CN114733564A - 一种复合沸石scr催化剂及其制备方法与应用 - Google Patents

一种复合沸石scr催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114733564A
CN114733564A CN202210507457.6A CN202210507457A CN114733564A CN 114733564 A CN114733564 A CN 114733564A CN 202210507457 A CN202210507457 A CN 202210507457A CN 114733564 A CN114733564 A CN 114733564A
Authority
CN
China
Prior art keywords
zeolite
scr catalyst
mixing
composite
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210507457.6A
Other languages
English (en)
Other versions
CN114733564B (zh
Inventor
贺泓
单玉龙
陈俊林
石晓燕
余运波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN202210507457.6A priority Critical patent/CN114733564B/zh
Publication of CN114733564A publication Critical patent/CN114733564A/zh
Priority to PCT/CN2022/112422 priority patent/WO2023216446A1/zh
Application granted granted Critical
Publication of CN114733564B publication Critical patent/CN114733564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9427Processes characterised by a specific catalyst for removing nitrous oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本发明提供了一种复合沸石SCR催化剂及其制备方法与应用,所述复合沸石SCR催化剂包括Cu基沸石与第一氢型沸石;所述复合沸石SCR催化剂在≥300℃的条件下对NOx的净化效率≥80%;所述复合沸石SCR催化剂在750~950℃的条件下水热老化处理10~16h,水热处理后的复合沸石SCR催化剂在≥300℃下对NOx的净化效率为≥60%。本发明所述复合沸石SCR催化剂用于氨气选择性催化还原氮氧化物技术,所述复合沸石SCR催化剂的成分简单、制备成本低、催化性能较强且具有较好的水热稳定性。

Description

一种复合沸石SCR催化剂及其制备方法与应用
技术领域
本发明属于工业废气处理和环保催化材料技术领域,涉及一种复合沸石SCR催化剂,尤其涉及一种复合沸石SCR催化剂及其制备方法与应用。
背景技术
以柴油机为主要动力来源的公路货运和水路货运分别占比我国货运总量的73.0%和15.9%,在今后相当长时间内仍然无法被完全取代。为降低二氧化碳排放,柴油机需要进一步提升热效率和燃油经济性,但伴随的往往是柴油机原机热力型NOx排放的进一步提升。因此,需要进一步提升后处理系统对NOx的净化效率,以消除因提升燃油效率而产生的大量NOx,从而实现柴油机的碳污协同减排。净化柴油车和柴油机的NOx排放的主要技术手段是利用氨气(NH3)作为还原剂对氮氧化物进行选择性催化还原为N2(NH3-SCR),其核心是采用高性能的NH3-SCR催化剂。目前Cu-CHA沸石分子筛是常用的商业催化剂,为了保证其稳定性,通常采用的是高硅沸石催化剂,然而高硅沸石催化剂的低温NH3-SCR催化活性有限。同时,一些富铝型的沸石分子筛催化剂具有优异的NH3-SCR催化活性,但是由于其稳定性较差,限制了其应用。
CN110546108A公开了一种结晶含铜小孔硅铝酸盐沸石,该结晶含铜小孔硅铝酸盐沸石具有八个四面体原子的最大孔径,含有以CuO计算并基于相应沸石的总重量计的2重量%至7重量%的铜,并且含有以纯金属计算并基于所述沸石的总重量计的总量为0.1重量%至0.4重量%的碱金属阳离子,并且具有320m2/g至750m2/g的BET表面积。此外,本发明公开了用于制备所述沸石的方法,所述方法包括制备含水反应混合物,所述含水反应混合物包含八面沸石骨架类型的沸石、铜-四亚乙基戊胺(Cu-TEPA)和至少一种化合物M(OH)X,其中x选自锂、钠、钾、铷和铯;以及加热所述反应混合物以形成含铜小孔沸石。但是,该结晶含铜小孔硅铝酸盐沸石在低温下的SCR催化活性较低,无法满足节能减排的要求。
CN104066508A公开了一种催化剂,其优选用于选择性催化还原(SCR)中,所述催化剂包含一种或多种BEA结构类型的沸石,一种或多种CHA结构类型的沸石以及任选的一种或多种MFI结构类型的沸石,其中所述一种或多种BEA结构类型的沸石的至少一部分含有铁(Fe),其中所述一种或多种CHA结构类型的沸石的至少一部分含有铜(Cu),且其中所述任选的一种或多种MFI结构类型的沸石的至少一部分含有铁(Fe)。此外,该发明涉及一种包含所述催化剂的废气处理系统以及一种使用所述催化剂处理包含NOx的气流的方法。但是,该催化剂的成分复杂且制备成本较高。
CN111068763A公开了一种二甲醚羰基化制醋酸甲酯催化剂及其制备方法,以及醋酸甲酯的合成方法,主要解决现有技术中的催化剂造成副产物低碳烃(C1~C4烷烃,C1~C4烯烃)选择性高和主产物醋酸甲酯收率低的技术问题。通过采用二甲醚羰基化制醋酸甲酯的催化剂,包括载体和活性组分;所述载体包括氢型沸石分子筛;以催化剂的体积计,所述活性组分包括:(1)Cu或Cu氧化物,以Cu计,大于0g/L且20g/L以下;(2)镧系元素氧化物,以镧系元素计,大于0g/L且20g/L以下的技术方案,取得了较好的效果,可用于二甲醚羰基化制醋酸甲酯的工业生产中。但是,该二甲醚羰基化制醋酸甲酯催化剂及其制备方法中需要用到镧系元素氧化物,这造成二甲醚羰基化制醋酸甲酯催化剂的制备成本较高。
目前公开的SCR催化剂都有一定的缺陷,存在着低温NH3-SCR催化活性较低、热稳定性较差、成分复杂且制备成本较高的问题。因此,开发设计一种新型的复合沸石SCR催化剂及其制备方法与应用至关重要。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种复合沸石SCR催化剂及其制备方法与应用,本发明所述复合沸石SCR催化剂用于氨气选择性催化还原氮氧化物技术,所述复合沸石SCR催化剂的成分简单、制备成本低、催化性能较强且具有较好的水热稳定性。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种复合沸石SCR催化剂,所述复合沸石SCR催化剂包括Cu基沸石与第一氢型沸石;
所述复合沸石SCR催化剂在≥300℃的条件下对NOx的净化效率≥80%;
所述复合沸石SCR催化剂在750~950℃的条件下水热处理10~16h,水热老化处理后的复合沸石SCR催化剂在≥300℃下对NOx的净化效率为≥60%。
本发明所述NOx是指氮氧化物,所述氮氧化物包括一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)中的任意一种或至少两种的组合,典型但非限制性的组合包括N2O与NO的组合,NO与NO2的组合,NO2与N2O3的组合,N2O3与N2O4的组合,N2O4与N2O5的组合,N2O、NO与NO2的组合,或NO2、N2O3、N2O4与N2O5的组合。
本发明所述第一氢型沸石的催化活性较差,所述Cu基沸石的催化活性较强;所述复合沸石SCR催化剂中包括Cu基沸石与第一氢型沸石,所述复合沸石SCR催化剂具有与同样质量的Cu基沸石相近的催化性能;同时,所述复合沸石SCR催化剂的热稳定性优于同样质量的Cu基沸石。
本发明所述复合沸石SCR催化剂用于氨气选择性催化还原氮氧化物技术,所述复合沸石SCR催化剂的成分简单、制备成本低、催化性能较强且具有较好的水热稳定性。
本发明所述Cu基沸石与氢型沸石的复合催化剂具备优异水热稳定性的原因在于氢型沸石中存在大量空余铝位,与Cu基沸石复合后,Cu沸石中的Cu2+迁移到氢型沸石中,有利于维持分子筛骨架的稳定性;而在普通SCR催化剂中,由于铜物种发生团聚生成大颗粒CuOx,导致其水热稳定性较差。故在本发明中的Cu基沸石与氢型沸石的复合催化剂的水热稳定性要优于普通SCR催化剂。
优选地,所述Cu基沸石与第一氢型沸石的质量比为(3~30):3,例如可以是3:3、5:3、7:3、9:3、10:3、12:3、14:3、16:3、18:3、20:3、22:3、24:3、26:3、28:3或30:3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为(6~15):3;当Cu基沸石与第一氢型沸石的质量比偏低时,会导致NOx转化效率降低,这是由于存在较多的氢型沸石,催化剂中活性位点含量较少,不能起到较好的催化效果;当Cu基沸石与第一氢型沸石的质量比偏高时,会导致NOx转化效率较高,水热稳定性降低,这是由于存在较多的Cu基沸石,复合催化剂体系近似于纯Cu基沸石催化剂,在水热老化之后,骨架容易脱铝,且铜易于团聚导致活性降低,故其水热稳定性会下降。
第二方面,本发明提供了一种如第一方面所述复合沸石SCR催化剂的制备方法,所述制备方法包括:
混合Cu基沸石与第一氢型沸石,得到所述复合沸石SCR催化剂。
本发明所述复合沸石SCR催化剂的制备方法的工艺简单且制备成本低。
优选地,所述Cu基沸石的结构类型包括CHA、AEI、KFI、LTA、AFX、ERI、GIS、LEV、RTH、RHO或SFW中的任意一种或至少两种的组合,典型但非限制性的组合包括AEI与KFI的组合,KFI与LTA的组合,AFX与ERI的组合,GIS与LEV的组合,RTH与RHO的组合,RTH、RHO与SFW的组合,或AEI、KFI、LTA与AFX的组合。
优选地,以Cu基沸石的质量为基准,所述Cu基沸石中含有质量分数不低于2.4wt%的Cu,例如可以是2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.2wt%、3.5wt%、4wt%、5wt%、6wt%、8wt%、10wt%或15wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述Cu基沸石中二氧化硅与氧化铝的摩尔比为(5~20):1,例如可以是5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1或20:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明所述Cu基沸石中二氧化硅与氧化铝的摩尔比较低,采用所述Cu基沸石制备得到的复合沸石SCR催化剂具有较高的SCR催化活性及水热稳定性。
优选地,所述第一氢型沸石的结构类型包括CHA、AEI、KFI、LTA、AFX、ERI、GIS、LEV、RTH、RHO或SFW中的任意一种或至少两种的组合,典型但非限制性的组合包括CHA与KFI的组合,LTA与AFX的组合,AFX与ERI的组合,ERI与GIS的组合,LEV与RTH的组合,RHO与SFW的组合,CHA、KFI与LTA的组合,KFI、LTA、AFX与ERI的组合。
优选地,所述第一氢型沸石中二氧化硅与氧化铝的摩尔比不低于Cu基沸石中二氧化硅与氧化铝的摩尔比;当第一氢型沸石中二氧化硅与氧化铝的摩尔比高于Cu基沸石中二氧化硅与氧化铝的摩尔比时,会导致NOx转化效率降低,水热稳定性提升,这是由于氢型沸石中硅铝比较低,存在更多的对铝,更容易与Cu2+形成Cu2+-2Al,维持骨架的稳定性,故其水热稳定性提升。
优选地,所述混合包括液液混合、固液混合或固固混合中的任意一种或至少两种的组合,典型但非限制性的组合包括液液混合与固液混合的组合,固液混合与固固混合的组合,或液液混合、固液混合与固固混合的组合。
优选地,所述固固混合包括研磨。
优选地,所述Cu基沸石的制备方法包括如下步骤:
(1)混合第二氢型沸石与氯化铵溶液,烘干,得到中间体;
(2)混合中间体与铜盐溶液,烘干后进行煅烧,得到所述Cu基沸石。
本发明所述第二氢型沸石的结构类型与Cu基沸石的结构类型相同,所述第二氢型沸石中二氧化硅与氧化铝的摩尔比与Cu基沸石相同,所述第二氢型沸石与第一氢型沸石不存在相关联系。
优选地,步骤(1)所述混合的温度为60~90℃,例如可以是60℃、65℃、70℃、75℃、80℃、85℃或90℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述混合的方法包括速度为300~700rpm的搅拌,例如可以是300rpm、320rpm、350rpm、370rpm、400rpm、420rpm、450rpm、470rpm、500rpm、520rpm、550rpm、570rpm、600rpm、620rpm、650rpm、680rpm或700rpm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述第二氢型沸石与氯化铵溶液的固液比为1:(80~120),例如可以是1:80、1:85、1:90、1:95、1:100、1:105、1:110、1:115或1:120,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,所述固液比的单位为g/mL。
优选地,步骤(1)所述氯化铵溶液的浓度为0.1~0.2mol/L,例如可以是0.1mol/L、0.11mol/L、0.12mol/L、0.13mol/L、0.14mol/L、0.15mol/L、0.16mol/L、0.17mol/L、0.18mol/L、0.19mol/L或0.2mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述烘干的温度为80~120℃,例如可以是80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃或120℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述混合的温度为40~60℃,例如可以是40℃、42℃、45℃、48℃、50℃、52℃、55℃、58℃或60℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述混合的方法包括速度为300~700rpm的搅拌,例如可以是300rpm、320rpm、350rpm、370rpm、400rpm、420rpm、450rpm、470rpm、500rpm、520rpm、550rpm、570rpm、600rpm、620rpm、650rpm、680rpm或700rpm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述中间体与铜盐溶液的固液比为1:(80~120),例如可以是1:80、1:85、1:90、1:95、1:100、1:105、1:110、1:115或1:120,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,所述固液比的单位为g/mL。
优选地,步骤(2)所述铜盐溶液中的铜盐包括乙酸铜、硝酸铜或硫酸铜中的任意一种或至少两种的组合,典型但非限制性的组合包括乙酸铜与硝酸铜的组合,硝酸铜与硫酸铜的组合,或乙酸铜、硝酸铜与硫酸铜的组合。
优选地,步骤(2)所述铜盐溶液的浓度为0.1~0.5mol/L,例如可以是0.1mol/L、0.15mol/L、0.2mol/L、0.25mol/L、0.3mol/L、0.35mol/L、0.4mol/L、0.45mol/L、0.5mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述烘干的温度为80~120℃,例如可以是80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃或120℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述煅烧的温度为400℃~600℃,时间为5~8h。
本发明限定了煅烧的温度为400℃~600℃,例如可以是400℃、420℃、450℃、480℃、500℃、520℃、550℃、580℃或600℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明限定了煅烧的时间为5~8h,例如可以是5h、5.2h、5.5h、5.8h、6h、6.2h、6.5h、6.8h、7h、7.2h、7.5h、7.8h或8h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第三方面,本发明提供了一种如第一方面所述复合沸石SCR催化剂的应用,所述复合沸石SCR催化剂用于选择性催化还原柴油车尾气中氮氧化物。
优选地,所述复合沸石SCR催化剂与助剂混合后得到浆液,将浆液涂覆于蜂窝陶瓷,依次经干燥与焙烧后,用于选择性催化还原柴油车尾气中氮氧化物。
相对于现有技术,本发明具有以下有益效果:
(1)本发明提供的复合沸石SCR催化剂具有与同样质量的Cu基沸石相近的催化性能;同时,所述复合沸石SCR催化剂的热稳定性优于同样质量的Cu基沸石;
(2)本发明提供的复合沸石SCR催化剂在≥300℃的条件下对NOx的净化效率≥80%;在750~950℃的条件下水热处理10~16h,水热处理后的复合沸石SCR催化剂在≥300℃下对NOx的净化效率为≥60%;
(3)本发明所述复合沸石SCR催化剂用于氨气选择性催化还原氮氧化物技术,所述复合沸石SCR催化剂的成分简单、制备成本低、催化性能较强且具有较好的水热稳定性。
附图说明
图1是实施例1中复合沸石SCR催化剂及水热处理后的复合沸石SCR催化剂在不同温度下对NOx的转化效率曲线。
图2是实施例2中复合沸石SCR催化剂及水热处理后的复合沸石SCR催化剂在不同温度下对NOx的转化效率曲线。
图3是对比例1中Cu-KFI及水热处理后的Cu-KFI在不同温度下对NOx的转化效率曲线。
图4是对比例2中H-CHA-1及水热处理后的H-CHA-1在不同温度下对NOx的转化效率曲线。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供了一种复合沸石SCR催化剂,所述复合沸石SCR催化剂包括质量比为12:3的结构类型为KFI的Cu基沸石(Cu-KFI)与结构类型为AEI的氢型沸石(H-AEI)。
所述复合沸石SCR催化剂的制备方法包括:
通过研磨混合Cu-KFI与H-AEI,得到所述复合沸石SCR催化剂;
以Cu-KFI的质量为基准,所述Cu-KFI中Cu的质量分数为3.0%,二氧化硅与氧化铝的摩尔比为10:1;所述H-AEI中二氧化硅与氧化铝的摩尔比为23:1。
所述Cu-KFI的制备方法包括如下步骤:
(1)在80℃下以500rpm的速度搅拌混合结构类型为KFI的氢型沸石(H-KFI)与浓度为0.2mol/L的氯化铵溶液,H-KFI与氯化铵溶液的固液比为1:100,所述固液比的单位为g/mL,以100℃进行烘干,得到中间体;
(2)在40℃下以500rpm的速度搅拌混合中间体与浓度为0.4mol/L的硝酸铜溶液,中间体与硝酸铜溶液的固液比为1:100,所述固液比的单位为g/mL,以90℃进行烘干后在600℃煅烧6h,得到所述Cu-KFI。
实施例2
本实施例提供了一种复合沸石SCR催化剂,所述复合沸石SCR催化剂包括质量比为15:3的结构类型为CHA的Cu基沸石(Cu-CHA)与结构类型为CHA的第一氢型沸石(H-CHA-1)。
所述复合沸石SCR催化剂的制备方法包括:
通过研磨混合Cu-CHA与H-CHA-1,得到所述复合沸石SCR催化剂;
以Cu-CHA的质量为基准,所述Cu-CHA中Cu的质量分数为4.2%,二氧化硅与氧化铝的摩尔比为9:1;所述H-CHA-1中二氧化硅与氧化铝的摩尔比为23:1。
所述Cu-CHA的制备方法包括如下步骤:
(1)在85℃下以500rpm的速度搅拌混合结构类型为CHA的第二氢型沸石(H-CHA-2)与浓度为0.18mol/L的氯化铵溶液,H-CHA-2与氯化铵溶液的固液比为1:80,所述固液比的单位为g/mL,以110℃进行烘干,得到中间体;
(2)在45℃下以600rpm的速度搅拌混合中间体与浓度为0.3mol/L的硫酸铜溶液,中间体与硫酸铜溶液的固液比为1:110,所述固液比的单位为g/mL,以110℃进行烘干后在450℃煅烧7h,得到所述Cu-CHA。
实施例3
本实施例提供了一种复合沸石SCR催化剂,所述复合沸石SCR催化剂包括质量比为6:3的结构类型为CHA的Cu基沸石(Cu-CHA)与结构类型为KFI的氢型沸石(H-KFI)。
所述复合沸石SCR催化剂的制备方法包括:
通过研磨混合Cu-CHA与H-KFI,得到所述复合沸石SCR催化剂;
以Cu-CHA的质量为基准,所述Cu-CHA中Cu的质量分数为3.4%,二氧化硅与氧化铝的摩尔比为5:1;所述H-KFI中二氧化硅与氧化铝的摩尔比为10:1。
所述Cu-CHA的制备方法包括如下步骤:
(1)在70℃下以700rpm的速度搅拌混合结构类型为CHA的氢型沸石(H-CHA)与浓度为0.15mol/L的氯化铵溶液,H-CHA与氯化铵溶液的固液比为1:120,所述固液比的单位为g/mL,以80℃进行烘干,得到中间体;
(2)在50℃下以400rpm的速度搅拌混合中间体与浓度为0.5mol/L的乙酸铜溶液,中间体与乙酸铜溶液的固液比为1:80,所述固液比的单位为g/mL,以80℃进行烘干后在550℃煅烧5h,得到所述Cu-CHA。
实施例4
本实施例提供了一种复合沸石SCR催化剂,所述复合沸石SCR催化剂包括质量比为3:3的结构类型为KFI的Cu基沸石(Cu-KFI)与结构类型为CHA的氢型沸石(H-CHA)。
所述复合沸石SCR催化剂的制备方法包括:
通过研磨混合Cu-KFI与H-CHA,得到所述复合沸石SCR催化剂;
以Cu-KFI的质量为基准,所述Cu-KFI中Cu的质量分数为3.1%,二氧化硅与氧化铝的摩尔比为8:1;所述H-CHA中二氧化硅与氧化铝的摩尔比为21:1。
所述Cu-KFI的制备方法包括如下步骤:
(1)在60℃下以400rpm的速度搅拌混合结构类型为KFI的氢型沸石(H-KFI)与浓度为0.2mol/L的氯化铵溶液,H-KFI与氯化铵溶液的固液比为1:90,所述固液比的单位为g/mL,以90℃进行烘干,得到中间体;
(2)在60℃下以300rpm的速度搅拌混合中间体与浓度为0.2mol/L的硝酸铜溶液,中间体与硝酸铜溶液的固液比为1:120,所述固液比的单位为g/mL,以100℃进行烘干后在600℃煅烧6h,得到所述Cu-KFI。
实施例5
本实施例提供了一种复合沸石SCR催化剂,除Cu-KFI与H-AEI的质量比为1:3外,其余均与实施例1相同。
实施例6
本实施例提供了一种复合沸石SCR催化剂,除Cu-KFI与H-AEI的质量比为35:3外,其余均与实施例1相同。
实施例7
本实施例提供了一种复合沸石SCR催化剂,除H-CHA-1中二氧化硅与氧化铝的摩尔比为8:1外,其余均与实施例2相同。
对比例1
本对比例提供了一种Cu-KFI,所述Cu-KFI由实施例1中Cu-KFI的制备方法制备得到。
对比例2
本对比例提供了一种H-CHA-1,所述H-CHA与实施例2中H-CHA-1相同。
以相同质量的实施例1~7所述复合沸石SCR催化剂、对比例1所述Cu-KFI与对比例2所述H-CHA-1进行水热处理,水热处理方法包括:取适量复合沸石SCR催化剂、Cu-KFI与H-CHA-1分别装入石英管置于可控温电阻炉中,通入含水10%、空气作为载气,流量500ml/min,在800℃处理10h,得到水热处理后的复合沸石SCR催化剂、水热处理后的Cu-KFI与水热处理后的H-CHA-1。
以相同质量的实施例1~7所述复合沸石SCR催化剂、对比例1所述Cu-KFI与对比例2所述H-CHA-1、水热处理后的复合沸石SCR催化剂、水热处理后的Cu-KFI与水热处理后的H-CHA-1用于NH3-SCR催化反应:
通入试验气体并进行测试,由傅里叶变换红外光谱仪检测尾气中的成分组成,并计算NOx转化效率;其中,测试空速100000h-1,试验气体组成为500ppm的NO、500ppm的NH3和5%的O2,平衡气为N2,测量NOx转化效率随反应温度变化的曲线及数据;
不同反应温度下复合沸石SCR催化剂、Cu-KFI与H-CHA-1的NH3-SCR催化反应的NOx转化效率如表1所示;
不同反应温度下水热处理后的复合沸石SCR催化剂、水热处理后的Cu-KFI与水热处理后的H-CHA-1的NH3-SCR催化反应的NOx转化效率如表2所示;
实施例1中复合沸石SCR催化剂及水热处理后的复合沸石SCR催化剂在不同温度下对NOx的转化效率曲线如图1所示;
实施例2中复合沸石SCR催化剂及水热处理后的复合沸石SCR催化剂在不同温度下对NOx的转化效率曲线如图2所示;
对比例1中Cu-KFI及水热处理后的Cu-KFI在不同温度下对NOx的转化效率曲线如图3所示;
对比例2中H-CHA-1及水热处理后的H-CHA-1在不同温度下对NOx的转化效率曲线如图4所示。
表1
Figure BDA0003636624010000131
Figure BDA0003636624010000141
表2
Figure BDA0003636624010000142
Figure BDA0003636624010000151
由表1、表2与图1~4可得:
(1)以实施例1~4中得到的复合沸石SCR催化剂的NH3-SCR催化反应的NOx转化效率较高,800℃水热处理后仍具有较高的NOx转化效率;本发明所述复合沸石SCR催化剂用于氨气选择性催化还原氮氧化物技术,所述复合沸石SCR催化剂的成分简单、制备成本低、催化性能较强且具有较好的水热稳定性。
(2)通过实施例1与实施例5和6的对比可知,本发明所述复合沸石SCR催化剂中Cu基沸石与第一氢型沸石的质量比会影响NH3-SCR催化反应的NOx转化效率;当Cu基沸石与第一氢型沸石的质量比偏低时,会导致NOx转化效率降低,这是由于存在较多的氢型沸石,催化剂中活性位点含量较少,不能起到较好的催化效果;当Cu基沸石与第一氢型沸石的质量比偏高时,会导致NOx转化效率较高,水热稳定性降低,这是由于存在较多的Cu基沸石,复合催化剂体系近似于纯Cu基沸石催化剂,在水热老化之后,骨架容易脱铝,且铜易于团聚导致活性降低,故其水热稳定性会下降。
(3)通过实施例2与实施例7的对比可知,本发明所述第一氢型沸石中二氧化硅与氧化铝的摩尔比会影响NH3-SCR催化反应的NOx转化效率;当第一氢型沸石中二氧化硅与氧化铝的摩尔比高于Cu基沸石中二氧化硅与氧化铝的摩尔比时,会导致NOx转化效率降低,水热稳定性提升,这是由于氢型沸石中硅铝比较低,存在更多的对铝,更容易与Cu2+形成Cu2+-2Al,维持骨架的稳定性,故其水热稳定性提升。
(4)通过实施例1与对比例1及实施例2与对比例2的对比可知,本发明所述第一氢型沸石的催化活性较差,所述Cu基沸石的催化活性较强;所述复合沸石SCR催化剂中包括Cu基沸石与第一氢型沸石,所述复合沸石SCR催化剂具有与同样质量的Cu基沸石相近的催化性能;同时,所述复合沸石SCR催化剂的水热稳定性优于同样质量的Cu基沸石。
综上所述,本发明提供的复合沸石SCR催化剂具有与同样质量的Cu基沸石相近的催化性能;同时,所述复合沸石SCR催化剂的水热稳定性优于同样质量的Cu基沸石;本发明提供的复合沸石SCR催化剂在≥300℃的条件下对NOx的净化效率≥80%;在750~950℃的条件下水热处理10~16h,水热处理后的复合沸石SCR催化剂在≥300℃下对NOx的净化效率为≥60%;本发明所述复合沸石SCR催化剂用于氨气选择性催化还原氮氧化物技术,所述复合沸石SCR催化剂的成分简单、制备成本低、催化性能较强且具有较好的水热稳定性。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种复合沸石SCR催化剂,其特征在于,所述复合沸石SCR催化剂包括Cu基沸石与第一氢型沸石;
所述复合沸石SCR催化剂在≥300℃的条件下对NOx的净化效率≥80%;
所述复合沸石SCR催化剂在750~950℃的条件下水热处理10~16h,水热处理后的复合沸石SCR催化剂在≥300℃下对NOx的净化效率为≥60%。
2.根据权利要求1所述的复合沸石SCR催化剂,其特征在于,所述Cu基沸石与第一氢型沸石的质量比为(3~30):3,优选为(6~15):3。
3.一种如权利要求1或2所述复合沸石SCR催化剂的制备方法,其特征在于,所述制备方法包括:
混合Cu基沸石与第一氢型沸石,得到所述复合沸石SCR催化剂。
4.根据权利要求3所述的制备方法,其特征在于,所述Cu基沸石的结构类型包括CHA、AEI、KFI、LTA、AFX、ERI、GIS、LEV、RTH、RHO或SFW中的任意一种或至少两种的组合;
优选地,以Cu基沸石的质量为基准,所述Cu基沸石中含有质量分数不低于2.4wt%的Cu;
优选地,所述Cu基沸石中二氧化硅与氧化铝的摩尔比为(5~20):1。
5.根据权利要求3或4所述的制备方法,其特征在于,所述第一氢型沸石的结构类型包括CHA、AEI、KFI、LTA、AFX、ERI、GIS、LEV、RTH、RHO或SFW中的任意一种或至少两种的组合;
优选地,所述第一氢型沸石中二氧化硅与氧化铝的摩尔比不低于Cu基沸石中二氧化硅与氧化铝的摩尔比。
6.根据权利要求3~5任一项所述的制备方法,其特征在于,所述混合包括液液混合、固液混合或固固混合中的任意一种或至少两种的组合;
优选地,所述固固混合包括研磨。
7.根据权利要求3~6任一项所述的制备方法,其特征在于,所述Cu基沸石的制备方法包括如下步骤:
(1)混合第二氢型沸石与氯化铵溶液,过滤,烘干,得到中间体;
(2)混合中间体与铜盐溶液,过滤,烘干后进行煅烧,得到所述Cu基沸石。
8.根据权利要求7所述的制备方法,其特征在于,步骤(1)所述混合的温度为60~90℃;
优选地,步骤(1)所述混合的方法包括速度为300~700rpm的搅拌;
优选地,步骤(1)所述第二氢型沸石与氯化铵溶液的固液比为1:(80~120),所述固液比的单位为g/mL;
优选地,步骤(1)所述氯化铵溶液的浓度为0.1~0.2mol/L;
优选地,步骤(1)所述烘干的温度为80~120℃;
优选地,步骤(2)所述混合的温度为40~60℃;
优选地,步骤(2)所述混合的方法包括速度为300~700rpm的搅拌;
优选地,步骤(2)所述中间体与铜盐溶液的固液比为1:(80~120),所述固液比的单位为g/mL;
优选地,步骤(2)所述铜盐溶液中的铜盐包括乙酸铜、硝酸铜或硫酸铜中的任意一种或至少两种的组合;
优选地,步骤(2)所述铜盐溶液的浓度为0.1~0.5mol/L;
优选地,步骤(2)所述烘干的温度为80~120℃;
优选地,步骤(2)所述煅烧的温度为400℃~600℃,时间为5~8h。
9.一种如权利要求1或2所述复合沸石SCR催化剂的应用,其特征在于,所述复合沸石SCR催化剂用于选择性催化还原柴油车尾气中氮氧化物。
10.根据权利要求9所述的应用,其特征在于,所述复合沸石SCR催化剂与助剂混合后得到浆液,将浆液涂覆于蜂窝陶瓷,依次经干燥与焙烧后,用于选择性催化还原柴油车尾气中氮氧化物。
CN202210507457.6A 2022-05-10 2022-05-10 一种复合沸石scr催化剂及其制备方法与应用 Active CN114733564B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210507457.6A CN114733564B (zh) 2022-05-10 2022-05-10 一种复合沸石scr催化剂及其制备方法与应用
PCT/CN2022/112422 WO2023216446A1 (zh) 2022-05-10 2022-08-15 一种复合沸石scr催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210507457.6A CN114733564B (zh) 2022-05-10 2022-05-10 一种复合沸石scr催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114733564A true CN114733564A (zh) 2022-07-12
CN114733564B CN114733564B (zh) 2023-06-23

Family

ID=82284938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210507457.6A Active CN114733564B (zh) 2022-05-10 2022-05-10 一种复合沸石scr催化剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114733564B (zh)
WO (1) WO2023216446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216446A1 (zh) * 2022-05-10 2023-11-16 中国科学院生态环境研究中心 一种复合沸石scr催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624228A (zh) * 2010-04-08 2015-05-20 巴斯夫欧洲公司 Cu-CHA/Fe-MFI混合沸石催化剂和使用其处理气流中的NOx的方法
CN109794286A (zh) * 2019-01-16 2019-05-24 山东国瓷功能材料股份有限公司 一种cha/aei复合脱硝催化剂及其制备方法与应用
CN112958148A (zh) * 2021-02-05 2021-06-15 中化学科学技术研究有限公司 具有核壳结构的Cu-SSZ-39@Cu-SSZ-13复合分子筛及其合成方法
US20210205796A1 (en) * 2020-01-03 2021-07-08 Hyundai Motor Company Catalyst and manufacturing method thereof
US20210205794A1 (en) * 2018-05-21 2021-07-08 Heesung Catalysts Corporation Zeolite having improved heat resistance and catalyst composite using same
US20210308655A1 (en) * 2019-05-10 2021-10-07 Sichuan University Afi-cha hybrid crystal zeolite and nh3-scr catalyst using same as carrier, and preparation methods thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901911B2 (en) * 2014-12-18 2018-02-27 Uop Llc Coherently grown composite aluminophosphate and silicoaluminophosphate molecular sieves
EP3323785A1 (en) * 2016-11-18 2018-05-23 Umicore AG & Co. KG Crystalline zeolites with eri/cha intergrowth framework type
CN114733563B (zh) * 2022-05-10 2023-06-16 中国科学院生态环境研究中心 一种Cu-CHA与H-AEI的复合催化剂及其制备方法与应用
CN114733564B (zh) * 2022-05-10 2023-06-23 中国科学院生态环境研究中心 一种复合沸石scr催化剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624228A (zh) * 2010-04-08 2015-05-20 巴斯夫欧洲公司 Cu-CHA/Fe-MFI混合沸石催化剂和使用其处理气流中的NOx的方法
US20210205794A1 (en) * 2018-05-21 2021-07-08 Heesung Catalysts Corporation Zeolite having improved heat resistance and catalyst composite using same
CN109794286A (zh) * 2019-01-16 2019-05-24 山东国瓷功能材料股份有限公司 一种cha/aei复合脱硝催化剂及其制备方法与应用
US20210308655A1 (en) * 2019-05-10 2021-10-07 Sichuan University Afi-cha hybrid crystal zeolite and nh3-scr catalyst using same as carrier, and preparation methods thereof
US20210205796A1 (en) * 2020-01-03 2021-07-08 Hyundai Motor Company Catalyst and manufacturing method thereof
CN112958148A (zh) * 2021-02-05 2021-06-15 中化学科学技术研究有限公司 具有核壳结构的Cu-SSZ-39@Cu-SSZ-13复合分子筛及其合成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216446A1 (zh) * 2022-05-10 2023-11-16 中国科学院生态环境研究中心 一种复合沸石scr催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN114733564B (zh) 2023-06-23
WO2023216446A1 (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6328593B2 (ja) Cha構造を有するゼオライトの製造方法
CN111135860B (zh) 一种稀土金属修饰Cu-SSZ-13分子筛及其制备方法和应用
CN102614910B (zh) 用于氨选择性催化消除NOx的SAPO-34负载Cu-Fe催化剂的制备方法
CN112299436B (zh) 一种Cu-SSZ-39@SSZ-39核壳型分子筛及其制备方法和应用
US20150290632A1 (en) IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
CN111943224B (zh) 一种Cu-SSZ-13分子筛催化剂的制备方法及所得产品和应用
CN112076803B (zh) 氨氧化催化剂及制备方法和用途
CN114733563B (zh) 一种Cu-CHA与H-AEI的复合催化剂及其制备方法与应用
CN102614908A (zh) 用于氨选择性催化消除NOx的SSZ-13负载Cu-Fe催化剂的制备方法
CN102626653B (zh) 用于氨选择性催化消除NOx的SAPO-18负载Cu-Fe催化剂的制备方法
CN112473730B (zh) 一种铜基cha型硅铝分子筛催化剂及其制备方法
WO2019223761A1 (en) Rare earth element containing aluminum-rich zeolitic material
CN105236440A (zh) 以四乙基氢氧化铵作为模板剂合成cha分子筛的方法
CN111617800B (zh) 一种含低硅复合金属Beta分子筛的催化剂的制备方法及应用
WO2021082140A1 (zh) 含铜分子筛Cu-CHA及其催化剂、应用
CN112279266B (zh) 一种Cu-SSZ-13@SSZ-13核壳型分子筛及其制备方法和应用
CN105314648A (zh) Cha型硅铝分子筛及其制备方法和应用
US20220258140A1 (en) MOLECULAR SIEVE Cu-SSZ-13, ITS SYNTHESIS METHOD, CATALYST AND USE THEREOF
CN114733564B (zh) 一种复合沸石scr催化剂及其制备方法与应用
CN111266132B (zh) 用于氨气选择性催化还原反应的Cu-KFI催化剂的制备方法
CN107282102B (zh) 一种金属负载型分子筛催化剂的制备方法
CN111659461A (zh) 一种碱金属改性制备M/Cu-SSZ-13催化剂的方法
JP7158141B2 (ja) 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法
CN114132945B (zh) 一种高骨架四配位铝结构cha分子筛催化剂制备方法及应用
CN116078424A (zh) 一种水热稳定的Fe-Cu-SSZ-50催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant