CN114713245A - 一种多族多元素合金/碳纳米管催化材料及其制备方法与应用 - Google Patents

一种多族多元素合金/碳纳米管催化材料及其制备方法与应用 Download PDF

Info

Publication number
CN114713245A
CN114713245A CN202210369558.1A CN202210369558A CN114713245A CN 114713245 A CN114713245 A CN 114713245A CN 202210369558 A CN202210369558 A CN 202210369558A CN 114713245 A CN114713245 A CN 114713245A
Authority
CN
China
Prior art keywords
solution
carbon nanotube
catalytic material
alloy
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210369558.1A
Other languages
English (en)
Other versions
CN114713245B (zh
Inventor
龚深
王洋
陶辉锦
李周
罗文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210369558.1A priority Critical patent/CN114713245B/zh
Publication of CN114713245A publication Critical patent/CN114713245A/zh
Application granted granted Critical
Publication of CN114713245B publication Critical patent/CN114713245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多族多元素合金/碳纳米管催化材料及其制备方法与应用,由基体碳纳米管和负载于碳纳米管上的多族多元素高熵纳米合金组成,其中,基体碳纳米管的质量百分含量为40~70wt%,余量为多族多元素高熵纳米合金,各组分的质量百分比之和为100%。本发明所述多族多元素合金/碳纳米管催化材料,多族多元素合金锚定在碳纳米管上,一方面提高了材料的导电性,加快催化过程中的电子转移,另外一方面,利用多元素的协同作用,提高了材料的催化性能和催化效率;本发明进一步通过调控工艺参数,可以调整多族多元素合金的颗粒大小、成分和在CNTs的包覆率,本发明制备方法简单,成本相对Pt/C低廉,对设备要求不高,能够适用于大规模生产。

Description

一种多族多元素合金/碳纳米管催化材料及其制备方法与 应用
技术领域
本发明属于催化材料制备技术领域,具体涉及一种多族多元素合金/碳纳米管催化材料及其制备方法与应用。
背景技术
多元素合金(MEAs)因其独特的复杂成分和可定制的性能而受到高度关注。应用领域包括结构材料、储能、催化等。将不同金属的复杂混合物合成为单一的相可能呈现出全新的物理化学性质从而得到更加优异的催化性能。
目前,含Pt催化剂相对于其他金属具有无可比拟的固有优势,在许多催化领域都具有高效的催化性能(包括氧还原反应(ORR)和各种电解质析氢反应(HER)),人们在设计开发含Pt催化剂方面付出了巨大的努力。但是由于铂的成本特别高,其大规模商业应用仍然满足不了实际需求。因此用于开发创建理想结构、成分的含Pt催化剂非常重要,以求含Pt催化剂同时实现优异的催化活性、稳定性和更低的价格。
发明内容
本发明的目的是提供一种催化性能优异、导电性好、分散性好的多族多元素高熵合金/碳纳米管催化材料及其制备方法与应用。
本发明这种多族多元素合金/碳纳米管催化材料,由基体碳纳米管和负载于碳纳米管上的多族多元素高熵纳米合金组成,其中,基体碳纳米管的质量百分含量为40~70wt%,余量为多族多元素高熵纳米合金,各组分的质量百分比之和为100%。
所述的多族多元素高熵纳米合金包含有Pt金属元素;碳纳米管的长度为300~1000nm,所述多族多元素合金纳米颗粒为2~10nm。
本发明这种多族多元素合金/碳纳米管催化材料的制备方法,包括以下步骤:
(1)将碳纳米管(CNTs)放入浓酸中搅拌浸泡,清洗干净后,得到预处理的CNTs;
(2)将浓缩HCl加入到去离子水中,用H2-Ar连续吹扫,接着向其中加入步骤1)中的预处理后的碳纳米管,然后向其中依次加入多种3d过渡基金属的盐,搅拌溶解后,得到溶液1;
(3)将多种易水解或不溶的金属盐加入到浓缩HCl中,分散均匀后,得到分散液;将分散液通过蠕动泵将其加入到步骤2)中的溶液1中,得到溶液2。
(4)将若干种碱金属盐或碱土金属盐或稀土金属盐加入到步骤3)中的溶液2中,搅拌溶解后,得到盐溶液;
(5)将步骤(4)中的盐溶液进行一个处理循环,接着向盐溶液中加入PVP,溶解后,进行4次处理循环,处理完毕后,在冰浴条件下,向盐溶液中加入硼氢化钠溶液进行反应,进行反应,反应完毕后,得到溶液3;
(6)将浓缩HCl加入去离子水中,然后将若干种金属盐依次加入到溶液中,充分溶解,得到溶液4;接着将溶液4加入到步骤(5)的溶液3中,混匀,得到溶液5;
(7)将H2PtCl6·6H2O和HAuCl4·4H2O加入去离子水中,配置成设定浓度的溶液6,去除氧气后,加入到步骤(6)中的溶液5中,得到混合溶液7;将混合溶液7进行保温反应,反应完毕后,过滤洗涤,将滤饼冷冻干燥后,得到样品;将样品在管式炉中退火,并在液氮中淬火,得到多族多元素合金/碳纳米管催化材料。
所述步骤(1)中,浓酸是由体积比为(2~4):1的浓硫酸和浓硝酸组成,浸泡时需要完全浸没碳纳米管;浸泡时间为36~60h。
所述步骤(2)中,浓缩HCl的浓度为36~38%;浓缩HCl与去离子水的体积比为(0.2~0.8):(100~140);预处理后的CNTs的浓度为0.4~0.8mg/mL;多种3d过渡基金属的盐为MnCl2·4H2O、Co(NO3)2·6H2O、NiCl2·6H2O、Cu(NO3)2·xH2O、Al(NO3)3·9H2O和FeSO4·7H2O中的3种以上,其在溶液中的浓度分别为:MnCl2·4H2O:0.1~0.3mg/mL,Co(NO3)2·6H2O:0.3~0.4mg/mL,NiCl2·6H2O:0.1~0.2mg/mL,Cu(NO3)2·xH2O:0.7~0.8mg/mL,Al(NO3)3·9H2O:0.2~0.3mg/mL,FeSO4·7H2O:0.1~0.2mg/mL;在加入金属盐时,每种金属盐加入的时间需要间隔4~6min,确保金属盐完全溶解。
所述步骤(3)中,多种易水解或不溶的金属盐为NbCl5、ZrCl4、Ti(SO4)2、CrCl3·6H2O、HfCl4、TaCl5和MoCl5中的4种以上,其在浓缩HCl中的浓度分别为:NbCl5:0.03~0.04g/mL,ZrCl4:0.02~0.03g/mL,Ti(SO4)2:0.03~0.04g/mL,CrCl3·6H2O:0.02~0.03g/mL,HfCl4:0.01~0.02g/mL,TaCl5:0.03~0.04g/mL,MoCl5:0.03~0.04g/mL;在加入金属盐时,每种金属盐加入的时间需要间隔4~6min,确保金属盐分散均匀;分散液与溶液1的体积比为(2~3):(110~130)。
所述步骤(4)中,若干种碱金属盐或碱土金属盐或稀土金属盐为LiCl、NaCl、KCl、RbCl、CsCl、MgCl2·6H2O、SrCl2、YCl3·6H2O、LaCl3·7H2O、CeCl3·7H2O、NdCl3·6H2O、SmCl3·6H2O、EuCl3·6H2O、TbCl3·6H2O、DyCl3·6H2O、HoCl3、ErCl3·6H2O、Zn(NO3)2·6H2O、SbCl3和BiCl3中的至少10种,其在溶液2中的浓度分别为:LiCl:0.3~0.4mg/mL,NaCl:0.07~0.09mg/mL,KCl:0.07~0.09mg/mL,RbCl:0.07~0.09mg/mL,CsCl:0.09~0.1mg/mL,MgCl2·6H2O:0.1~0.2mg/mL,SrCl2:0.1~0.2mg/mL,YCl3·6H2O:0.2~0.3mg/mL,LaCl3·7H2O:0.3~0.4mg/mL,CeCl3·7H2O:0.3~0.4mg/mL,NdCl3·6H2O:0.3~0.4mg/mL,SmCl3·6H2O:0.3~0.4mg/mL,EuCl3·6H2O:0.3~0.4mg/mL,TbCl3·6H2O:0.3~0.4mg/mL,DyCl3·6H2O:0.3~0.4mg/mL,HoCl3:0.3~0.4mg/mL,ErCl3·6H2O:0.3~0.4mg/mL,Zn(NO3)2·6H2O:0.3~0.5mg/mL,SbCl3:0.06~0.08mg/mL,BiCl3:0.03~0.05mg/mL。
所述步骤(5)中,处理循环的具体步骤为:首先用真空脱泡机搅拌脱泡4~6min,接着用H2-Ar吹扫4~6min,然后通过超声进行分散4~6min;PVP的分子量为24000~40000,PVP在盐溶液中的浓度为0.3~1.4g/L;硼氢化钠溶液的浓度为20~30mmol/L,其与盐溶液的体积比为(180~220):(100~150),硼氢化钠溶液采用滴加的形式加入到盐溶液中,滴入速度为300~1400μL/min;反应时间为8~12h。
所述步骤(6)中,浓缩HCl与去离子水的体积比为(0.3~0.8):(25~35);若干种金属盐为CaCl2·2H2O、ScCl3·6H2O、WCl6、LuCl3·6H2O、In(NO3)3·xH20、SnCl4、Ga(NO3)3·xH2O、RuCl3·xH2O、PdCl2中的至少2种,其在溶液4中的浓度分别为:CaCl2·2H2O:0.3~0.5mg/mL,ScCl3·6H2O:0.7~0.8mg/mL,WCl6:1.4~1.6mg/mL,LuCl3·6H2O:0.3~0.4mg/mL,In(NO3)3·xH20:0.7~0.8mg/mL,SnCl4:0.7~0.8mg/mL,Ga(NO3)3·xH2O:0.6~0.7mg/mL,RuCl3·xH2O:0.4~0.6mg/mL,PdCl2:0.2~0.3mg/mL;溶液4与溶液3的体积比为(28~33):(300~400)。
所述步骤(7)中,H2PtCl6·6H2O和HAuCl4·4H2O在溶液6中的浓度分别为3~5mg/mL和0.6~0.7mg/mL;溶液6与溶液5的体积比为(10~20):(300~400),保温的温度为-5~5℃,保温时间为10~14h;退火是在10%H2-Ar气氛下进行,退火温度为873~1273K,退火时间1~3h。
本发明中浓缩HCl的浓度均为36~38%。
本发明的有益效果:
(1)本发明所述多族多元素合金/碳纳米管催化材料,多族多元素合金锚定在碳纳米管上,一方面提高了材料的导电性,加快催化过程中的电子转移,另外一方面,利用多元素的协同作用,提高了材料的催化性能和催化效率。
(2)本发明所述多族多元素合金/碳纳米管催化材料,引入多族多元素合金和CNTs,与传统纳米材料相比,将多种物理化学性质相差巨大的元素融合到同一个颗粒中,这种增强的鸡尾酒效应使Pt的电子状态的发生了改变,电子倾向于向催化活性更高的状态分布。
(3)本发明所述多族多元素合金/碳纳米管催化材料,通过调控工艺参数,可以调整多族多元素合金的颗粒大小、成分和在CNTs的包覆率,本发明制备方法简单,成本相对Pt/C低廉,对设备要求不高,能够适用于大规模生产。
附图说明
图1为本发明实施例1中所得预处理CNTs的透射电子显微镜图片。
图2为本发明实施例1中所得未进行退火处理处理的样品的透射电子显微镜图片。
图3为本发明实施例1中所得多族多元素合金/碳纳米管的透射电子显微镜图片。
图4为本发明实施例1中所得多族多元素合金/碳纳米管的X射线衍射图片。
图5为本发明实施例2中所得多族多元素合金/碳纳米管的透射电子显微镜图片。
图6为本发明实施例3中所得多族多元素合金/碳纳米管的透射电子显微镜图片。
具体实施方式
实施例1
本发明一种多族多元素合金/碳纳米管催化材料的制备方法,包括以下步骤:
(1)预处理:将碳纳米管(CNTs)放入浓酸(浓酸为体积比为3:1的浓硫酸和浓硝酸的组合)中搅拌浸泡48h,清洗干净后得到预处理的CNTs;
(2)将0.5mL浓缩HCl加入到120mL去离子水中,用10%H2-Ar连续吹扫,首先向其中加入0.06g预处理的CNTs,分散均匀后,依次向其中加入MnCl2·4H2O(0.0242g),Cu(NO3)2·xH2O(0.096g),Al(NO3)3·9H2O(0.03g);每种物质加入的间隔时间为5min,并充分搅拌,以保证每种盐都处于溶解状态,加入完毕后,得到溶液1。
(3)将易水解和不溶的金属盐具体为:NbCl5(0.0648g),ZrCl4(0.056g),TaCl5(0.0768g),MoCl5(0.0655g),以5分钟的间隔依次加入到2mL浓缩HCl中,分散均匀后,得到分散液;将全部的分散液通过蠕动泵滴加到溶液1中,得到溶液2.
(4)将碱金属,碱土金属和稀土金属,具体为LiCl(0.04g)CsCl(0.012g),MgCl2·6H2O(0.0162g),SrCl2(0.021g),YCl3·6H2O(0.0362g),LaCl3·7H2O(0.0445g),ErCl3·6H2O(0.046g),Zn(NO3)2·6H2O(0.05g),SbCl3(0.009g),BiCl3(0.0045g)加入到溶液2中,搅拌溶液后,得到盐溶液;
(5)将盐溶液进行一个处理循环,包括用真空脱泡机搅拌5分钟,用10%H2-Ar吹扫5分钟,并通过40Hz超声分散5分钟。向处理后的盐溶液中加入4gPVP(PVP的分子量为29000),搅拌溶解后,进行4次处理循环,将循环处理后的盐溶液置于冰水浴中,将200mL0.025mol/L硼氢化钠按照滴加速度为350μL/min加入得到盐溶液中,并放置10小时进行反应,得到溶液3。
(6)将0.5mL浓缩HCl加入到30mL去离子水中,然后向其中金属盐,金属盐具体为:CaCl2·2H2O(0.0125g),ScCl3·6H2O(0.023g),搅拌溶解后,得到溶液4,将溶液4全部加入到溶液3中,混合均匀后,得到溶液5。
(7)将H2PtCl6·6H2O(0.03g)和HAuCl4·4H2O(0.005g)加入7.5mL的去离子水,溶解后,得到溶液6,除去氧气,然后全部加入到溶液5中,在0℃保温12h进行反应,反应完毕后,过滤洗涤,得到的滤饼放入液氮中冷冻,然后放入冷冻干燥机进行冷冻干燥,得到样品。
(8)将样品在管式炉中10%H2-Ar气氛中升温973K,进行退火3h,退火完毕后,样品顺速出炉,置于液氮中淬火,得到多族多元素/碳纳米管催化材料。
本实施例制备的多族多元素/碳纳米管催化材料的结构参数如表1和图4所示,其微观形貌如图1~3所示,由图1~3及表1可知,制备得到的多族多元素合金/碳纳米管催化材料的平均成分为CNTs:54wt%,Pt:18wt%,其他元素:28wt%;另外多族多元素合金纳米颗粒的尺寸均匀细小,颗粒尺寸为2-10nm,平均尺寸为5nm;多组多元素纳米颗粒均匀的分散在CNTs管壁上,包覆率约为70%。由图4可知,制备得到的催化材料的XRD衍射峰显示样品为单相固溶体,表明制备得到的材料纯度高,无杂质。
表1本实施例中多族多元素合金/碳纳米管催化材料的结构参数
Figure BDA0003587549180000061
表2为本实施例多族多元素/碳纳米管催化材料在1MKOH中HER的催化效果,可以看出本发明材料的催化性能要高于其他催化材料。
表2本实施例中催化材料对HER的催化效果
Figure BDA0003587549180000062
实施例2
本发明一种多族多元素合金/碳纳米管催化材料的制备方法,包括以下步骤:
(1)预处理:将碳纳米管(CNTs)放入浓酸(浓酸为体积比为3:1的浓硫酸和浓硝酸的组合)中搅拌浸泡48h,清洗干净后得到预处理的CNTs;
(2)将0.5mL浓缩HCl加入到120mL去离子水中,用10%H2-Ar连续吹扫,首先向其中加入0.06g预处理的CNTs,分散均匀后,依次向其中加入MnCl2·4H2O(0.0242g),Co(NO3)2·6H2O(0.0465g),NiCl2·6H2O(0.0232g),Cu(NO3)2·xH2O(0.096g);每种物质加入的间隔时间为5min,并充分搅拌,以保证每种盐都处于溶解状态,加入完毕后,得到溶液1。
(3)将易水解和不溶的金属盐具体为:NbCl5(0.0648g),ZrCl4(0.056g),TaCl5(0.0768g),MoCl5(0.0655g),以5分钟的间隔依次加入到2mL浓缩HCl中,分散均匀后,得到分散液;将全部的分散液通过蠕动泵滴加到溶液1中,得到溶液2.
(4)将碱金属,碱土金属和稀土金属,具体为:LiCl(0.04g),MgCl2·6H2O(0.0162g),SrCl2(0.021g),YCl3·6H2O(0.0362g),LaCl3·7H2O(0.0445g),CeCl3·7H2O(0.0445g),NdCl3·6H2O(0.043g),SmCl3·6H2O(0.0437g),EuCl3·6H2O(0.044g),HoCl3(0.045g),ErCl3·6H2O(0.046g),Zn(NO3)2·6H2O(0.05g)加入到溶液2中,搅拌溶液后,得到盐溶液;
(5)将盐溶液进行一个处理循环,包括用真空脱泡机搅拌5分钟,用10%H2-Ar吹扫5分钟,并通过40Hz超声分散5分钟。向处理后的盐溶液中加入4gPVP(PVP的分子量为29000),搅拌溶解后,进行4次处理循环,将循环处理后的盐溶液置于冰水浴中,将200mL0.025mol/L硼氢化钠按照滴加速度为350μL/min加入得到盐溶液中,并放置10小时进行反应,得到溶液3。
(6)将0.5mL浓缩HCl加入到30mL去离子水中,然后向其中金属盐,金属盐具体为:CaCl2·2H2O(0.0125g),WCl6(0.048g),LuCl3·6H2O(0.0115g),In(NO3)3·xH20(0.023g),PdCl2(0.007g),搅拌溶解后,得到溶液4,将溶液4全部加入到溶液3中,混合均匀后,得到溶液5。
(7)将H2PtCl6·6H2O(0.03g)和HAuCl4·4H2O(0.005g)加入7.5mL的去离子水,溶解后,得到溶液6,除去氧气,然后全部加入到溶液5中,在0℃保温12h进行反应,反应完毕后,过滤洗涤,得到的滤饼放入液氮中冷冻,然后放入冷冻干燥机进行冷冻干燥,得到样品。
(8)将样品在管式炉中10%H2-Ar气氛中升温973K,进行退火3h,退火完毕后,样品顺速出炉,置于液氮中淬火,得到多族多元素/碳纳米管催化材料。
本实施例中所得多族多元素/碳纳米管催化材料,其显微图片如图5所示,本实施例中所得多族多元素/碳纳米管催化材料的结构参数如表3所示。
表3本实施例中多族多元素合金/碳纳米管催化材料的结构参数
Figure BDA0003587549180000071
由图5及表3可知,制备得到的多族多元素合金/碳纳米管催化材料的平均成分为CNTs:52wt%,Pt:19wt%,其他元素:29wt%;另外多族多元素颗粒的尺寸均匀细小,颗粒尺寸为5-15nm,平均尺寸为12nm;多族多元素颗粒均匀的分散在CNTs管壁上,包覆率约为70%。
表4为本实施例多族多元素合金/碳纳米管催化材料在1MKOH中HER的催化效果,可以看出本发明材料的催化性能要高于其他催化材料。
表4本实施例中催化材料对HER的催化效果
Figure BDA0003587549180000081
实施例3
本发明一种多族多元素合金/碳纳米管催化材料的制备方法,包括以下步骤:
(1)预处理:将碳纳米管(CNTs)放入浓酸(浓酸为体积比为3:1的浓硫酸和浓硝酸的组合)中搅拌浸泡48h,清洗干净后得到预处理的CNTs;
(2)将0.5mL浓缩HCl加入到120mL去离子水中,用10%H2-Ar连续吹扫,首先向其中加入0.06g预处理的CNTs,分散均匀后,依次向其中加入MnCl2·4H2O(0.0242g),Co(NO3)2·6H2O(0.0465g),NiCl2·6H2O(0.0232g),Cu(NO3)2·xH2O(0.096g),Al(NO3)3·9H2O(0.03g),FeSO4·7H2O(0.0222g);每种物质加入的间隔时间为5min,并充分搅拌,以保证每种盐都处于溶解状态,加入完毕后,得到溶液1。
(3)将易水解和不溶的金属盐具体为:NbCl5(0.0648g),ZrCl4(0.056g),Ti(SO4)2(0.072g),CrCl3·6H2O(0.0425g),HfCl4(0.025g),TaCl5(0.0768g),MoCl5(0.0655g),以5分钟的间隔依次加入到2mL浓缩HCl中,分散均匀后,得到分散液;将全部的分散液通过蠕动泵滴加到溶液1中,得到溶液2.
(4)将碱金属,碱土金属和稀土金属,具体为:LiCl(0.04g),NaCl(0.01g),KCl(0.01g),RbCl(0.01g),CsCl(0.012g),MgCl2·6H2O(0.0162g),SrCl2(0.021g),YCl3·6H2O(0.0362g),LaCl3·7H2O(0.0445g),CeCl3·7H2O(0.0445g),NdCl3·6H2O(0.043g),SmCl3·6H2O(0.0437g),EuCl3·6H2O(0.044g),TbCl3·6H2O(0.045g),DyCl3·6H2O(0.045g),HoCl3(0.045g),ErCl3·6H2O(0.046g),Zn(NO3)2·6H2O(0.05g),SbCl3(0.009g),BiCl3(0.0045g)加入到溶液2中,搅拌溶液后,得到盐溶液;
(5)将盐溶液进行一个处理循环,包括用真空脱泡机搅拌5分钟,用10%H2-Ar吹扫5分钟,并通过40Hz超声分散5分钟。向处理后的盐溶液中加入4gPVP(PVP的分子量为29000),搅拌溶解后,进行4次处理循环,将循环处理后的盐溶液置于冰水浴中,将200mL0.025mol/L硼氢化钠按照滴加速度为350μL/min加入得到盐溶液中,并放置10小时进行反应,得到溶液3。
(6)将0.5mL浓缩HCl加入到30mL去离子水中,然后向其中金属盐,金属盐具体为:CaCl2·2H2O(0.0125g),ScCl3·6H2O(0.023g),WCl6(0.048g),LuCl3·6H2O(0.0115g),In(NO3)3·xH20(0.023g),SnCl4(0.023g),Ga(NO3)3·xH2O(0.02g),RuCl3·xH2O(0.015g),PdCl2(0.007g),搅拌溶解后,得到溶液4,将溶液4全部加入到溶液3中,混合均匀后,得到溶液5。
(7)将H2PtCl6·6H2O(0.03g)和HAuCl4·4H2O(0.005g)加入7.5mL的去离子水,溶解后,得到溶液6,除去氧气,然后全部加入到溶液5中,在0℃保温12h进行反应,反应完毕后,过滤洗涤,得到的滤饼放入液氮中冷冻,然后放入冷冻干燥机进行冷冻干燥,得到样品。
(8)将样品在管式炉中10%H2-Ar气氛中升温973K,进行退火3h,退火完毕后,样品顺速出炉,置于液氮中淬火,得到多族多元素/碳纳米管催化材料。
本实施例中所得多族多元素/碳纳米管催化材料,其显微图片如图6所示,本实施例中所得多族多元素/碳纳米管催化材料的结构参数如表5所示。
表5本实施例中多族多元素合金/碳纳米管催化材料的结构参数
Figure BDA0003587549180000091
由图6及表5可知,制备得到的多族多元素合金/碳纳米管催化材料的平均成分为CNTs:40wt%,Pt:18wt%,其他元素:42wt%;另外多族多元素颗粒的尺寸均匀细小,颗粒尺寸为2-10nm,平均尺寸为5nm;多族多元素颗粒均匀的分散在CNTs管壁上,包覆率约为80%。
表6为本实施例催化材料催化剂在0.5M H2SO4和1M KOH中的电催化HER性能比较。
表6本实施例中催化材料HER的催化效果
Figure BDA0003587549180000101
表7为催化剂在0.1M KOH中的电催化ORR性能比较
Figure BDA0003587549180000102

Claims (10)

1.一种多族多元素合金/碳纳米管催化材料,其特征在于,由基体碳纳米管和负载于碳纳米管上的多族多元素高熵纳米合金组成,其中,基体碳纳米管的质量百分含量为40~70wt%,余量为多族多元素高熵纳米合金,各组分的质量百分比之和为100%。
2.根据权利要求1所述的所述的多族多元素合金/碳纳米管催化材料,其特征在于,多族多元素高熵纳米合金包含有Pt金属元素;碳纳米管的长度为300~1000nm,所述多族多元素合金纳米颗粒为2~10nm。
3.根据权利要求1或2所述的多族多元素合金/碳纳米管催化材料的制备方法,包括以下步骤:
(1)将碳纳米管放入浓酸中搅拌浸泡,清洗干净后,得到预处理的CNTs;
(2)将浓缩HCl加入到去离子水中,用H2-Ar连续吹扫,接着向其中加入步骤1)中的预处理后的碳纳米管,然后向其中依次加入多种3d过渡基金属的盐,搅拌溶解后,得到溶液1;
(3)将多种易水解或不溶的金属盐加入到浓缩HCl中,分散均匀后,得到分散液;将分散液通过蠕动泵将其加入到步骤2)中的溶液1中,得到溶液2;
(4)将若干种碱金属盐或碱土金属盐或稀土金属盐加入到步骤3)中的溶液2中,搅拌溶解后,得到盐溶液;
(5)将步骤(4)中的盐溶液进行一个处理循环,接着向盐溶液中加入PVP,溶解后,进行4次处理循环,处理完毕后,在冰浴条件下,向盐溶液中加入硼氢化钠溶液进行反应,进行反应,反应完毕后,得到溶液3;
(6)将浓缩HCl加入去离子水中,然后将若干种金属盐依次加入到溶液中,充分溶解,得到溶液4;接着将溶液4加入到步骤(5)的溶液3中,混匀,得到溶液5;
(7)将H2PtCl6·6H2O和HAuCl4·4H2O加入去离子水中,配置成设定浓度的溶液6,去除氧气后,加入到步骤(6)中的溶液5中,得到混合溶液7;将混合溶液7进行保温反应,反应完毕后,过滤洗涤,将滤饼冷冻干燥后,得到样品;将样品在管式炉中退火,并在液氮中淬火,得到多族多元素合金/碳纳米管催化材料。
4.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于,所述步骤(1)中,浓酸是由体积比为(2~4):1的浓硫酸和浓硝酸组成,浸泡时需要完全浸没碳纳米管;浸泡时间为36~60h。
5.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于所述步骤(2)中,浓缩HCl的浓度为36~38%;浓缩HCl与去离子水的体积比为(0.2~0.8):(100~140);预处理后的CNTs的浓度为0.4~0.8mg/mL;多种3d过渡基金属的盐为MnCl2·4H2O、Co(NO3)2·6H2O、NiCl2·6H2O、Cu(NO3)2·xH2O、Al(NO3)3·9H2O和FeSO4·7H2O中的3种以上,其在溶液中的浓度分别为:MnCl2·4H2O:0.1~0.3mg/mL,Co(NO3)2·6H2O:0.3~0.4mg/mL,NiCl2·6H2O:0.1~0.2mg/mL,Cu(NO3)2·xH2O:0.7~0.8mg/mL,Al(NO3)3·9H2O:0.2~0.3mg/mL,FeSO4·7H2O:0.1~0.2mg/mL;在加入金属盐时,每种金属盐加入的时间需要间隔4~6min,确保金属盐完全溶解。
6.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于所述步骤(3)中,多种易水解或不溶的金属盐为NbCl5、ZrCl4、Ti(SO4)2、CrCl3·6H2O、HfCl4、TaCl5和MoCl5中的4种以上,其在浓缩HCl中的浓度分别为:NbCl5:0.03~0.04g/mL,ZrCl4:0.02~0.03g/mL,Ti(SO4)2:0.03~0.04g/mL,CrCl3·6H2O:0.02~0.03g/mL,HfCl4:0.01~0.02g/mL,TaCl5:0.03~0.04g/mL,MoCl5:0.03~0.04g/mL;在加入金属盐时,每种金属盐加入的时间需要间隔4~6min,确保金属盐分散均匀;分散液与溶液1的体积比为(2~3):(110~130)。
7.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于所述步骤(4)中,若干种碱金属盐或碱土金属盐或稀土金属盐为LiCl、NaCl、KCl、RbCl、CsCl、MgCl2·6H2O、SrCl2、YCl3·6H2O、LaCl3·7H2O、CeCl3·7H2O、NdCl3·6H2O、SmCl3·6H2O、EuCl3·6H2O、TbCl3·6H2O、DyCl3·6H2O、HoCl3、ErCl3·6H2O、Zn(NO3)2·6H2O、SbCl3和BiCl3中的至少10种,其在溶液2中的浓度分别为:LiCl:0.3~0.4mg/mL,NaCl:0.07~0.09mg/mL,KCl:0.07~0.09mg/mL,RbCl:0.07~0.09mg/mL,CsCl:0.09~0.1mg/mL,MgCl2·6H2O:0.1~0.2mg/mL,SrCl2:0.1~0.2mg/mL,YCl3·6H2O:0.2~0.3mg/mL,LaCl3·7H2O:0.3~0.4mg/mL,CeCl3·7H2O:0.3~0.4mg/mL,NdCl3·6H2O:0.3~0.4mg/mL,SmCl3·6H2O:0.3~0.4mg/mL,EuCl3·6H2O:0.3~0.4mg/mL,TbCl3·6H2O:0.3~0.4mg/mL,DyCl3·6H2O:0.3~0.4mg/mL,HoCl3:0.3~0.4mg/mL,ErCl3·6H2O:0.3~0.4mg/mL,Zn(NO3)2·6H2O:0.3~0.5mg/mL,SbCl3:0.06~0.08mg/mL,BiCl3:0.03~0.05mg/mL。
8.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于所述步骤(5)中,处理循环的具体步骤为:首先用真空脱泡机搅拌脱泡4~6min,接着用H2-Ar吹扫4~6min,然后通过超声进行分散4~6min;PVP的分子量为24000~40000,PVP在盐溶液中的浓度为0.3~1.4g/L;硼氢化钠溶液的浓度为20~30mmol/L,其与盐溶液的体积比为(180~220):(100~150),硼氢化钠溶液采用滴加的形式加入到盐溶液中,滴入速度为300~1400μL/min;反应时间为8~12h。
9.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于所述步骤(6)中,浓缩HCl与去离子水的体积比为(0.3~0.8):(25~35);若干种金属盐为CaCl2·2H2O、ScCl3·6H2O、WCl6、LuCl3·6H2O、In(NO3)3·xH20、SnCl4、Ga(NO3)3·xH2O、RuCl3·xH2O、PdCl2中的至少2种,其在溶液4中的浓度分别为:CaCl2·2H2O:0.3~0.5mg/mL,ScCl3·6H2O:0.7~0.8mg/mL,WCl6:1.4~1.6mg/mL,LuCl3·6H2O:0.3~0.4mg/mL,In(NO3)3·xH20:0.7~0.8mg/mL,SnCl4:0.7~0.8mg/mL,Ga(NO3)3·xH2O:0.6~0.7mg/mL,RuCl3·xH2O:0.4~0.6mg/mL,PdCl2:0.2~0.3mg/mL;溶液4与溶液3的体积比为(28~33):(300~400)。
10.根据权利要求3所述的多族多元素合金/碳纳米管催化材料的制备方法,其特征在于所述步骤(7)中,H2PtCl6·6H2O和HAuCl4·4H2O在溶液6中的浓度分别为3~5mg/mL和0.6~0.7mg/mL;溶液6与溶液5的体积比为(10~20):(300~400),保温的温度为-5~5℃,保温时间为10~14h;退火是在10%H2-Ar气氛下进行,退火温度为873~1273K,退火时间1~3h。
CN202210369558.1A 2022-04-08 2022-04-08 一种多族多元素合金/碳纳米管催化材料及其制备方法与应用 Active CN114713245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210369558.1A CN114713245B (zh) 2022-04-08 2022-04-08 一种多族多元素合金/碳纳米管催化材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210369558.1A CN114713245B (zh) 2022-04-08 2022-04-08 一种多族多元素合金/碳纳米管催化材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114713245A true CN114713245A (zh) 2022-07-08
CN114713245B CN114713245B (zh) 2023-06-20

Family

ID=82241694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210369558.1A Active CN114713245B (zh) 2022-04-08 2022-04-08 一种多族多元素合金/碳纳米管催化材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114713245B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084527A (zh) * 2022-07-21 2022-09-20 西安建筑科技大学 一种用作锂硫电池催化材料的高熵合金制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033336A (ko) * 2009-09-25 2011-03-31 전남도립대학산학협력단 카본나노튜브를 혼합한 도전성 탄소복합재료
CN109261155A (zh) * 2018-09-25 2019-01-25 中南大学 一种碳纳米管/铜锌合金复合材料及其制备方法和应用
CN110079824A (zh) * 2019-05-17 2019-08-02 哈尔滨工业大学 高能球磨制备高熵合金型电催化析氧反应催化剂的方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN113042744A (zh) * 2021-03-11 2021-06-29 北京大学 一种高熵合金纳米带及其制备方法
CN113972377A (zh) * 2021-10-22 2022-01-25 陕西科技大学 一种镍基高熵合金/碳纳米管改性锂氟化碳电池正极片及其制备方法
CN114196981A (zh) * 2021-11-29 2022-03-18 北京大学 一种铂基高熵合金纳米线催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033336A (ko) * 2009-09-25 2011-03-31 전남도립대학산학협력단 카본나노튜브를 혼합한 도전성 탄소복합재료
CN109261155A (zh) * 2018-09-25 2019-01-25 中南大学 一种碳纳米管/铜锌合金复合材料及其制备方法和应用
CN110079824A (zh) * 2019-05-17 2019-08-02 哈尔滨工业大学 高能球磨制备高熵合金型电催化析氧反应催化剂的方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN113042744A (zh) * 2021-03-11 2021-06-29 北京大学 一种高熵合金纳米带及其制备方法
CN113972377A (zh) * 2021-10-22 2022-01-25 陕西科技大学 一种镍基高熵合金/碳纳米管改性锂氟化碳电池正极片及其制备方法
CN114196981A (zh) * 2021-11-29 2022-03-18 北京大学 一种铂基高熵合金纳米线催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YONGJIE PANG ET AL.: "Microstructure and properties of high strength, high conductivity and magnetic Cu-10Fe-0.4Si alloy", 《MATERIALS SCIENCE & ENGINEERING A》 *
韩小斐等: "微波合成Pt Ru/CNTs 催化剂及其电催化性能", 《浙江工业大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084527A (zh) * 2022-07-21 2022-09-20 西安建筑科技大学 一种用作锂硫电池催化材料的高熵合金制备方法

Also Published As

Publication number Publication date
CN114713245B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN113289693A (zh) 一种氨分解催化剂及其制备方法和应用
CN113151856B (zh) 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN111545231A (zh) 一种多孔碳负载碳化钨复合材料的制备方法
CN114713245B (zh) 一种多族多元素合金/碳纳米管催化材料及其制备方法与应用
CN106512999A (zh) 一种甲烷干气重整催化剂及其制备方法
CN111921551A (zh) 一种包覆铁钴镍三元合金的氮掺杂碳框架材料的制备方法
CN113745542B (zh) 燃料电池用高铂负载量铂/碳催化剂及其制备方法
CN111326753B (zh) 一种担载型纳米电催化剂及其制备方法与应用
CN110961101B (zh) 一种铂基催化剂、其制备方法及应用
CN115301239B (zh) 一种水解制氢用双金属复合催化剂及其制备方法
CN109225256B (zh) 硼氢化钠醇解制氢催化剂
CN116900326A (zh) 一种ZIF衍生物Co纳米颗粒的制备方法及锌空电池
CN113427013B (zh) 铜基氧化铝纳米材料的制备方法
CN113571720B (zh) 一种含金属铂的碳基催化剂、制备方法及其应用
CN101966458B (zh) 高分散性、高负载量Ir及Ir-Pt合金纳米催化剂的制备方法
CN114471604A (zh) 一种提高碳纳米管生长倍率的催化剂及其制备方法和应用
CN102580778A (zh) 以多羟基钌络合物为前驱体的钌系氨合成催化剂
CN114682257B (zh) 一种单原子贵金属催化剂及其制备方法和应用
CN115044927B (zh) 一种碳化物负载金属催化剂的制备方法及应用
CN115010133B (zh) 一种二维超薄氮掺杂碳化钼纳米片的制备方法
CN117161374B (zh) 一种氮掺杂多孔碳负载多元有序金属合金纳米颗粒及其制备方法
CN118241245A (zh) 一种碳化钼电解水纳米催化剂及其制备方法
CN116371421B (zh) 一种负载型催化剂及其制备方法和应用
CN115770584B (zh) 连续流动体系合成负载型铂基核壳催化剂的方法
CN110026215B (zh) 三维多孔纳米催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant