCATGGACCAATTGGTGAAAAC,
tHMG1下游引物:TCCTGCAGCCCGGGGGATCCTTAGGATTTAATGCAGGTGA。
用BamHI酶对pY26TEF-GPD-LaCS-L-ERG20进行酶切,得到线性化的pY26TEF-GPD-LaCS-L-ERG20质粒,然后将扩增得到的tHMG1基因片段和线性化的pY26TEF-GPD-LaCS-L-ERG20质粒进行同源重组连接(重组酶购买于南京诺唯赞公司,产品货号C115),得到质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1,其示意图见图5。
将质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1转入酿酒酵母BY4741,利用尿嘧啶营养缺陷筛选成功的转化子,得到菌株BY4741/pY26TEF-GPD-LaCS-L-ERG20-tHMG1,将构建成功的重组菌命名为L4。挑取L4单克隆于10mLYPD培养基中30℃、200rpm培养12h后,转接2mL菌液入200mL YPD培养基中37℃、220rpm培养4天。
定量分析实验结果:由GC-MS定量分析得到,产生的T-杜松醇量为516.76±1.58mg/L。
该实施例结果证明在酿酒酵母体内过表达3-羟基-3-甲基戊二酰辅酶还原酶可以进一步提高T-杜松醇的产量。
实施例5
同实施例4,不同的是进一步融合过表达另一个3-羟基-3-甲基戊二酰辅酶还原酶。
选取实施例3中构建好的质粒pY26TEF-GPD-LaCS-L-ERG20。将两个编码3-羟基-3-甲基戊二酰辅酶还原酶的基因tHMG1(核苷酸序列如SEQ ID No.6所示)构建到质粒pY26TEF-GPD-LaCS-L-ERG20上,得到融合表达两个tHMG1基因质粒的pY26TEF-GPD-LaCS-L-ERG20-tHMG1-L-tHMG1。
以酿酒酵母BY4741的基因组为模板,通过使用如下引物PCR扩增第一个tHMG1基因片段:
tHMG1-1上游引物:ATTCTAGAACTAGTGGATCCATGGACCAATTGGTGAAAAC,
tHMG1-1下游引物:GGATTTAATGCAGGTGACGG。
以酿酒酵母BY4741的基因组为模板,通过使用如下引物PCR扩增第二个tHMG1基因片段:
tHMG1-2上游引物:GTCACCTGCATTAAATCCGGTTCTGGTATGGACCAATTGGTGAAAAC,
tHMG1-2下游引物:TCCTGCAGCCCGGGGGATCCTTAGGATTTAATGCAGGTGA。
用BamHI酶对pY26TEF-GPD-LaCS-L-ERG20进行酶切,得到线性化的pY26TEF-GPD-LaCS-L-ERG20质粒,然后将扩增得到的两个tHMG1基因片段和线性化的pY26TEF-GPD-LaCS-L-ERG20质粒进行同源重组连接(重组酶购买于南京诺唯赞公司,产品货号C115),得到质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1-L-tHMG1,其示意图见图6。
将质粒pY26TEF-GPD-LaCS-L-ERG20-tHMG1-L-tHMG1转入酿酒酵母BY4741,利用尿嘧啶营养缺陷筛选成功的转化子,得到菌株BY4741/pY26TEF-GPD-LaCS-L-ERG20-tHMG1-L-tHMG1,将构建成功的重组菌命名为L5。挑取L5单克隆于10mL YPD培养基中30℃、200rpm培养12h后,转接2mL菌液入200mL YPD培养基中37℃、220rpm培养4天。
定量分析实验结果:由GC-MS定量分析得到,产生的T-杜松醇量为1108±1.35mg/L。
该实施例结果证明在酿酒酵母体内融合过表达两个3-羟基-3-甲基戊二酰辅酶还原酶可以进一步提高T-杜松醇的产量。
序列表
<110> 湖北工业大学
<120> 产T-杜松醇的重组酿酒酵母及其应用
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 555
<212> PRT
<213> Lavandula angustifolia
<400> 1
Met Ala Thr Ser Ala Val Val Asn Cys Leu Gly Gly Val Arg Pro His
1 5 10 15
Thr Ile Arg Tyr Glu Pro Asn Met Trp Thr His Thr Phe Ser Asn Phe
20 25 30
Ser Ile Asp Glu Gln Val Gln Gly Glu Tyr Ala Glu Glu Ile Glu Ala
35 40 45
Leu Lys Gln Glu Val Arg Ser Met Leu Thr Ala Ala Thr Thr Cys Lys
50 55 60
Glu Gln Leu Ile Leu Ile Asp Thr Leu Glu Arg Leu Gly Leu Ser Tyr
65 70 75 80
His Phe Glu Thr Glu Ile Glu Gln Lys Leu Lys Glu Ile Ile Leu His
85 90 95
Ile Asn Arg Glu Glu Asp Ala Ser Gly Gly Asp Cys Asp Leu Tyr Thr
100 105 110
Thr Ser Leu Gly Phe Arg Val Ile Arg Gln His Gln Tyr His Ile Ser
115 120 125
Cys Gly Val Phe Glu Lys Tyr Leu Asp Lys Asp Gly Lys Phe Glu Glu
130 135 140
Ser Leu Ser Ser Asp Thr Glu Gly Ile Leu Ser Leu Tyr Glu Ala Ala
145 150 155 160
His Val Arg Phe Arg Asp Glu Thr Leu Leu Gln Glu Ala Ala Arg Phe
165 170 175
Ser Arg His His Leu Lys Gly Met Glu Glu Val Leu Glu Ser Pro Leu
180 185 190
Arg Glu Lys Val Gln Arg Ala Leu Gln His Pro Leu His Arg Asp Ile
195 200 205
Pro Ile Phe Tyr Ala His Phe Phe Ile Ser Asn Ile Tyr Gln Lys Asp
210 215 220
Asp Ser Arg Asn Glu Leu Leu Leu Lys Leu Ala Lys Ser Asn Phe Met
225 230 235 240
Phe Leu Gln Asn Leu Tyr Lys Glu Glu Leu Ser Gln Leu Ser Arg Trp
245 250 255
Trp Asn Lys Phe Asp Leu Lys Ser Lys Leu Pro Tyr Ala Arg Asp Arg
260 265 270
Leu Val Glu Ala Tyr Ile Trp Gly Val Gly Tyr His Tyr Glu Pro Arg
275 280 285
Tyr Ala Tyr Val Arg Arg Gly Leu Val Ile Gly Ile Gln Ile Ile Ala
290 295 300
Ile Met Asp Asp Thr Tyr Asp Asn Tyr Ala Thr Val Asp Glu Ala Gln
305 310 315 320
Leu Phe Thr Glu Met Phe Glu Arg Trp Ser Met Asp Gly Ile Asp Gly
325 330 335
Val Pro Asp Tyr Leu Lys Ile Ala Tyr His Phe Val Val Ser Ala Phe
340 345 350
Glu Asp Tyr Glu Arg Asp Ala Gly Lys Leu Gly Lys Gln Phe Ala Ala
355 360 365
Pro Tyr Phe Lys Gln Thr Ile Gln Gln Leu Ala Arg Ala Tyr Asn Gln
370 375 380
Glu Leu Lys Trp Val Met Gly Thr Gln Ser Met Pro Ser Phe Gln Asp
385 390 395 400
Tyr Ala Lys Asn Ser Glu Ile Thr Ser Cys Ile Tyr Ile Met Ser Ala
405 410 415
Ser Val Phe His Gly Leu Glu Ser Val Thr Gln Glu Thr Ile Asp Trp
420 425 430
Leu Lys Asn Glu Pro Asn Phe Ala Val Ser Thr Gly Met Ile Gly Arg
435 440 445
Tyr Trp Asp Asp Ile Gly Ser His Glu Arg Glu Ser Arg Gly Gly Lys
450 455 460
Met Leu Thr Ala Val Gly Cys Tyr Met Lys Gln Tyr Gly Val Ser Lys
465 470 475 480
Lys Glu Ala Val Arg Lys Phe Arg Glu Gln Val Glu Asp Leu Trp Lys
485 490 495
Asp Val Asn Lys Gly Tyr Thr Ala Met Thr Cys Met Pro Arg Glu Thr
500 505 510
Ala Val Leu Phe Leu Asn Tyr Ala Arg Met Cys Asp Ala Ser Tyr Thr
515 520 525
Glu Asn Asn Asp Asp Gly Tyr Thr Asp Pro Asp Phe Ser Lys Arg Lys
530 535 540
Ile Ser Ala Leu Phe Leu Asp Pro Leu Val Phe
545 550 555
<210> 2
<211> 352
<212> PRT
<213> Saccharomyces cerevisiae
<400> 2
Met Ala Ser Glu Lys Glu Ile Arg Arg Glu Arg Phe Leu Asn Val Phe
1 5 10 15
Pro Lys Leu Val Glu Glu Leu Asn Ala Ser Leu Leu Ala Tyr Gly Met
20 25 30
Pro Lys Glu Ala Cys Asp Trp Tyr Ala His Ser Leu Asn Tyr Asn Thr
35 40 45
Pro Gly Gly Lys Leu Asn Arg Gly Leu Ser Val Val Asp Thr Tyr Ala
50 55 60
Ile Leu Ser Asn Lys Thr Val Glu Gln Leu Gly Gln Glu Glu Tyr Glu
65 70 75 80
Lys Val Ala Ile Leu Gly Trp Cys Ile Glu Leu Leu Gln Ala Tyr Phe
85 90 95
Leu Val Ala Asp Asp Met Met Asp Lys Ser Ile Thr Arg Arg Gly Gln
100 105 110
Pro Cys Trp Tyr Lys Val Pro Glu Val Gly Glu Ile Ala Ile Asn Asp
115 120 125
Ala Phe Met Leu Glu Ala Ala Ile Tyr Lys Leu Leu Lys Ser His Phe
130 135 140
Arg Asn Glu Lys Tyr Tyr Ile Asp Ile Thr Glu Leu Phe His Glu Val
145 150 155 160
Thr Phe Gln Thr Glu Leu Gly Gln Leu Met Asp Leu Ile Thr Ala Pro
165 170 175
Glu Asp Lys Val Asp Leu Ser Lys Phe Ser Leu Lys Lys His Ser Phe
180 185 190
Ile Val Thr Phe Lys Thr Ala Tyr Tyr Ser Phe Tyr Leu Pro Val Ala
195 200 205
Leu Ala Met Tyr Val Ala Gly Ile Thr Asp Glu Lys Asp Leu Lys Gln
210 215 220
Ala Arg Asp Val Leu Ile Pro Leu Gly Glu Tyr Phe Gln Ile Gln Asp
225 230 235 240
Asp Tyr Leu Asp Cys Phe Gly Thr Pro Glu Gln Ile Gly Lys Ile Gly
245 250 255
Thr Asp Ile Gln Asp Asn Lys Cys Ser Trp Val Ile Asn Lys Ala Leu
260 265 270
Glu Leu Ala Ser Ala Glu Gln Arg Lys Thr Leu Asp Glu Asn Tyr Gly
275 280 285
Lys Lys Asp Ser Val Ala Glu Ala Lys Cys Lys Lys Ile Phe Asn Asp
290 295 300
Leu Lys Ile Glu Gln Leu Tyr His Glu Tyr Glu Glu Ser Ile Ala Lys
305 310 315 320
Asp Leu Lys Ala Lys Ile Ser Gln Val Asp Glu Ser Arg Gly Phe Lys
325 330 335
Ala Asp Val Leu Thr Ala Phe Leu Asn Lys Val Tyr Lys Arg Ser Lys
340 345 350
<210> 3
<211> 525
<212> PRT
<213> Saccharomyces cerevisiae
<400> 3
Met Asp Gln Leu Val Lys Thr Glu Val Thr Lys Lys Ser Phe Thr Ala
1 5 10 15
Pro Val Gln Lys Ala Ser Thr Pro Val Leu Thr Asn Lys Thr Val Ile
20 25 30
Ser Gly Ser Lys Val Lys Ser Leu Ser Ser Ala Gln Ser Ser Ser Ser
35 40 45
Gly Pro Ser Ser Ser Ser Glu Glu Asp Asp Ser Arg Asp Ile Glu Ser
50 55 60
Leu Asp Lys Lys Ile Arg Pro Leu Glu Glu Leu Glu Ala Leu Leu Ser
65 70 75 80
Ser Gly Asn Thr Lys Gln Leu Lys Asn Lys Glu Val Ala Ala Leu Val
85 90 95
Ile His Gly Lys Leu Pro Leu Tyr Ala Leu Glu Lys Lys Leu Gly Asp
100 105 110
Thr Thr Arg Ala Val Ala Val Arg Arg Lys Ala Leu Ser Ile Leu Ala
115 120 125
Glu Ala Pro Val Leu Ala Ser Asp Arg Leu Pro Tyr Lys Asn Tyr Asp
130 135 140
Tyr Asp Arg Val Phe Gly Ala Cys Cys Glu Asn Val Ile Gly Tyr Met
145 150 155 160
Pro Leu Pro Val Gly Val Ile Gly Pro Leu Val Ile Asp Gly Thr Ser
165 170 175
Tyr His Ile Pro Met Ala Thr Thr Glu Gly Cys Leu Val Ala Ser Ala
180 185 190
Met Arg Gly Cys Lys Ala Ile Asn Ala Gly Gly Gly Ala Thr Thr Val
195 200 205
Leu Thr Lys Asp Gly Met Thr Arg Gly Pro Val Val Arg Phe Pro Thr
210 215 220
Leu Lys Arg Ser Gly Ala Cys Lys Ile Trp Leu Asp Ser Glu Glu Gly
225 230 235 240
Gln Asn Ala Ile Lys Lys Ala Phe Asn Ser Thr Ser Arg Phe Ala Arg
245 250 255
Leu Gln His Ile Gln Thr Cys Leu Ala Gly Asp Leu Leu Phe Met Arg
260 265 270
Phe Arg Thr Thr Thr Gly Asp Ala Met Gly Met Asn Met Ile Ser Lys
275 280 285
Gly Val Glu Tyr Ser Leu Lys Gln Met Val Glu Glu Tyr Gly Trp Glu
290 295 300
Asp Met Glu Val Val Ser Val Ser Gly Asn Tyr Cys Thr Asp Lys Lys
305 310 315 320
Pro Ala Ala Ile Asn Trp Ile Glu Gly Arg Gly Lys Ser Val Val Ala
325 330 335
Glu Ala Thr Ile Pro Gly Asp Val Val Arg Lys Val Leu Lys Ser Asp
340 345 350
Val Ser Ala Leu Val Glu Leu Asn Ile Ala Lys Asn Leu Val Gly Ser
355 360 365
Ala Met Ala Gly Ser Val Gly Gly Phe Asn Ala His Ala Ala Asn Leu
370 375 380
Val Thr Ala Val Phe Leu Ala Leu Gly Gln Asp Pro Ala Gln Asn Val
385 390 395 400
Glu Ser Ser Asn Cys Ile Thr Leu Met Lys Glu Val Asp Gly Asp Leu
405 410 415
Arg Ile Ser Val Ser Met Pro Ser Ile Glu Val Gly Thr Ile Gly Gly
420 425 430
Gly Thr Val Leu Glu Pro Gln Gly Ala Met Leu Asp Leu Leu Gly Val
435 440 445
Arg Gly Pro His Ala Thr Ala Pro Gly Thr Asn Ala Arg Gln Leu Ala
450 455 460
Arg Ile Val Ala Cys Ala Val Leu Ala Gly Glu Leu Ser Leu Cys Ala
465 470 475 480
Ala Leu Ala Ala Gly His Leu Val Gln Ser His Met Thr His Asn Arg
485 490 495
Lys Pro Ala Glu Pro Thr Lys Pro Asn Asn Leu Asp Ala Thr Asp Ile
500 505 510
Asn Arg Leu Lys Asp Gly Ser Val Thr Cys Ile Lys Ser
515 520 525
<210> 4
<211> 1668
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atggcgacct ccgcggtggt gaactgcctg ggcggtgttc gtccgcacac catccgttac 60
gaaccgaaca tgtggaccca caccttctct aactttagca tcgatgaaca ggttcagggt 120
gaatacgcgg aagaaatcga agcgctgaaa caggaagttc gtagcatgct gaccgctgcc 180
accacctgca aagaacagct gattctgatt gataccctgg aacgtctggg cctgagctac 240
catttcgaaa ccgaaatcga acagaaactg aaagaaatca ttctgcatat taaccgtgaa 300
gaagatgcta gcggcggcga ctgtgacctt tataccacca gcctgggctt ccgtgttatc 360
cgtcagcatc agtaccatat ctcttgcggt gtttttgaaa aatacctgga taaagatggt 420
aaattcgaag aaagcctttc ttctgacacc gaaggcatcc tgagcctgta tgaagccgcg 480
cacgtgcgtt tccgtgatga aaccctgctg caggaagccg ctcgtttttc tcgtcaccat 540
ctgaaaggca tggaagaagt gctggaatct ccgctgcgcg aaaaagttca gcgcgcactg 600
cagcacccgc tgcaccgtga catcccgatc ttctacgctc actttttcat ctccaacatc 660
taccagaaag atgatagccg caacgaactg ctgctgaaac tggctaaatc caacttcatg 720
ttcctgcaga acctgtacaa agaagaactg tctcagctgt ctcgttggtg gaacaaattt 780
gatctgaaat ctaaactgcc gtacgcccgt gaccgtctgg ttgaagcata catctggggt 840
gttggttatc actacgaacc gcgttatgca tacgttcgtc gcggtctggt gattggtatc 900
cagattatcg ctatcatgga cgacacttac gataactacg caaccgttga cgaagctcag 960
ctgtttactg aaatgttcga acgttggagc atggatggca ttgatggtgt tccggattat 1020
ctgaaaatcg cgtatcactt cgttgttagc gccttcgaag attacgaacg cgatgctggt 1080
aaactgggta aacaattcgc cgcaccgtac ttcaaacaga ccatccagca gctggctcgt 1140
gcatacaacc aggaactgaa atgggtgatg ggtacccagt ctatgccgag cttccaggat 1200
tacgctaaaa acagcgaaat cacctcttgc atttacatca tgtccgcgag cgtttttcac 1260
ggtctggaat ccgttaccca ggaaaccatc gactggctga aaaacgaacc gaactttgcg 1320
gtaagcaccg gtatgatcgg ccgttattgg gatgatatcg gctcccacga acgtgaatcc 1380
cgtggtggca aaatgctgac cgcggttggc tgctacatga aacagtacgg tgtgtctaaa 1440
aaagaagcgg ttcgtaaatt ccgtgaacag gtggaggacc tgtggaaaga tgttaacaaa 1500
ggttacaccg cgatgacctg catgccgcgt gaaaccgcgg tgctgttcct gaactacgca 1560
cgtatgtgcg acgcgagcta taccgaaaac aacgatgatg gttacaccga tccggatttc 1620
tccaaacgta aaatcagcgc gctgttcctg gacccgctgg tgttctaa 1668
<210> 5
<211> 1059
<212> DNA
<213> Saccharomyces cerevisiae
<400> 5
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttacttctt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatcaa tgacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaataa 1059
<210> 6
<211> 1578
<212> DNA
<213> Saccharomyces cerevisiae
<400> 6
atggaccaat tggtgaaaac tgaagtcacc aagaagtctt ttactgctcc tgtacaaaag 60
gcttctacac cagttttaac caataaaaca gtcatttctg gatcgaaagt caaaagttta 120
tcatctgcgc aatcgagctc atcaggacct tcatcatcta gtgaggaaga tgattcccgc 180
gatattgaaa gcttggataa gaaaatacgt cctttagaag aattagaagc attattaagt 240
agtggaaata caaaacaatt gaagaacaaa gaggtcgctg ccttggttat tcacggtaag 300
ttacctttgt acgctttgga gaaaaaatta ggtgatacta cgagagcggt tgcggtacgt 360
aggaaggctc tttcaatttt ggcagaagct cctgtattag catctgatcg tttaccatat 420
aaaaattatg actacgaccg cgtatttggc gcttgttgtg aaaatgttat aggttacatg 480
cctttgcccg ttggtgttat aggccccttg gttatcgatg gtacatctta tcatatacca 540
atggcaacta cagagggttg tttggtagct tctgccatgc gtggctgtaa ggcaatcaat 600
gctggcggtg gtgcaacaac tgttttaact aaggatggta tgacaagagg cccagtagtc 660
cgtttcccaa ctttgaaaag atctggtgcc tgtaagatat ggttagactc agaagaggga 720
caaaacgcaa ttaaaaaagc ttttaactct acatcaagat ttgcacgtct gcaacatatt 780
caaacttgtc tagcaggaga tttactcttc atgagattta gaacaactac tggtgacgca 840
atgggtatga atatgatttc taaaggtgtc gaatactcat taaagcaaat ggtagaagag 900
tatggctggg aagatatgga ggttgtctcc gtttctggta actactgtac cgacaaaaaa 960
ccagctgcca tcaactggat cgaaggtcgt ggtaagagtg tcgtcgcaga agctactatt 1020
cctggtgatg ttgtcagaaa agtgttaaaa agtgatgttt ccgcattggt tgagttgaac 1080
attgctaaga atttggttgg atctgcaatg gctgggtctg ttggtggatt taacgcacat 1140
gcagctaatt tagtgacagc tgttttcttg gcattaggac aagatcctgc acaaaatgtt 1200
gaaagttcca actgtataac attgatgaaa gaagtggacg gtgatttgag aatttccgta 1260
tccatgccat ccatcgaagt aggtaccatc ggtggtggta ctgttctaga accacaaggt 1320
gccatgttgg acttattagg tgtaagaggc ccgcatgcta ccgctcctgg taccaacgca 1380
cgtcaattag caagaatagt tgcctgtgcc gtcttggcag gtgaattatc cttatgtgct 1440
gccctagcag ccggccattt ggttcaaagt catatgaccc acaacaggaa acctgctgaa 1500
ccaacaaaac ctaacaattt ggacgccact gatataaatc gtttgaaaga tgggtccgtc 1560
acctgcatta aatcctaa 1578
Claims (10)
1.产T-杜松醇的重组酿酒酵母菌株,其特征在于:其以酿酒酵母为宿主,异源表达了T-杜松醇合酶,过表达了法尼基焦磷酸合成酶和3-羟基-3-甲基戊二酰辅酶还原酶;所述的T-杜松醇合酶的氨基酸序列如SEQ ID No.1所示。
2.根据权利要求1所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:所述的法尼基焦磷酸合成酶的氨基酸序列如SEQ ID No.2所示,所述的3-羟基-3-甲基戊二酰辅酶还原酶的氨基酸序列如SEQ ID No.3所示。
3.根据权利要求1所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:其以酿酒酵母BY4741为宿主。
4.根据权利要求1所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:其含有能够表达T-杜松醇合酶基因、法尼基焦磷酸合成酶基因和3-羟基-3-甲基戊二酰辅酶还原酶基因的重组质粒。
5.根据权利要求4所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:所述的T-杜松醇合酶基因、法尼基焦磷酸合成酶基因和3-羟基-3-甲基戊二酰辅酶还原酶基因的核苷酸序列分别如SEQ ID No.4、5、6所示。
6.根据权利要求4所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:所述的重组质粒以pY26TEF-GPD质粒为出发质粒。
7.根据权利要求4所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:所述的重组质粒中有1个T-杜松醇合酶基因和1个法尼基焦磷酸合成酶基因,T-杜松醇合酶和法尼基焦磷酸合成酶为独立表达或融合表达。
8.根据权利要求4所述的产T-杜松醇的重组酿酒酵母菌株,其特征在于:所述的重组质粒中有1个或2个3-羟基-3-甲基戊二酰辅酶还原酶基因,3-羟基-3-甲基戊二酰辅酶为独立表达或两个融合表达。
9.权利要求1-8任一项所述的产T-杜松醇的重组酿酒酵母菌株在生产T-杜松醇中的应用。
10.一种生产T-杜松醇的方法,其特征在于:包括如下步骤:将权利要求1-8任一项所述的产T-杜松醇的重组酿酒酵母菌株接种至培养基中进行培养,得到含T-杜松醇的发酵液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210305472.2A CN114774297B (zh) | 2022-03-25 | 2022-03-25 | 产t-杜松醇的重组酿酒酵母及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210305472.2A CN114774297B (zh) | 2022-03-25 | 2022-03-25 | 产t-杜松醇的重组酿酒酵母及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114774297A true CN114774297A (zh) | 2022-07-22 |
CN114774297B CN114774297B (zh) | 2023-09-12 |
Family
ID=82425021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210305472.2A Active CN114774297B (zh) | 2022-03-25 | 2022-03-25 | 产t-杜松醇的重组酿酒酵母及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114774297B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113832167A (zh) * | 2021-11-01 | 2021-12-24 | 昆明理工大学 | 一个基因及其在提高苯乙醇和色醇产量中的用途 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07147975A (ja) * | 1993-11-29 | 1995-06-13 | Sumitomo Chem Co Ltd | 人工融合酵素 |
CN104039973A (zh) * | 2012-01-06 | 2014-09-10 | 弗门尼舍有限公司 | 基因工程酵母细胞 |
CN109929883A (zh) * | 2019-04-02 | 2019-06-25 | 烟台华康荣赞生物科技有限公司 | 重组酵母、构建方法和其在制备酪醇及衍生物中的应用 |
CN111434773A (zh) * | 2019-01-15 | 2020-07-21 | 天津大学 | 一种高产檀香油的重组酵母菌及其构建方法与应用 |
CN111849794A (zh) * | 2020-06-29 | 2020-10-30 | 扬州大学 | 一种酿酒酵母重组菌及其构建方法和应用 |
US20210198679A1 (en) * | 2019-12-27 | 2021-07-01 | Tianjin University Of Science And Technology | Saccharomyces cerevisiae strain with high yield of ethyl butyrate and construction method and application of saccharomyces cerevisiae strain |
CN113388536A (zh) * | 2021-06-03 | 2021-09-14 | 江南大学 | 产西柏三烯一醇的酿酒酵母的构建方法及应用 |
CN113416662A (zh) * | 2021-06-03 | 2021-09-21 | 江南大学 | 一种产西柏三烯一醇的酿酒酵母及应用 |
-
2022
- 2022-03-25 CN CN202210305472.2A patent/CN114774297B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07147975A (ja) * | 1993-11-29 | 1995-06-13 | Sumitomo Chem Co Ltd | 人工融合酵素 |
CN104039973A (zh) * | 2012-01-06 | 2014-09-10 | 弗门尼舍有限公司 | 基因工程酵母细胞 |
CN111434773A (zh) * | 2019-01-15 | 2020-07-21 | 天津大学 | 一种高产檀香油的重组酵母菌及其构建方法与应用 |
CN109929883A (zh) * | 2019-04-02 | 2019-06-25 | 烟台华康荣赞生物科技有限公司 | 重组酵母、构建方法和其在制备酪醇及衍生物中的应用 |
US20210198679A1 (en) * | 2019-12-27 | 2021-07-01 | Tianjin University Of Science And Technology | Saccharomyces cerevisiae strain with high yield of ethyl butyrate and construction method and application of saccharomyces cerevisiae strain |
CN111849794A (zh) * | 2020-06-29 | 2020-10-30 | 扬州大学 | 一种酿酒酵母重组菌及其构建方法和应用 |
CN113388536A (zh) * | 2021-06-03 | 2021-09-14 | 江南大学 | 产西柏三烯一醇的酿酒酵母的构建方法及应用 |
CN113416662A (zh) * | 2021-06-03 | 2021-09-21 | 江南大学 | 一种产西柏三烯一醇的酿酒酵母及应用 |
Non-Patent Citations (5)
Title |
---|
GENBANK: "GenBank: AJS90608.1", pages 1 - 3 * |
GENBANK: "NCBI Reference Sequence: NP_012368.1", pages 1 - 3 * |
GENBANK: "UniProtKB/Swiss-Prot: U3LW50.1", pages 1 - 3 * |
YUE SUN等: "De novo biosynthesis of τ-cadinol in engineered Escherichia coli", vol. 9, pages 1 - 8 * |
孙明雪;刘继栋;堵国成;周景文;陈坚;: "调控酿酒酵母类异戊二烯合成途径强化芳樟醇合成", 生物工程学报, no. 06, pages 58 - 66 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113832167A (zh) * | 2021-11-01 | 2021-12-24 | 昆明理工大学 | 一个基因及其在提高苯乙醇和色醇产量中的用途 |
CN113832167B (zh) * | 2021-11-01 | 2023-04-21 | 昆明理工大学 | 一个基因及其在提高苯乙醇和色醇产量中的用途 |
Also Published As
Publication number | Publication date |
---|---|
CN114774297B (zh) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112195110B (zh) | 一株重组米曲霉菌株及其曲酸发酵方法与应用 | |
Cao et al. | Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology | |
CN111690690A (zh) | 用于生产法尼烯的酿酒酵母 | |
CN112280698B (zh) | 高产雅槛蓝醇型倍半萜的酿酒酵母工程菌及其构建方法与应用 | |
CN114107078B (zh) | 一种产瓦伦烯基因工程菌及其构建方法与应用 | |
CN105441371B (zh) | 一种基因工程菌及其在生产辅酶q10中的应用 | |
CN106635938A (zh) | 用于生产2‑羟基吩嗪的基因工程菌株及其制备方法和用途 | |
CN112175848B (zh) | 一种广藿香醇生产酵母菌株及其构建方法和应用 | |
CN107916283A (zh) | 一种烟酰胺的生产工艺 | |
CN114774297B (zh) | 产t-杜松醇的重组酿酒酵母及其应用 | |
CN107119001A (zh) | 基因工程化类球红细菌及其制备方法和法尼醇的生产方法 | |
CN108138126A (zh) | 一种分枝杆菌基因工程菌及其在制备甾体化合物中的应用 | |
CN113755355A (zh) | 一种以葡萄糖为底物生物合成罗汉果醇的工程菌株、构建及其应用 | |
CN112409492B (zh) | 龙脑樟单萜合酶CcTPS1及其相关生物材料与应用 | |
CN110669713A (zh) | 一种合成d-柠檬烯的基因工程菌及其构建方法与应用 | |
CN114736918B (zh) | 一种整合表达生产红景天苷的重组大肠杆菌及其应用 | |
CN113969288B (zh) | 一种产法尼醇基因工程菌及其构建方法与应用 | |
CN113416662B (zh) | 一种产西柏三烯一醇的酿酒酵母及应用 | |
CN113265391B (zh) | 一种芳樟醇合酶CcLS及其编码基因与应用 | |
WO2018233531A1 (zh) | 微生物及其用途 | |
CN111254083A (zh) | 安他拟酸a及其制备方法与应用 | |
CN113817757A (zh) | 一种生产樱桃苷的重组酵母工程菌株及应用 | |
CN113956990A (zh) | 产二氢尼洛替星的重组酿酒酵母及其制备方法和应用 | |
CN114672425B (zh) | 产α-古巴烯的重组酿酒酵母及其应用 | |
CN113583993B (zh) | 聚酮合酶PreuA及其在制备红粉苔酸中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |