CN114733497A - 一种光可再生的金属有机框架复合膜及其制备方法和应用 - Google Patents

一种光可再生的金属有机框架复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN114733497A
CN114733497A CN202210486080.0A CN202210486080A CN114733497A CN 114733497 A CN114733497 A CN 114733497A CN 202210486080 A CN202210486080 A CN 202210486080A CN 114733497 A CN114733497 A CN 114733497A
Authority
CN
China
Prior art keywords
organic framework
metal
light
framework composite
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210486080.0A
Other languages
English (en)
Inventor
方圣琼
赵凡康
高琰昕
毕进红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210486080.0A priority Critical patent/CN114733497A/zh
Publication of CN114733497A publication Critical patent/CN114733497A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种光可再生的金属有机框架复合膜及其制备方法和应用,属于膜材料制备技术领域。采用静电纺丝的方法合成光可再生的金属有机框架复合膜。该膜材料能够高效去除水环境中的有机污染物,并通过在可见光下降解污染物的方式实现再生和循环利用,为环境中有机污染物的去除提供了一种潜在的解决方案。该膜材料的合成方法简单便捷,适用范围广,具有较大的应用潜力。

Description

一种光可再生的金属有机框架复合膜及其制备方法和应用
技术领域
本发明属于膜材料制备技术领域,具体涉及一种光可再生的金属有机框架复合膜及其制备方法和应用。
背景技术
20 世纪以来,随着制造业的快速发展和农业的工业化,地表和地下水资源中发现了多种有机污染物,如农用化学品、染料和药品等。这些有机污染物在环境中大多具有持久性和生物毒性,可能对生态系统的平衡和人类的健康造成影响。因此,从环境中去除这些有机污染物具有重要的意义。金属有机框架是一类具有周期性网络结构的多孔晶体材料,受到了研究者们的广泛关注。这类材料是利用有机配体和过渡金属阳离子或者金属离子团,通过配位键合形成的、具有高度啮合结构的配位聚合物。高比表面积、规则的多孔结构和可修饰的特点使金属有机框架在应用于有机污染物的吸附去除方面显示出巨大的潜力。
目前也存在一些金属有机框架,其具有高效去除水环境中有机污染物的能力,并可以在可见光下通过降解污染物的方式实现材料的原位再生。然而,材料通常以粉末的形式存在,使用时分散在水溶液中难以回收。这增加了材料的使用成本,是实际应用中急需解决的问题。
针对材料在使用后难以分离的问题,我们提出了通过静电纺丝技术将金属有机框架负载到膜上的改性策略。合成的金属有机框架复合膜,具有在水环境中易于分离的优势,使材料具备实际应用的潜力。同时,由于金属有机框架的负载,复合膜能够高效去除水环境中的有机污染物并可以在光再生后循环利用。
发明内容
本发明的目的在于提供了一种光可再生的金属有机框架复合膜及其制备方法和应用。该膜材料能够高效去除水环境中的有机污染物,并通过在可见光下降解污染物的方式实现再生和循环利用,同时该膜材料的制备不需要复杂的工艺流程且适用范围广,有良好的应用前景。
为实现上述目的,本发明采用如下技术方案:
本发明采用静电纺丝的方法合成光可再生的金属有机框架复合膜。该膜材料可应用于水环境中有机污染物的高效去除。
所述的高效去除有机污染物的可光再生的金属有机框架复合膜的制备方法包括以下步骤:
(1)金属有机框架的制备:
在 60 mL 玻璃瓶中加入 30 mL DMF,称取 100-110 mg 四氯化锆,70-80 mg 对苯二甲酸和 10-30 mg 四-羧基苯基-卟啉加入其中,超声 10-20 分钟。然后,将 0.7-1.0mL 乙酸加入到上述混合物中,并在 120 ℃ 下加热 18-24 小时。离心分离收集紫色固体,并用丙酮离心洗涤两遍。最后,将样品在 120 ℃ 下真空干燥 10-12 小时,得到金属有机框架。
(2)金属有机框架复合膜的制备:
首先,在 20 mL 烧杯中加入 10 mL DMF,称取 400 mg 金属有机框架、400 mg 聚乙烯吡咯烷酮和 400 mg 聚丙烯腈加入烧杯中,并在 60 ℃ 的油浴锅中剧烈搅拌 5-6 小时。然后,将搅拌后的混合溶液作为静电纺丝液,在 22-24 V 的电压下,以 0.6-0.8 mL/h的进料速度静电纺丝 10-12 小时。之后,将静电纺丝所形成的膜浸于 50 % 的乙醇水溶液中加热 18-24 小时,以去除其中的聚乙烯吡咯烷酮。最后,将样品在 100 ℃ 下真空干燥10-12 小时,得到金属有机框架复合膜。
所述光可再生的金属有机框架复合膜能够高效去除水环境中的有机污染物,并通过在可见光下降解污染物的方式实现再生和循环利用。
本发明的显著优点在于:
(1)本发明首次通过静电纺丝技术将光可再生的金属有机框架(TCPP@UiO-66)负载于聚丙烯腈纤维膜上,合成一种光可再生的金属有机框架复合膜。
(2)本发明制备方法简单便捷,能够快速合成该膜材料。
(3)本发明制备的膜材料兼具静电纺丝膜和金属有机框架材料的优点,具有较高的孔隙率,能快速吸附去除有机污染物。
(4)本发明制备的膜材料在吸附去除污染物后,能在可见光的照射下产生单线态氧和空穴,通过单线态氧和空穴对所吸附污染物的降解,使材料具备再生和循环利用的能力,为环境中有机污染物的去除提供了一种潜在的解决方案,具有较高的实用价值。
附图说明
图 1 为实例 1 所得的金属有机框架与金属有机框架复合膜的 X 射线粉末衍射图;
图 2 为实例 1 所得的金属有机框架复合膜的扫描电镜图;
图 3 为实例 1 所得的金属有机框架复合膜对代表性有机污染物双氯芬酸钠的吸附等温线(由 Langmuir 模型拟合);
图 4 为实例 1 所得的金属有机框架复合膜对双氯芬酸钠的再生效率图;
图 5 为实例 1 所得的金属有机框架复合膜在不同自由基淬灭剂存在下对双氯芬酸钠的再生效率图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例 1
一种光可再生的金属有机框架复合膜,其制备过程包括以下步骤:
(1)金属有机框架的制备:
在 60 mL 玻璃瓶中加入 30 mL DMF,称取 100 mg 四氯化锆, 70 mg 对苯二甲酸和 10 mg 四-羧基苯基-卟啉加入其中,超声 20 分钟。然后,将 0.7 mL 乙酸加入到上述混合物中,并在 120 ℃ 下加热 24 小时。离心分离收集紫色固体,并用丙酮离心洗涤两遍。最后,将样品在 120 ℃ 下真空干燥 12 小时,得到金属有机框架,记为 MOF-1。
(2)金属有机框架复合膜的制备:
首先,在 20 mL 烧杯中加入 10 mL DMF,称取 400 mg 金属有机框架、400 mg 聚乙烯吡咯烷酮和 400 mg 聚丙烯腈加入烧杯中,并在 60 ℃ 的油浴锅中剧烈搅拌 6 小时。然后,将搅拌后的混合溶液作为静电纺丝液,在 22 V 的电压下,以 0.6 mL/h 的进料速度静电纺丝 10 小时。之后,将静电纺丝所形成的膜浸于 50 % 的乙醇水溶液中加热 24小时,以去除其中的聚乙烯吡咯烷酮。最后,将样品在 100 ℃ 下真空干燥 12 小时,得到金属有机框架复合膜,记为 MOF-1/PAN。
实施例 2
具体步骤参考实施例 1,区别在于:所述步骤(1)金属有机框架的制备中四-羧基-苯基卟啉的投加量为 30 mg;所述步骤(1)中所得的金属有机框架记为 MOF-2;所述步骤(2)中所得的金属有机框架复合膜记为 MOF-2/PAN。
产品表征
图 1 为实施例 1 所得的金属有机框架与金属有机框架复合膜的 X 射线粉末衍射图。从图中可以看出,金属有机框架复合膜的主体衍射峰与金属有机框架几乎一致,表明金属有机框架成功负载于膜上,且负载不会改变金属有机框架的晶型结构。此外,金属有机框架复合膜的衍射图谱在 2θ = 20°左右有一个宽峰,属于载体(膜)的组成物质聚丙烯腈。
图 2 为实施例 1 所得的金属有机框架复合膜的扫描电镜图。从图中可以看出,金属有机框架复合膜在显微镜下,是长而连续的纤维,相互堆叠在一起,而金属有机框架纳米颗粒嵌入其中。纤维之间的大孔,可以为吸附溶液提供更多的空间,降低传质阻力。
性能测试
双氯芬酸钠属于非甾体抗炎药,是环境中常见的一种有机污染物。选用双氯芬酸钠作为代表污染物,通过金属有机框架复合膜对双氯芬酸钠的吸附等温线实验和再生实验,研究膜材料对污染物的去除性能。
图 3 为实施例 1 所得的金属有机框架复合膜对代表性有机污染物双氯芬酸钠的吸附等温线。吸附等温线实验的实验条件:膜材料的用量为 10 mg,反应体系分别为 10、20、40、80、120、160、250 mg/L 的双氯芬酸钠水溶液(50 mL)。实验在恒温摇床中进行(200rpm,25 ℃),振荡反应 6 小时达到吸附平衡后,收集溶液样品并通过高效液相色谱检测双氯芬酸钠的浓度。
吸附等温线实验的实验结果:从图 3 中可以看出,金属有机框架复合膜对双氯芬酸钠的吸附表现为:在较低的初始浓度下,平衡吸附量随初始浓度的升高而迅速增加,在增加到一定值后逐渐趋于平稳。金属有机框架复合膜对双氯芬酸钠具有较强的吸附能力,通过 Langmuir 模型拟合计算,金属有机框架复合膜对双氯芬酸钠的最大吸附量为 202 mg/g。
图 4 为实施例 1 所得的金属有机框架复合膜对双氯芬酸钠的再生效率图。再生实验的实验条件:以 300 W 氙灯作为光源,入射光为可见光(λ≥ 420 nm),膜材料的用量为 10 mg,反应体系为 50 mL 20 mg/L 的双氯芬酸钠水溶液。暗反应 6 小时达到吸附平衡后,使用氙灯照射,在特定的时间间隔,收集溶液样品并通过高效液相色谱检测双氯芬酸钠的浓度。
再生实验的实验结果:金属有机框架复合膜通过对吸附在膜上的双氯芬酸钠的降解,从而实现材料的再生。溶液中双氯芬酸钠的降解效率即为金属有机框架复合膜的再生效率。从图 4 中可以看出,在可见光的照射下,金属有机框架复合膜对吸附在膜上的双氯芬酸钠产生快速降解,随着复合膜上双氯芬酸钠的逐渐减少,复合膜上的可用吸附位点逐渐恢复,进而复合膜得到再生。在可见光照射 4 小时后,复合膜对双氯芬酸钠的再生效率达到 95 %。
图 5 为实例 1 所得的金属有机框架复合膜在不同自由基淬灭剂存在下对双氯芬酸钠的再生效率图。实验条件:使用1 mM 糠醇(FFA)、异丙醇(IPA)、碳酸钠(Na2CO3)和EDTA-2Na 分别作为 1O2、•OH、•O2 - 和 空穴(h+)的淬灭剂,通过在再生实验中添加自由基淬灭剂,研究再生过程(即降解过程)中产生的活性物种。
实验结果:从图 5 中可以看出,当 FFA 或 EDTA-2Na 加入反应体系时,双氯芬酸钠的再生效率显著降低,表明 1O2 和 空穴(h+)在双氯芬酸钠的再生中起主要作用。然而,双氯芬酸钠的再生效率随 IPA 或 Na2CO3 的加入变化不大,表明 •OH 和 •O2 - 不是再生过程中主要的活性物种。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种光可再生的金属有机框架复合膜的制备方法,其特征在于:采用静电纺丝的方法将金属有机框架负载到聚丙烯腈纤维膜上,合成金属有机框架复合膜;具体包括以下步骤:
(1)金属有机框架的制备:在30 mL DMF中加入100-110 mg四氯化锆、70-80 mg对苯二甲酸和10-30 mg四-羧基苯基-卟啉,超声10-20分钟,再加入0.7-1.0 mL乙酸,并在120 ℃下加热18-24小时,离心分离收集紫色固体,并用丙酮离心洗涤两遍;最后,在120 ℃下真空干燥10-12小时,得到金属有机框架;
(2)金属有机框架复合膜的制备:在 10 mL DMF中加入400 mg 金属有机框架、400 mg聚乙烯吡咯烷酮和 400 mg 聚丙烯腈,并在 60 ℃ 的油浴锅中剧烈搅拌 5-6 小时;然后,将搅拌后的混合溶液作为静电纺丝液,在高压下进行静电纺丝;之后,将静电纺丝所形成的膜浸于 50 % 的乙醇水溶液中加热 18-24 小时,以去除其中的聚乙烯吡咯烷酮;最后,在100 ℃ 下真空干燥 10-12 小时,得到光可再生的金属有机框架复合膜。
2.根据权利要求 1 所述的制备方法,其特征在于:所述步骤(2)静电纺丝的电压具体为 22-24 V;静电纺丝的进料速率具体为 0.6-0.8 mL/h;静电纺丝的时间具体为 10-12小时。
3.一种如权利要求1-2任一项所述的制备方法制得的光可再生的金属有机框架复合膜。
4.一种如权利要求3所述的光可再生的金属有机框架复合膜在去除水环境中的有机污染物中的应用。
CN202210486080.0A 2022-05-06 2022-05-06 一种光可再生的金属有机框架复合膜及其制备方法和应用 Pending CN114733497A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210486080.0A CN114733497A (zh) 2022-05-06 2022-05-06 一种光可再生的金属有机框架复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210486080.0A CN114733497A (zh) 2022-05-06 2022-05-06 一种光可再生的金属有机框架复合膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114733497A true CN114733497A (zh) 2022-07-12

Family

ID=82285743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210486080.0A Pending CN114733497A (zh) 2022-05-06 2022-05-06 一种光可再生的金属有机框架复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114733497A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627003A (zh) * 2022-09-29 2023-01-20 军事科学院军事医学研究院环境医学与作业医学研究所 一种MOF-on-MOF复合膜材料及其制备方法
CN116459803A (zh) * 2023-03-22 2023-07-21 福州大学 一种0d/2d复合金属有机框架材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150367294A1 (en) * 2013-01-28 2015-12-24 Council Of Scientific & Industrial Research Process for the preparation of mofs-porous polymeric membrane composites
US20170145599A1 (en) * 2015-11-19 2017-05-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-organic framework composites, and methods of synthesis thereof
CN107096568A (zh) * 2017-05-05 2017-08-29 南京理工大学 用于催化降解有机污染物的金属有机骨架薄膜及其制备方法
US20180080148A1 (en) * 2016-09-16 2018-03-22 Paul K. Westerhoff Electrospun polymeric porous fibers containing nanomaterials
CN109126885A (zh) * 2018-09-13 2019-01-04 武汉工程大学 一种铜钴双金属有机框架/纳米纤维复合材料及其制备方法和应用
CN109487370A (zh) * 2018-11-08 2019-03-19 河南科技学院 纺丝mof-235-500℃材料及其制备方法和应用
KR20190050109A (ko) * 2017-11-02 2019-05-10 숙명여자대학교산학협력단 다공성 섬유상 금속유기구조체 및 이의 제조방법
US20210046445A1 (en) * 2019-08-15 2021-02-18 Agency For Science, Technology And Research Free-standing porous carbon fibrous mats and applications thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150367294A1 (en) * 2013-01-28 2015-12-24 Council Of Scientific & Industrial Research Process for the preparation of mofs-porous polymeric membrane composites
US20170145599A1 (en) * 2015-11-19 2017-05-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-organic framework composites, and methods of synthesis thereof
US20180080148A1 (en) * 2016-09-16 2018-03-22 Paul K. Westerhoff Electrospun polymeric porous fibers containing nanomaterials
CN107096568A (zh) * 2017-05-05 2017-08-29 南京理工大学 用于催化降解有机污染物的金属有机骨架薄膜及其制备方法
KR20190050109A (ko) * 2017-11-02 2019-05-10 숙명여자대학교산학협력단 다공성 섬유상 금속유기구조체 및 이의 제조방법
CN109126885A (zh) * 2018-09-13 2019-01-04 武汉工程大学 一种铜钴双金属有机框架/纳米纤维复合材料及其制备方法和应用
CN109487370A (zh) * 2018-11-08 2019-03-19 河南科技学院 纺丝mof-235-500℃材料及其制备方法和应用
US20210046445A1 (en) * 2019-08-15 2021-02-18 Agency For Science, Technology And Research Free-standing porous carbon fibrous mats and applications thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANXIN GAO ET AL.: "Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light", 《CHEMICAL ENGINEERING JOURNAL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627003A (zh) * 2022-09-29 2023-01-20 军事科学院军事医学研究院环境医学与作业医学研究所 一种MOF-on-MOF复合膜材料及其制备方法
CN115627003B (zh) * 2022-09-29 2023-08-18 军事科学院军事医学研究院环境医学与作业医学研究所 一种MOF-on-MOF复合膜材料及其制备方法
CN116459803A (zh) * 2023-03-22 2023-07-21 福州大学 一种0d/2d复合金属有机框架材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN114733497A (zh) 一种光可再生的金属有机框架复合膜及其制备方法和应用
CN110813383B (zh) 一种木质纤维生物质负载纳米水合二氧化钛复合材料及其制备方法和应用
Ammar et al. A novel structure for removal of pollutants from wastewater
Xing et al. MOFs self-assembled molecularly imprinted membranes with photoinduced regeneration ability for long-lasting selective separation
CN112958033B (zh) 一种以泡沫镍为骨架的气态碘吸附材料及其制备方法和应用
CN113003648B (zh) 一种固废生物质炭化材料治理重金属/有机物复合污染废水的方法
Li et al. Hollow C, N-TiO2@ C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine
Song et al. Comparison for adsorption of tetracycline and cefradine using biochar derived from seaweed Sargassum sp
Li et al. Adsorption of heavy metals and antibacterial activity of silicon-doped chitosan composite microspheres loaded with ZIF-8
CN112028168A (zh) 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用
CN110523398B (zh) 一种碳纳米片层负载TiO2分子印迹材料及其制备方法和应用
Zhang et al. MoxPy nanoparticles supported on mesh structural carbon from biomass for rapid selective dyes adsorption
Jiang et al. Biomass-MOF composites in wastewater treatment, air purification, and electromagnetic radiation adsorption–A review
CN117884098A (zh) 一种能吸附重金属铅的改性生物炭及制备方法
Zhang et al. Chitosan/carbon dots modified cellulose nanofibrils/ZIF-8 gel bead: An effective and easily separable photocatalytic adsorbent for Cr (VI) removal
CN113122938B (zh) 含MOFs的壳聚糖/聚乙烯醇纳米纤维膜的制备方法及应用
CN113750969A (zh) 一种单宁酸-生物质炭复合材料及其制备方法和应用
Keçili et al. Design, preparation, and applications of green molecularly imprinted membranes
Tang et al. Cross-linked sponge fungal hyphae: an efficient and environmentally friendly sorbent addition of iodine
Urbain et al. Kinetic and thermodynamic study of the elimination of remazol black on activated carbon based on ricinodendron heudelotii shells
CN111229165B (zh) 净化富营养化水体的方法、活化荞麦壳生物炭及制备方法
CN109569500B (zh) 负载微生物的酸改性海泡石生物纳米复合材料及其制备方法与应用
CN106622129A (zh) 一种石墨/污泥复合吸附剂、制备方法及其应用
CN116459795A (zh) 一种用于废水除铅的水处理材料及其制备方法和应用
CN114392770B (zh) 一种具有弱光催化性能的纤维素基光催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220712

RJ01 Rejection of invention patent application after publication