CN114733515B - 一种多孔锰芬顿催化材料及其制备方法和应用 - Google Patents

一种多孔锰芬顿催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN114733515B
CN114733515B CN202210421847.1A CN202210421847A CN114733515B CN 114733515 B CN114733515 B CN 114733515B CN 202210421847 A CN202210421847 A CN 202210421847A CN 114733515 B CN114733515 B CN 114733515B
Authority
CN
China
Prior art keywords
porous
catalytic material
manganese
fenton catalytic
calcium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210421847.1A
Other languages
English (en)
Other versions
CN114733515A (zh
Inventor
于岩
周林鑫
庄赞勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210421847.1A priority Critical patent/CN114733515B/zh
Priority to GB2209108.6A priority patent/GB2618163B/en
Priority to US17/846,268 priority patent/US20230338926A1/en
Publication of CN114733515A publication Critical patent/CN114733515A/zh
Application granted granted Critical
Publication of CN114733515B publication Critical patent/CN114733515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明提供了一种多孔锰芬顿催化材料及其制备方法和应用,涉及材料与环境科学工程技术领域。本发明提供的多孔锰芬顿催化材料具有由簇状结构颗粒组成,所述簇状结构颗粒包括多孔结构氧化钙和位于所述多孔结构氧化钙表面的Mn‑Ca化合物二维纳米片。本发明提供的多孔锰芬顿催化材料中锰可催化空气中的氧气原位转化为过氧化氢并将其高效分解成羟基自由基,从而无需额外加入过氧化氢即可在宽pH值范围内实现对有机污染物的降解。而且,对重金属吸附效果优异。本发明提供的多孔锰芬顿催化材料具备降解有机污染物和吸附重金属的双重作用,弥补了目前的芬顿催化材料的同时降解有机污染物和吸附净化重金属的空白。

Description

一种多孔锰芬顿催化材料及其制备方法和应用
技术领域
本发明涉及材料与环境科学工程技术领域,具体涉及一种多孔锰芬顿催化材料及其制备方法和应用。
背景技术
水体污染物成分复杂,大部分污染水体是含持久性有机污染物和各种重金属离子的混合废水。常规的水体污染的治理方法主要有物理法、化学法和生物法。其中,物理和生物法因难以降解有机物治理效果受限。化学法主要包括光催化法和芬顿催化,其中,芬顿催化法属自由基的高级氧化法,其氧化电位高达2.73eV,是目前处理有机污染废水实用化技术中最有效的方法。
传统芬顿催化剂在实际应用时存在两个关键瓶颈:(1)需外加过量H2O2作为反应源和氧化助剂;(2)Fe2+需在pH为2~3的强酸性环境才能催化分解H2O2生成羟基自由基。然而,外加大量H2O2不但增加试剂成本,而且由于H2O2本身具有强腐蚀性,甚至连水泥池都被腐蚀,导致设备成本极大增加;此外,反应体系pH值为2~3,Fe3+不能顺利地被还原为Fe2+,催化反应受阻,持续作用效果差,而且如此低的工作pH范围意味着实际处理废水时,首先要加入大量的酸液将废水调至酸性,芬顿催化反应后还需添加碱液回调pH,导致污染水体的处理工艺复杂、酸碱试剂用量大、处理成本高、腐蚀设备,还会产生大量的氢氧化铁淤泥,氢氧化铁淤泥的产生会导致芬顿催化剂失活,同时也极大增加了废水处理成本和难度。因此,如何解决芬顿催化面临的上述两个瓶颈问题,设计并开发具有宽pH响应、无需外加H2O2的新型芬顿催化剂成为国际国内研究的热点和焦点。
国内外许多学者为此开展了大量研究,主要研究思路包括调控催化剂组分,设计新型类芬顿催化剂,以及引入紫外光、电、微波、超声等辅助手段强化羟基自由基的产生,提高污染物降解率,这些研究取得了一定的进展,一定程度提高了有机污染物降解效率,但由于H2O2分解为羟基自由基的活化能>220kJ/mol,常规的催化剂分解效率仍较低,各种辅助手段的采用增加了设备成本投资、工艺复杂程度和能耗,因此制约芬顿催化大规模应用的瓶颈问题仍然没有很好地解决。
发明内容
有鉴于此,本发明的目的在于提供一种多孔锰芬顿催化材料及其制备方法和应用,本发明提供的多孔锰芬顿催化材料能够在宽pH值、无外加H2O2的条件下实现有机污染物和重金属的同步高效去除。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种多孔锰芬顿催化材料,具有由簇状结构颗粒组成,所述簇状结构颗粒包括多孔结构氧化钙和位于所述多孔结构氧化钙表面的Mn-Ca化合物二维纳米片。
优选的,所述簇状结构颗粒的粒度为5~10μm。
优选的,所述二维纳米片的厚度为3~4nm。
优选的,所述Mn-Ca化合物中Mn的原子百分含量为1~10%。
本发明提供了上述技术方案所述多孔锰芬顿催化材料的制备方法,包括以下步骤:
将海洋生物质壳类材料进行煅烧,得到多孔结构氧化钙;
在保护气氛下,将所述多孔结构氧化钙与无水醇溶剂混合,得到氧化钙分散液;
在保护气氛下,将所述氧化钙分散液和二价锰源溶液混合发生自组装得到所述多孔锰芬顿催化材料。
优选的,所述海洋生物质壳类材料包括牡蛎壳、花甲壳和扇贝壳中的一种或几种。
优选的,所述煅烧的温度为900~1200℃,保温时间为1~5h。
优选的,所述多孔结构氧化钙与二价锰源的质量比为1:0.3~30。
优选的,所述自组装在搅拌条件下进行,所述搅拌的速度为500~1000rpm,时间为3~48h。
本发明提供了上述技术方案所述多孔锰芬顿催化材料或上述技术方案所述制备方法得到的多孔锰芬顿催化材料在去除有机污染物和/或重金属中的应用。
本发明提供了一种多孔锰芬顿催化材料,具有由簇状结构颗粒组成,所述簇状结构颗粒包括多孔结构氧化钙和位于所述多孔结构氧化钙表面的Mn-Ca化合物二维纳米片。传统的芬顿反应是H2O2和Fe2+在酸性条件下进行。而本发明提供的多孔锰芬顿催化材料具有多孔结构,能够实现空气中O2的高效吸附和传输,锰可催化O2原位转化为H2O2并将其高效分解成羟基自由基,从而无需额外加入H2O2即可实现对有机污染物的降解;而且,本发明提供的多孔锰芬顿催化材料能够在宽pH值范围内(pH=2~9)实现对有机污染物的降解,大大拓宽了多孔锰芬顿催化材料的pH使用范围,打破了目前芬顿反应的两大瓶颈。而且,多孔结构氧化钙具有一定的吸附能力,锰的掺杂进一步增强了氧化钙对重金属的吸附作用,从而实现同步高效吸附去除重金属。本发明提供的多孔锰芬顿催化材料具备降解有机污染物和吸附重金属的双重作用,实现废水中有机和无机多重污染物的同步高效去除,弥补了目前的芬顿催化材料的同时降解有机污染物和吸附净化重金属的空白。
本发明提供了上述技术方案所述多孔锰芬顿催化材料的制备方法。本发明提供的制备方法,流程工艺简单、易操作,成本低廉,适用性强,绿色环保,可实现大规模工业化生产,具有良好的经济效益和环境效益。
进一步的,本发明提供的制备方法可以通过改变Mn的配比以及溶剂类别,进而获得不同的多孔锰芬顿催化材料产物,具有高的有机物降解活性和重金属吸附活性,是一种环境友好型新材料,在去除有机污染物和/或重金属中具有很好的推广应用价值和使用前景。
附图说明
图1为实施例1制备的多孔锰芬顿催化材料的XRD图;
图2为实施例1制备的多孔锰芬顿催化材料的SEM图;
图3为实施例1制备的多孔锰芬顿催化材料的AFM图(左)和对应的纳米片厚度示意图(右);
图4为实施例1制备的多孔锰芬顿催化材料的TEM图;
图5为实施例1制备的多孔锰芬顿催化材料的EDX图;
图6为实施例2制备的多孔锰芬顿催化材料的SEM图;
图7为实施例3制备的多孔锰芬顿催化材料的SEM图;
图8为实施例4~6制备的多孔锰芬顿催化材料的XRD图;
图9为实施例4制备的多孔锰芬顿催化材料的SEM图;
图10为实施例4制备的多孔锰芬顿催化材料的EDX图;
图11为实施例5制备的多孔锰芬顿催化材料的SEM图;
图12为实施例5制备的多孔锰芬顿催化材料的EDX图;
图13为实施例6制备的多孔锰芬顿催化材料的SEM图;
图14为实施例6制备的多孔锰芬顿催化材料的EDX图;
图15为实施例7制备的多孔锰芬顿催化材料的SEM图;
图16为实施例7制备的多孔锰芬顿催化材料的EDX图;
图17为实施例8制备的多孔锰芬顿催化材料的SEM图;
图18为实施例8制备的多孔锰芬顿催化材料的EDX图;
图19为对比例1制备的锰芬顿催化材料的SEM图;
图20为对比例2制备的多孔锰芬顿催化材料的SEM图;
图21为对比例3制备的多孔锰芬顿催化材料的SEM图;
图22为对比例4制备的多孔锰铜芬顿催化材料的SEM图;
图23为实施例1制备的多孔锰芬顿催化材料对酸性蓝和Cu(II)的混合溶液的降解性能图;
图24为实施例2~实施例8制备的多孔锰芬顿催化材料对酸性蓝和Cu(II)的混合溶液的降解性能图。
图25为对比例1~对比例3和实施例4制备的多孔锰芬顿催化材料对酸性蓝和Cu(II)的混合溶液的降解性能图;
图26为实施例1制备的多孔锰芬顿催化材料在不同pH条件下对酸性蓝和Cu(II)的混合溶液的降解性能图;
图27为实施例1制备的多孔锰芬顿催化材料的N2的吸脱附曲线(BET)图。
具体实施方式
本发明提供了一种多孔锰芬顿催化材料,具有由簇状结构颗粒组成,所述簇状结构颗粒包括多孔结构氧化钙和位于所述多孔结构氧化钙表面的Mn-Ca化合物二维纳米片。在本发明中,所述簇状结构颗粒的粒度优选为5~10μm,更优选为6~9μm,进一步优选为7~8μm。在本发明中,所述二维纳米片的厚度优选为3~4nm,更优选为3.4~3.8nm。在本发明中,所述Mn-Ca化合物中Mn的原子百分含量优选为1~10%,更优选为1.2~7.5%,进一步优选为2~7%,最优选为3~5%。
本发明提供了上述技术方案所述多孔锰芬顿催化材料的制备方法,包括以下步骤:
将海洋生物质壳类材料进行煅烧,得到多孔结构氧化钙;
在保护气氛下,将所述多孔结构氧化钙与无水醇溶剂混合,得到氧化钙分散液;
在保护气氛下,将所述氧化钙分散液和二价锰源溶液混合发生自组装得到所述多孔锰芬顿催化材料。
在本发明中,若无特殊说明,所有的原料组分均为本领域技术人员熟知的市售商品。
本发明海洋生物质壳类材料进行煅烧,得到多孔结构氧化钙。
在本发明中,所述海洋生物质壳类材料优选包括牡蛎壳、花甲壳和扇贝壳中的一种或几种。在本发明中,所述海洋生物质壳类材料优选先依次进行水洗、干燥、破碎和过筛,筛下部分(海洋生物质壳类粉料)再进行煅烧。在本发明中,所述干燥的温度优选为50~100℃,更优选为60~90℃,进一步优选为70~80℃;本发明对于所述干燥的时间没有特殊限定,干燥至恒重即可,具体如2~8h,更优选为4~6h。本发明对于所述破碎没有特殊限定,采用本领域技术人员熟知的破碎方式即可,具体如研磨;所述研磨得到的海洋生物质壳类粉料的目数优选≤80目。在本发明中,所述过筛的筛网尺寸优选为80目。
在本发明中,所述煅烧的温度优选为900~1200℃,更优选为950~1150℃,进一步优选为1000~1100℃;温度由室温升至所述煅烧的温度的升温速率优选为5~20℃/min,更优选为10~15℃/min;所述煅烧的保温时间优选为1~5h,更优选为2~4h,进一步优选为3h;所述煅烧的气氛优选为空气。
煅烧后,本发明优选还包括将所得煅烧产物依次进行冷却至室温、破碎和过筛,得到多孔结构氧化钙。本发明对于所述破碎没有特殊限定,采用本领域技术人员熟知的破碎方式即可,具体如研磨;所述研磨得到的海洋生物质壳类粉料的目数优选≤80目。在本发明中,所述过筛的筛网尺寸优选为80目。
得到多孔结构氧化钙后,本发明在保护气氛下,将所述多孔结构氧化钙与无水醇溶剂混合,得到氧化钙分散液。
本发明对于所述保护气氛没有特殊限定,采用本领域技术人员熟知的保护气氛即可,具体如氮气或惰性气体,所述惰性气体优选包括氩气或氦气。本发明在保护气氛下进行混合,能够避免氧化钙和空气中的水和二氧化碳发生反应。
在本发明中,所述无水醇溶剂优选包括无水乙醇。在本发明中,所述氧化钙分散液的浓度优选为5~50g/L,更优选为8~30g/L,进一步优选为10~50g/L。在本发明中,所述混合优选在搅拌条件下进行,所述搅拌的速度优选为500~1000rpm,更优选为600~900rpm,进一步优选为700~800rpm;所述搅拌的时间优选为20~60min,更优选为30~50min,进一步优选为30~40min;所述混合的温度优选为20~50℃,更优选为20~30℃;在本发明的具体实施例中,优选在室温条件下进行。
得到氧化钙分散液后,本发明在保护气氛下,将所述氧化钙分散液和二价锰源溶液混合发生自组装得到所述多孔锰芬顿催化材料。
在本发明中,所述锰源溶液优选由二价锰源溶解于无水醇溶剂中得到。在本发明中,所述无水醇溶剂优选包括无水乙醇。在本发明中,所述二价锰源优选包括氯化锰和/或硫酸锰。在本发明中,所述锰源溶液的浓度优选为10~100g/L,更优选为15~80g/L,进一步优选为20~50g/L。在本发明中,所述溶解优选在搅拌条件下进行,所述搅拌的速度优选为500~1000rpm,更优选为600~900rpm,进一步优选为700~800rpm;所述搅拌的时间优选为20~60min,更优选为30~50min,进一步优选为30~40min;所述溶解的温度优选为20~50℃,更优选为20~30℃;在本发明的具体实施例中,优选在室温条件下进行。
在本发明中,所述保护气氛优选与前述保护气氛相同,在此不再赘述。本发明在保护气氛下进行混合和自组装,能够避免氧化钙和空气中的水和二氧化碳发生反应。
在本发明中,所述氧化钙分散液中的多孔结构氧化钙与锰源溶液中的二价锰源的质量比为1:0.3~30,更优选为1:0.5~20,进一步优选为1:0.5~10,最优选为1:1~5。
在本发明中,所述自组装优选在搅拌条件下进行,所述搅拌的速度优选为500~1000rpm,更优选为600~900rpm,进一步优选为700~800rpm;所述搅拌的时间优选为3~48h,更优选为5~40h,进一步优选为5~30h;所述自组装的温度优选为20~50℃,更优选为20~30℃;在本发明的具体实施例中,优选在室温条件下进行。在本发明中,以MnCl2为例,所述自组装过程中,在以乙醇为溶剂时,弱酸性的MnCl2在液相条件下会对CaO进行刻蚀,通过控制溶液浓度、反应温度、反应气氛与时间,使MnCl2在CaO光滑的表面生长出大量的Mn-Ca化合物纳米片,进而纳米片堆积形成花状的微观结构,随着时间的增加,结构中Ca的相对含量逐步减少,Mn的原子百分比逐步增大,花状结构也会更加明显。
所述自组装后,本发明优选还包括将所得自组装体系进行固液分离,将所得固体产物依次进行洗涤和干燥,得到多孔锰芬顿催化材料。本发明对于所述固液分离没有特殊限定,采用本领域技术人员熟知的固液分离方式即可,具体如离心分离;所述离心分离的转速优选8000~10000rpm,更优选为9000rpm,所述离心分离的时间优选为3~5min,更优选为4min。在本发明中,所述洗涤优选为乙醇洗涤,所述乙醇洗涤的次数优选为2~4次,更优选为3次。在本发明中,所述干燥优选为冷冻干燥,所述冷冻干燥的温度优选为-60~-50℃,更优选为-55~-53℃;本发明对于所述冷冻干燥的时间没有特殊限定,冷冻干燥至恒重即可,具体如6~24h,更优选为10~20h。
本发明提供了上述技术方案所述多孔锰芬顿催化材料或上述技术方案所述制备方法得到的多孔锰芬顿催化材料在去除有机污染物和/或重金属中的应用。在本发明中,所述有机污染物优选包括酸性蓝。在本发明中,所述重金属优选包括Cu。在本发明中,所述去除有机污染物和/或重金属优选为无从含有机污染物和/或重金属的污染水体中的有机污染物和/或重金属。在本发明中,所述多孔锰芬顿催化材料的质量与污染水体的体积之比优选为1g:1~10L,更优选为1g:1~5L。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将牡蛎壳水洗净,在80℃条件烘干6h,粉碎,过80目筛,取筛下部分,以5℃/min的升温速率从室温升至1050℃后保温煅烧1h,冷却至室温,研磨,过80目筛,筛下部分为多孔结构氧化钙;
(2)将1.40g多孔结构氧化钙加入到三口烧瓶中,加入100mL无水乙醇,在氮气保护、500rpm条件下磁力搅拌30min,得到氧化钙分散溶液;
(3)将3.15g氯化锰(MnCl2)和150mL无水乙醇,在500rpm条件下搅拌混合均匀,得到锰源溶液;
(4)将所述锰源溶液加入到所述氧化钙分散溶液中,在氮气保护、500rpm条件下磁力搅拌24h,在8000rpm条件下离心分离5min,将所得固体产物进行无水乙醇洗涤3次,然后在-53℃条件下真空冷冻干燥8h,得到多孔锰芬顿催化材料。
实施例2
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,将牡蛎壳替换为花蛤壳。
实施例3
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,将牡蛎壳替换为扇贝壳。
实施例4
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,步骤(4)中磁力搅拌3h。
实施例5
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,步骤(4)中磁力搅拌6h。
实施例6
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,步骤(4)中磁力搅拌12h。
实施例7
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,步骤(3)中氯化锰用量为4.73g。
实施例8
按照实施例1的方法制备与多孔锰芬顿催化材料,与实施例1的区别在于,步骤(3)中氯化锰用量为6.30g。
对比例1
(1)将牡蛎壳洗净,在80℃条件烘干6h,粉碎后过80目筛,筛下部分为牡蛎壳粉;
(2)将1.40g牡蛎壳粉加入到三口烧瓶中,加入100mL无水乙醇,在氮气保护、500rpm条件下磁力搅拌30min,得到钙源分散液;
(3)将3.15g氯化锰(MnCl2)和150mL无水乙醇,在500rpm条件下搅拌混合均匀,得到锰源溶液;
(4)将所述锰源溶液加入到所述钙源分散液中,在氮气保护、500rpm条件下磁力搅拌24h,离心分离,将所得固体产物进行乙醇洗涤3次,然后在-53℃条件下冷冻干燥8h,得到锰芬顿催化材料。
对比例2
按照实施例1的方法制备多孔锰芬顿催化材料,与实施例1的区别在于,步骤(2)和(4)在空气条件下进行磁力搅拌。
对比例3
按照实施例1的方法制备多孔锰芬顿催化材料,与实施例1的区别在于,步骤(2)中加入100mL无水乙醇和1mL水。
对比例4
(1)将牡蛎壳洗净,在80℃条件烘干6h,以5℃/min的升温速率从室温升至1050℃后保温煅烧1h,冷却至室温,研磨,过80目筛,筛下部分为多孔结构氧化钙;
(2)将1.40g多孔结构氧化钙加入到三口烧瓶中,加入100mL无水乙醇和1mL水,在氮气保护、500rpm条件下磁力搅拌30min,得到氧化钙分散溶液;
(3)将3.15g氯化锰(MnCl2)、0.07g氯化铜(CuCl2)和150mL无水乙醇,在500rpm条件下搅拌混合均匀,得到锰-铜源溶液;
(4)将所述锰-铜源溶液加入到所述氧化钙分散溶液中,在氮气保护、500rpm条件下磁力搅拌24h,离心分离,将所得固体产物进行无水乙醇洗涤3次,然后在-53℃条件下冷冻干燥8h,得到多孔锰铜芬顿催化材料。
图1为实施例1制备的多孔锰芬顿催化材料的X射线衍射(XRD)图,图2为实施例1制备的多孔锰芬顿催化材料的扫描电子显微镜(SEM)图,图3为实施例1制备的多孔锰芬顿催化材料的原子力显微镜(AFM)图(左)和对应的纳米片厚度示意图(右),图4为实施例1制备的多孔锰芬顿催化材料的透射电子显微镜(TEM)图,图5为实施例1制备的多孔锰芬顿催化材料的能量色散X射线光谱(EDX)图,图6为实施例2制备的多孔锰芬顿催化材料的SEM图,图7为实施例3制备的多孔锰芬顿催化材料的SEM图,图8为实施例4~6制备的多孔锰芬顿催化材料的XRD图,图9为实施例4制备的多孔锰芬顿催化材料的SEM图,图10为实施例4制备的多孔锰芬顿催化材料的EDX图,图11为实施例5制备的多孔锰芬顿催化材料的SEM图,图12为实施例5制备的多孔锰芬顿催化材料的EDX图,图13为实施例6制备的多孔锰芬顿催化材料的SEM图,图14为实施例6制备的多孔锰芬顿催化材料的EDX图,图15为实施例7制备的多孔锰芬顿催化材料的SEM图,图16为实施例7制备的多孔锰芬顿催化材料的EDX图,图17为实施例8制备的多孔锰芬顿催化材料的SEM图,图18为实施例8制备的多孔锰芬顿催化材料的EDX图,图19为对比例1制备的锰芬顿催化材料的SEM图,图20为对比例2制备的多孔锰芬顿催化材料的SEM图,图21为对比例3制备的多孔锰芬顿催化材料的SEM图,图22为对比例4制备的多孔锰铜芬顿催化材料的SEM图。
由图1可知,多孔锰芬顿催化材料主要成分为CaO,但其衍射峰集体向小角度发生了一定的偏移,说明材料的晶胞参数和结构发生了变化,也说明氧化钙发生了微弱的同晶置换反应或者少量Mn进入氧化钙晶格内部。从图2和图4可以看出多孔锰芬顿催化材料是由尺度为5~10μm的簇状结构颗粒(花状颗粒)组成,每一个花状颗粒是由许多纳米片组成。由图3可知,每片纳米片的厚度为3~4nm。由图1、图4~图6可知,合成时间为3h时,已经有少量的纳米片在CaO晶体颗粒表面生成,在合成时间延长到6h后,出现更为明显的小片状结构,而且纳米片之间已经开始互相堆垛,形成一定的孔道结构,但仍然能清晰看见部分区域有CaO大颗粒表面。当反应时间为12h和24h时,反应已经基本完成,SEM图中已经无法找到光滑的CaO颗粒表面,CaO颗粒表面均出现了比较完整的花状结构。通过图2、图6和图7对比可知,采用不同的钙源均能够制备得到多孔锰芬顿催化材料,说明,本发明采用的海洋生物质壳类钙源具有普适性。通过图2、图5、图8~图14可知,随着反应时间的增加,多孔锰芬顿催化材料中片状结构逐渐增多,Mn的相对含量逐渐增加,而Ca的相对含量逐渐减少。从图10、图12、图14和图5的EDX图可知,随着合成时间的延长,多孔锰芬顿催化材料中锰的原子百分比逐步从1.2%增加到1.9%、4.7%、7.5%。通过图2、图5、图15~图18可知,调节多孔结构氧化钙和氯化锰的比例,花状Mn-Ca纳米材料中Ca、Mn、Cl和O各元素的相对含量基本不发生变化。通过图2、图19~图22可知,花状Mn-Ca纳米材料特殊结构的生长限制条件有以下三个个:(1)氧化钙是生成花状Mn-Ca纳米材料不可替代的原料;(2)在这个反应体系中,必须隔绝空气中的CO2和H2O;(3)必须使用无水溶剂。
图27为实施例1制备的多孔锰芬顿催化材料的N2的吸脱附曲线(BET)图,由图27可知,多孔锰芬顿催化材料具有较大的比表面积,而且孔径较小,进一步说明其具有多孔结构。
应用例1
实施例1~8和对比例1~4制备的催化材料对酸性蓝-Cu(Ⅱ)的去除实验
将酸性蓝、氯化铜溶液和水混合,得到酸性蓝-Cu(Ⅱ)混合溶液,其中,酸性蓝和Cu(Ⅱ)的浓度均为10ppm,pH为7。分别将10mg实施例1~8和对比例1~4制备的催化材料加入到50mL酸性蓝-Cu(Ⅱ)混合溶液中,在500rpm条件下剧烈搅拌,用紫外-可见光分光光度计分别测试搅拌0s、30s和60s下混合溶液水中酸性蓝和Cu(Ⅱ)的紫外吸收值,计算酸性蓝和Cu(Ⅱ)的去除率,测试结果如图23~图25和表1所示。
图23为实施例1制备的多孔锰芬顿催化材料对酸性蓝和Cu(II)的混合溶液的降解性能图,图24为实施例2~8制备的多孔锰芬顿催化材料对酸性蓝和Cu(II)的混合溶液的降解性能图,图25为对比例1~对比例3和实施例4制备的多孔锰芬顿催化材料对酸性蓝和Cu(II)的混合溶液的降解性能图。
应用例2
按照应用例1的方法测试多孔锰芬顿催化材料的性能,与实施例1的区别在于,用盐酸调节混合溶液的酸度至pH=2,加入50mg实施例1制备的催化材料,测试结果如图26所示。
表1材料对酸性蓝-Cu(Ⅱ)混合溶液不同处理时间下的处理效果
Figure BDA0003606839750000121
由表1和图23~图26可知,本发明制备的多孔锰芬顿催化材料可以中性、不添加H2O2的情况下,30s内降解酸性蓝和吸附二价铜离子,实现有机物降解和重金属吸附的双重作用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种多孔锰芬顿催化材料,具有由簇状结构颗粒组成,所述簇状结构颗粒包括多孔结构氧化钙和位于所述多孔结构氧化钙表面的Mn-Ca化合物二维纳米片;
所述多孔锰芬顿催化材料的制备方法,包括以下步骤:
将海洋生物质壳类材料进行煅烧,得到多孔结构氧化钙;
在保护气氛下,将所述多孔结构氧化钙与无水醇溶剂混合,得到氧化钙分散液;
在保护气氛下,将所述氧化钙分散液和二价锰源溶液混合发生自组装得到所述多孔锰芬顿催化材料;
所述锰源溶液由二价锰源溶解于无水醇溶剂中得到。
2.根据权利要求1所述的多孔锰芬顿催化材料,其特征在于,所述簇状结构颗粒的粒度为5~10μm。
3.根据权利要求1所述的多孔锰芬顿催化材料,其特征在于,所述二维纳米片的厚度为3~4nm。
4.根据权利要求1所述的多孔锰芬顿催化材料,其特征在于,所述Mn-Ca化合物中Mn的原子百分含量为1~10%。
5.权利要求1~4任一项所述多孔锰芬顿催化材料的制备方法,包括以下步骤:
将海洋生物质壳类材料进行煅烧,得到多孔结构氧化钙;
在保护气氛下,将所述多孔结构氧化钙与无水醇溶剂混合,得到氧化钙分散液;
在保护气氛下,将所述氧化钙分散液和二价锰源溶液混合发生自组装得到所述多孔锰芬顿催化材料;
所述锰源溶液由二价锰源溶解于无水醇溶剂中得到。
6.根据权利要求5所述的制备方法,其特征在于,所述海洋生物质壳类材料包括牡蛎壳、花甲壳和扇贝壳中的一种或几种。
7.根据权利要求5所述的制备方法,其特征在于,所述煅烧的温度为900~1200℃,保温时间为1~5h。
8.根据权利要求5所述的制备方法,其特征在于,所述多孔结构氧化钙与二价锰源的质量比为1:0.3~30。
9.根据权利要求5或8所述的制备方法,其特征在于,所述自组装在搅拌条件下进行,所述搅拌的速度为500~1000rpm,时间为3~48h。
10.权利要求1~4任一项所述多孔锰芬顿催化材料或权利要求5~9任一项所述制备方法得到的多孔锰芬顿催化材料在去除有机污染物和/或重金属中的应用。
CN202210421847.1A 2022-04-21 2022-04-21 一种多孔锰芬顿催化材料及其制备方法和应用 Active CN114733515B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210421847.1A CN114733515B (zh) 2022-04-21 2022-04-21 一种多孔锰芬顿催化材料及其制备方法和应用
GB2209108.6A GB2618163B (en) 2022-04-21 2022-06-21 Porous manganese-containing fenton catalytic material and preparation method and use thereof
US17/846,268 US20230338926A1 (en) 2022-04-21 2022-06-22 Porous manganese-containing fenton catalytic material and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210421847.1A CN114733515B (zh) 2022-04-21 2022-04-21 一种多孔锰芬顿催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114733515A CN114733515A (zh) 2022-07-12
CN114733515B true CN114733515B (zh) 2023-03-24

Family

ID=82283971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210421847.1A Active CN114733515B (zh) 2022-04-21 2022-04-21 一种多孔锰芬顿催化材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230338926A1 (zh)
CN (1) CN114733515B (zh)
GB (1) GB2618163B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999752A (zh) * 2019-03-12 2019-07-12 农业部沼气科学研究所 一种高效吸附和降解有机污染物的多功能材料的制备方法及应用
CN110092414A (zh) * 2018-01-30 2019-08-06 北京大学 一类具有特殊微观结构的金属氧化物材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1011691A4 (nl) * 1997-12-31 1999-12-07 Boodt Marcel De Samenstelling van adsorbent.
CN106540649B (zh) * 2016-12-07 2019-02-22 福州大学 一种由鸡蛋壳构筑的锰钙纳米吸附剂的绿色合成及其应用
CN108160060A (zh) * 2017-10-27 2018-06-15 石狮纳通新材料科技有限公司 一种牡蛎壳粉氧化铜纳米复合材料的制备方法及应用
JP7361333B2 (ja) * 2020-01-21 2023-10-16 学校法人 関西大学 有機物の分解方法
CN113976140A (zh) * 2021-11-23 2022-01-28 山东华城城建设计工程有限公司 一种非均相类芬顿催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092414A (zh) * 2018-01-30 2019-08-06 北京大学 一类具有特殊微观结构的金属氧化物材料及其制备方法
CN109999752A (zh) * 2019-03-12 2019-07-12 农业部沼气科学研究所 一种高效吸附和降解有机污染物的多功能材料的制备方法及应用

Also Published As

Publication number Publication date
CN114733515A (zh) 2022-07-12
GB202209108D0 (en) 2022-08-10
GB2618163B (en) 2024-05-15
US20230338926A1 (en) 2023-10-26
GB2618163A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
Lv et al. Enhanced removal of uranium (VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent
Zhu et al. In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U (VI) adsorption and reduction
Huo et al. Magnetic porous carbon composites for rapid and highly efficient degradation of organic pollutants in water
CN109675581B (zh) 铁锰双金属氧化物改性生物炭光芬顿复合材料及其制备方法
Chen et al. Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism
CN114425340B (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
Li et al. Preparation and characterization of ternary Cu/Cu2O/C composite: An extraordinary adsorbent for removing anionic organic dyes from water
CN110734120B (zh) 一种纳米零价铁镍活化过硫酸盐的水处理方法
CN112441659B (zh) 一种利用多级介孔生物炭材料激活过硫酸盐降解处理有机污染物的方法
CN103007887A (zh) 碳纳米管负载多级纳米四氧化三铁吸附剂及其制备方法与应用
CN112808233A (zh) 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法
CN111450856B (zh) 以钒酸铋纳米片为前驱体制备超薄氯氧铋光催化剂的方法、超薄氯氧铋光催化剂及其应用
CN111547701A (zh) 一种磁性钴纳米颗粒限域于氮掺杂的多孔碳材料及其制备方法
CN113559912B (zh) 氮硫共掺杂石墨烯附载钴催化剂、及其制备方法及应用
Zhu et al. Flower-like bentonite-based Co3O4 with oxygen vacancies-rich as highly efficient peroxymonosulfate activator for lomefloxacin hydrochloride degradation
Lai et al. Deep eutectic solvent-mediated preparation of solvothermal carbon with rich carboxyl and phenol groups from crop straw for high-efficient uranium adsorption
CN111203179A (zh) 一种可再生含酚有机废水催化吸附材料的制备方法及应用
CN115069265A (zh) 活性炭纤维负载钴锰双金属氧化物催化剂的制备和应用
CN113318768A (zh) 一种复合光催化剂及其制备方法
CN111545211B (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
Chen et al. In situ growing Cu2 (OH) 2CO3 on oxidized carbon nitride with enhanced photocatalytic hydrogen evolution and pollutant degradation
CN113441142A (zh) 一种富含氧空位的石墨烯负载多孔纳米氧化铁电催化剂的制备方法及应用
CN114733515B (zh) 一种多孔锰芬顿催化材料及其制备方法和应用
CN108404862B (zh) 一种镁铁金属基碳纳米材料及其制备方法和在氮气吸附方面的应用
CN115353189B (zh) 一种调控溶解氧处理含环丙沙星的废水的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant