CN114685158A - 一种磁光陶瓷及其制备方法和应用 - Google Patents

一种磁光陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN114685158A
CN114685158A CN202210481997.1A CN202210481997A CN114685158A CN 114685158 A CN114685158 A CN 114685158A CN 202210481997 A CN202210481997 A CN 202210481997A CN 114685158 A CN114685158 A CN 114685158A
Authority
CN
China
Prior art keywords
magneto
optical
ceramic
optical ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210481997.1A
Other languages
English (en)
Other versions
CN114685158B (zh
Inventor
吴少凡
孙志成
王帅华
黄鑫
郑熠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Mindu Innovation Laboratory
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Mindu Innovation Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS, Mindu Innovation Laboratory filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN202210481997.1A priority Critical patent/CN114685158B/zh
Publication of CN114685158A publication Critical patent/CN114685158A/zh
Application granted granted Critical
Publication of CN114685158B publication Critical patent/CN114685158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Abstract

本申请公开了一种磁光陶瓷及其制备方法和应用。所述磁光陶瓷的化学式为A2Ti2O7;其中,A为具有磁光效应的稀土离子。本申请使用高温固相法制备多晶粉体,该方法原料利用率高,采用真空钨丝炉烧结成功制备出A2Ti2O7透明陶瓷,在1064nm波长下Verdet常数与TGG相当,可应用于磁光器件中。

Description

一种磁光陶瓷及其制备方法和应用
技术领域
本申请涉及一种磁光陶瓷及其制备方法和应用,属于陶瓷材料技术领域。
背景技术
近年来,随着透明陶瓷制备技术的快速发展,透明陶瓷在力学、光学、热学等方面的优势日益凸显,也为磁光材料的发展提供了新的途径。磁光陶瓷正成为近年来出现的一种新型的磁光材料。磁光陶瓷的热导率和磁光晶体相当,热扩散性能较好,可以有效防止激光过程中的热损伤。和晶体相比,磁光陶瓷材料制备周期短、成本低、更容易获得较大的尺寸,能够做成大口径的磁光元件;并且其断裂韧性高,抗热震性能好。这些性能上的优势满足了高功率激光器对磁光材料的性能要求,使得磁光陶瓷具有很好的应用前景。
而烧绿石型稀土钛酸盐透明陶瓷自身具备阻挫现象。阻挫现象是自然界相当普遍的一种现象,它指的是体系内部各单元的能量因为相互竞争,从而导致无法同时满足每个个体能量都最低的一种现象。因此最后的结果是:任何一方都无法取得支配性的地位,而这些“竞争中的失败者”将会影响整个系统的性质,如光学、电学、磁学性质都会发生改变。
发明内容
为解决上述问题,本申请提供了一种烧绿石型稀土钛酸盐磁光透明陶瓷(A2Ti2O7)以及A2Ti2O7多晶原料制备、陶瓷制备以及陶瓷磁光性能探究。
本申请的一个方面,提供了一种烧绿石型稀土钛酸盐磁光陶瓷,所述磁光陶瓷的化学式为A2Ti2O7
其中,A为具有磁光效应的稀土离子。
可选地,所述磁光陶瓷中,稀土离子浓度高;A位离子可选范围广;
可选地,所述A为+3价金属离子;
可选地,所述+3价金属离子与Ti4+的离子半径比r(A3+)/r(Ti4+)为1.46~1.78;
可选地,所述A选自Y3+、Gd3+、Tb3+、Ho3+、Dy3+、Er3+、Tm3+、Yb3+、Lu3+中的至少一种。
可选地,所述磁光陶瓷在1064nm波长下的费尔德常数为-30rad/m/T~-48rad/m/T;
可选地,所述磁光陶瓷为Er2Ti2O7时,所述磁光陶瓷在1064nm波长下的费尔德常数为-48rad/m/T;
可选地,所述磁光陶瓷为Ho2Ti2O7时,所述磁光陶瓷在1064nm波长下的Verdet常数为-30rad/m/T。
本申请的另一个方面,提供一种上述的烧绿石型钛酸盐磁光陶瓷的制备方法,所述制备方法包括:
(1)制备A2Ti2O7粉体:将含有混合粉体、分散剂、溶剂的原料,球磨、干燥、烧结I,获得所述A2Ti2O7粉体;
其中,所述混合粉体包括TiO2、稀土氧化物;
(2)制备素坯:将步骤(1)获得的A2Ti2O7粉体压制成型、预烧结II后获得素坯;
(3)制备磁光陶瓷:将步骤(2)获得的素坯真空烧结III、退火,获得所述磁光陶瓷。
可选地,所述混合粉体中,TiO2、稀土氧化物按照磁光陶瓷的化学式A2Ti2O7的化学计量比配比混合;
可选地,所述分散剂选自聚乙二醇PEG-400、PVA中的至少一种;
所述分散剂的加入量为混合粉体质量的10~15wt%;
可选地,所述分散剂的加入量占混合粉体质量的比独立的选自10wt%、12wt%、15wt%中的任意值或上述任意两点间的任意值;可选地,所述溶剂选自乙醇、去离子水、丙酮;
所述溶剂的加入量为混合粉体质量的200~300wt%;
可选地,所述溶剂的加入量占混合粉体质量的比独立的选自200wt%、250wt%、300wt%中的任意值或上述任意两点间的任意值;
可选地,步骤(1)中,所述球磨包括以下步骤:
按照球磨子:混合粉体=15~30:1的质量比例,进行球磨,球磨时间为72~96h;
可选地,所述球磨子:混合粉体的质量比独立的选自15:1、20:1、25:1、30:1中的任意值或上述任意两点间的任意值;
可选地,所述球磨时间独立的选自72h、84h、96h中的任意值或上述任意两点间的任意值;
可选地,所述球磨子中,大、中、小球磨子比例为(1.5~2.5):(5~6.5):(2~3);
可选地,所述干燥的温度为70℃~80℃;干燥的时间为24~48h;
可选地,所述干燥的温度独立的选自70℃、75℃、80℃中的任意值或上述任意两点间的任意值;
可选地,所述干燥的时间独立的选自24h、36h、48h中的任意值或上述任意两点间的任意值;
可选地,所述烧结I的温度为1300~1400℃,升温速率为2~3℃/min,保温时间为3~5h;
可选地,所述烧结I的温度独立的选自1300℃、1350℃、1400℃中的任意值或上述任意两点间的任意值;
可选地,所述升温速率独立的选自2℃/min、2.5℃/min、3℃/min中的任意值或上述任意两点间的任意值;
可选地,所述保温时间独立的选自3h、4h、5h中的任意值或上述任意两点间的任意值;
可选地,步骤(2)中,压制成型具体包括:
将步骤(1)获得的A2Ti2O7粉体在10~14MPa压力下,压制2~3min成型,并在200~250MPa压力下进行冷等静压处理3~4min;
可选地,所述预烧结II的温度为600~900℃,升温速率为2~3℃/min,保温时间为5~6h;
可选地,所述预烧结II的温度独立的选自600℃、700℃、800℃、900℃中的任意值或上述任意两点间的任意值;
可选地,所述升温速率独立的选自2℃/min、2.5℃/min、3℃/min中的任意值或上述任意两点间的任意值;
可选地,所述保温时间独立的选自5h、5.5h、6h中的任意值或上述任意两点间的任意值;
可选地,所述步骤(3)中,所述真空烧结具体包括:
将步骤(2)获得的素坯与氧化锆粉体混合进行真空烧结;将步骤(2)中的素胚与氧化锆粉体放入钨坩埚中,装填顺序为氧化锆粉体、素胚、氧化锆粉体;氧化锆粉体能够在烧结过程使素胚受热均匀。
所述真空烧结在真空度为5×10-3MPa~5×10-4MPa环境下进行;
可选地,所述真空度独立的选自5×10-3MPa、1×10-3MPa、5×10-4MPa中的任意值或上述任意两点间的任意值;
可选地,所述真空烧结的温度为1700~1750℃,升温速率为2~3℃/min,保温时间为10~20h;
可选地,所述真空烧结的温度独立的选自1700℃、1750℃中的任意值或上述任意两点间的任意值;
可选地,所述升温速率独立的选自2℃/min、2.5℃/min、3℃/min中的任意值或上述任意两点间的任意值;
可选地,所述保温时间独立的选自10h、15h、20h中的任意值或上述任意两点间的任意值;
可选地,所述退火温度为1100~1250℃,退火时间为5~10h,退火气氛为氧气或空气气氛;
可选地,所述退火温度独立的选自1100℃、1150℃、1200℃、1250℃中的任意值或上述任意两点间的任意值;
可选地,所述退火时间独立的选自5h、8h、10h中的任意值或上述任意两点间的任意值;
可选地,退火后的磁光陶瓷还进行机械加工处理;通过切割、抛光后进行后续测试。
作为一种具体实施方式,所述磁光陶瓷的制备方法包括:
(1)多晶原料制备:制备A2Ti2O7粉体,具体步骤如下:
按照化学计量比(Er3+:Ti4+=1:1)在手套箱中准确称取高纯TiO2(阿拉丁99.99%)、Er2O3(上海帝阳99.99%)将这些原料(20g)装入氧化锆球磨罐中,加入氧化锆球(共600g)其中大中小球比2:5:3、球料比15:1,加入聚乙二醇(PEG-400,2ml)作为分散剂和无水乙醇(60ml)作为溶剂,通过行星式球磨机球磨72h后,将混合物放入干燥箱中70℃干燥24h,随后放入箱式炉中烧结,以3℃/min升高到1400℃并保温5h,取出样品,重复上述步骤,用200目的筛子对粉体进行过筛,最后得到Er2Ti2O7多晶粉体。
(2)多晶原料压片:将获得的A2Ti2O7粉体原料,称取2.5g装入直径为20mm的模具中,用液压机(12Mpa、3min)将粉体压制成直径为20mm厚度为2.5mm的圆片素胚,随后对素胚进行真空封装后在200Mpa冷等静压3min。
(3)陶瓷烧结:将素胚放入马弗炉(3℃/min、600℃、5h)预烧结,随后将素胚与氧化锆粉体放入钨坩埚中,装填顺序为氧化锆粉体(100g)、素胚、氧化锆粉体(100g)。在真空钨丝炉(真空度为8×10-4MPa)中进行陶瓷烧结,以3℃/min升温到1700-1750℃并保温10h。待烧结完毕后,放入箱式炉中在氧气中退火,以2℃/min升温到1200℃并保温5h,以消除内部缺陷。
(4)切割、抛光:使用线切割机将陶瓷片切成尺寸为10mm×10mm×1.5mm的方片用于后续测试。
本申请的再一个方面,提供一种上述的磁光陶瓷或根据上述方法制备获得的磁光陶瓷在磁光器件中的应用,所述磁光器件用于制备高功率光隔离器,旋光器以及磁光开关。
本申请能产生的有益效果包括:
(1)本申请所提供的烧绿石型稀土钛酸盐磁光陶瓷作为磁光材料,由于烧绿石型稀土钛酸盐磁光陶瓷的立方晶系各向同性的特点,可以避免晶体双折射对磁光效应的影响,光透过性能良好。
(2)本申请所提供的烧绿石型稀土钛酸盐磁光陶瓷,由于磁光陶瓷中含有的稀土离子浓度高,且有效磁矩大,从而使得陶瓷的费尔德常数和磁光优值有可能高于TGG陶瓷。
附图说明
图1为本申请实施例1和实施例2制备的Er2Ti2O7、Ho2Ti2O7实物图,尺寸为直径20mm,厚度1.5mm;
图2为本申请实施例1和实施例2制备磁光透明陶瓷的实验流程图;
图3为本申请实施例3菲尔得常数测定示意图。
其中,
1、起偏器;2、磁光材料;3、检偏器。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
实施例1
按照图2的实验流程图制备磁光透明陶瓷,具体步骤如下:
(1)制备Er2Ti2O7粉体,具体步骤如下:按照化学计量比(Er3+:Ti4+=1:1)在手套箱中准确称取高纯TiO2(阿拉丁99.99%)、Er2O3(上海帝阳99.99%)将这些原料(20g)装入氧化锆球磨罐中,加入氧化锆球(共600g)其中大中小球比2:5:3、球料比15:1,加入聚乙二醇(PEG-400,2ml)作为分散剂和无水乙醇(60ml)作为溶剂,通过行星式球磨机球磨72h后,将混合物放入干燥箱中70℃干燥24h,随后放入箱式炉中烧结,以3℃/min升高到1400℃并保温5h,取出样品,重复上述步骤,用200目的筛子对粉体进行过筛,最后得到Er2Ti2O7多晶粉体。
(2)称取2.5g步骤(1)获得的Er2Ti2O7多晶粉体装入直径为20mm的模具中,用液压机(12Mpa、3min)将粉体压制成直径为20mm厚度为2.5mm的圆片素胚,随后对素胚进行真空封装后在200Mpa冷等静压3min。
(3)将素胚放入马弗炉(3℃/min、600℃、5h)预烧结,随后将素胚与氧化锆粉体放入钨坩埚中,装填顺序为氧化锆粉体(100g)、素胚、氧化锆粉体(100g)。在真空钨丝炉(真空度为5×10-4MPa)中进行陶瓷烧结,以3℃/min升温,在1700-1750℃温度范围内保温10h。待烧结完毕后,放入箱式炉中在空气中退火,以2℃/min升温到1200℃并保温5h,以消除内部缺陷。如图1中a图。在1064nm波长下,测得Er2Ti2O7陶瓷的Verdet常数为-48rad/m/T。
实施例2
按照图2的实验流程图制备磁光透明陶瓷,具体步骤如下:
(1)制备Er2Ti2O7粉体,具体步骤如下:按照化学计量比(Er3+:Ti4+=1:1)在手套箱中准确称取高纯TiO2(阿拉丁99.99%)、Er2O3(上海帝阳99.99%)将这些原料(20g)装入氧化锆球磨罐中,加入氧化锆球600g(大中小球比2:5:3、球料比15:1)、加入聚乙二醇(PEG-400,2ml)作为分散剂和无水乙醇(100ml)作为溶剂,通过行星式球磨机球磨72h后,将混合物放入干燥箱中70℃干燥24h,随后放入箱式炉中烧结,以3℃/min升高到1400℃并保温5h,取出样品,重复上述步骤,用200目的筛子对粉体进行过筛,最后得到Er2Ti2O7多晶粉体。
(2)称取2.5g步骤(1)获得的Er2Ti2O7多晶粉体装入直径为20mm的模具中,用液压机(12Mpa、3min)将粉体压制成直径为20mm厚度为2.5mm的圆片素胚,随后对素胚进行真空封装后在200Mpa冷等静压3min。
(3)将素胚放入马弗炉(600℃、5h、升温速率为3℃/min)预烧结,随后将素胚与氧化锆粉体放入钨坩埚中,装填顺序为氧化锆粉体(100g)、素胚、氧化锆粉体(100g)。在真空钨丝炉(真空度为5×10-4MPa)中进行陶瓷烧结,以3℃/min升温,在1700-1750℃温度范围内保温10h。待烧结完毕后,放入箱式炉中在氧气气氛中退火,以2℃/min升温到1200℃并保温5h,以消除内部缺陷,如图1中b图。在1064nm波长下,测得Ho2Ti2O7陶瓷的Verdet常数为-30rad/m/T。
实施例3费尔德常数的测定
如图3所示,将实施例1中的磁光陶瓷(磁光材料2)切割抛光后厚度记为L,置于螺线圈中,螺线圈链接电流信号发生器,磁光陶瓷两端放置一个起偏器1和检偏器3。
光路通过第一个偏振器形成高偏振度的偏振光,偏振光通过磁光陶瓷时,通过调节电流大小改变磁场大小B,通过磁光陶瓷的偏振光方向发生偏转的角度,在光通过第二个偏振器时,入射光的偏振角度发生变化变化θ,通过V=θ/BL,计算出陶瓷的费尔德常数V。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种烧绿石型稀土钛酸盐磁光陶瓷,其特征在于,所述磁光陶瓷的化学式为A2Ti2O7;其中,A为具有磁光效应的稀土离子。
2.根据权利要求1所述的烧绿石型氧化物磁光陶瓷,其特征在于,
所述A为+3价金属离子;
所述+3价金属离子与Ti4+的离子半径比r(A3+)/r(Ti4+)为1.46~1.78;
优选地,所述A选自Y3+、Gd3+、Tb3+、Ho3+、Dy3+、Er3+、Tm3+、Yb3+、Lu3+中的至少一种。
3.根据权利要求1或2所述的烧绿石型稀土钛酸盐磁光陶瓷,其特征在于,
所述磁光陶瓷在1064nm波长下的费尔德常数为-30rad/m/T~-48rad/m/T;
优选地,所述磁光陶瓷为Er2Ti2O7时,所述磁光陶瓷在1064nm波长下的费尔德常数为-48rad/m/T;
所述磁光陶瓷为Ho2Ti2O7时,所述磁光陶瓷在1064nm波长下的Verdet常数为-30rad/m/T。
4.一种权利要求1~3任一项所述的烧绿石型氧化物磁光陶瓷的制备方法,其特征在于,所述制备方法包括:
(1)制备A2Ti2O7粉体:将含有混合粉体、分散剂、溶剂的原料,球磨、干燥、烧结I,获得所述A2Ti2O7粉体;
其中,所述混合粉体包括TiO2、稀土氧化物;
(2)制备素坯:将步骤(1)获得的A2Ti2O7粉体压制成型,预烧结II;
(3)制备磁光陶瓷:将步骤(2)获得的素坯真空烧结III、退火,获得所述磁光陶瓷。
5.根据权利要求4所述的制备方法,其特征在于,
所述混合粉体中,TiO2、稀土氧化物按照磁光陶瓷的化学式A2Ti2O7的化学计量比配比混合;
优选地,所述分散剂选自聚乙二醇、PVA中的至少一种;
所述分散剂的加入量为混合粉体质量的10~15wt%;
优选地,所述溶剂选自乙醇、去离子水、丙酮中的至少一种;
所述溶剂的加入量为混合粉体质量的200~300wt%。
6.根据权利要求4所述的制备方法,其特征在于,
步骤(1)中,所述球磨包括以下步骤:
按照球磨子:混合粉体=15~30:1的质量比例,进行球磨,球磨时间为72~96h;
所述球磨子中,大、中、小球磨子比例为1.5~2.5:5~6.5:2~3;
优选地,所述干燥的温度为70℃~80℃;干燥的时间为24~48h;
优选地,所述烧结I的温度为1300~1400℃,升温速率为2~3℃/min,保温时间为3~5h。
7.根据权利要求4所述的制备方法,其特征在于,
步骤(2)中,压制成型具体包括:
将步骤(1)获得的A2Ti2O7粉体在10~14MPa压力下,压制2~3min成型,并在200~250MPa压力下进行冷等静压处理3~4min;
优选地,所述预烧结II的温度为600~900℃,升温速率为2~3℃/min,保温时间为5~6h。
8.根据权利要求4所述的制备方法,其特征在于,
所述步骤(3)中,所述真空烧结具体包括:
将步骤(2)获得的素坯与氧化锆粉体混合进行真空烧结;
所述真空烧结在真空度为5×10-3MPa~5×10-4MPa环境下进行;
所述真空烧结的温度为1700~1750℃,升温速率为2~3℃/min,保温时间为10~20h;
优选地,所述退火温度为1100~1250℃,退火时间为5~10h,退火气氛为氧气或空气气氛。
9.根据权利要求4所述的制备方法,其特征在于,
退火后的磁光陶瓷还进行机械加工处理。
10.一种权利要求1~3任一项所述的烧绿石型稀土钛酸盐磁光陶瓷或根据权利要求4~9任一项所述的制备方法制备获得的烧绿石型氧化物磁光陶瓷在磁光器件中的应用,其特征在于,所述磁光器件用于制备高功率光隔离器,旋光器以及磁光开关。
CN202210481997.1A 2022-05-05 2022-05-05 一种磁光陶瓷及其制备方法和应用 Active CN114685158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210481997.1A CN114685158B (zh) 2022-05-05 2022-05-05 一种磁光陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210481997.1A CN114685158B (zh) 2022-05-05 2022-05-05 一种磁光陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114685158A true CN114685158A (zh) 2022-07-01
CN114685158B CN114685158B (zh) 2023-05-26

Family

ID=82145876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210481997.1A Active CN114685158B (zh) 2022-05-05 2022-05-05 一种磁光陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114685158B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594502A (zh) * 2022-10-17 2023-01-13 闽都创新实验室(Cn) 一种磁光透明陶瓷及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113106A (zh) * 2013-01-25 2013-05-22 福建福晶科技股份有限公司 一种烧绿石型a2b2o7透明陶瓷的制备方法
CN105531619A (zh) * 2013-09-12 2016-04-27 信越化学工业株式会社 磁光材料及其制造方法、以及磁光设备
CN107406333A (zh) * 2015-03-11 2017-11-28 信越化学工业株式会社 磁光学材料及其制造方法以及磁光学器件
CN108249909A (zh) * 2016-12-28 2018-07-06 中国科学院上海硅酸盐研究所 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
JP2019099429A (ja) * 2017-12-06 2019-06-24 信越化学工業株式会社 ファラデー回転子用透明セラミックスの製造方法
US20190276367A1 (en) * 2018-03-09 2019-09-12 Shin-Etsu Chemical Co., Ltd. Transparent ceramics, manufacturing method thereof, and magneto-optical device
CN111592347A (zh) * 2019-12-11 2020-08-28 中国科学院福建物质结构研究所 一种铽钪铝石榴石及其掺杂的磁光透明陶瓷、及其制备方法
CN113880578A (zh) * 2021-11-05 2022-01-04 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113106A (zh) * 2013-01-25 2013-05-22 福建福晶科技股份有限公司 一种烧绿石型a2b2o7透明陶瓷的制备方法
CN105531619A (zh) * 2013-09-12 2016-04-27 信越化学工业株式会社 磁光材料及其制造方法、以及磁光设备
US20160201222A1 (en) * 2013-09-12 2016-07-14 Shin-Etsu Chemical Co., Ltd. Magnetooptical material, manufacturing method therefor, and magnetooptical device
CN107406333A (zh) * 2015-03-11 2017-11-28 信越化学工业株式会社 磁光学材料及其制造方法以及磁光学器件
CN108249909A (zh) * 2016-12-28 2018-07-06 中国科学院上海硅酸盐研究所 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
JP2019099429A (ja) * 2017-12-06 2019-06-24 信越化学工業株式会社 ファラデー回転子用透明セラミックスの製造方法
US20190276367A1 (en) * 2018-03-09 2019-09-12 Shin-Etsu Chemical Co., Ltd. Transparent ceramics, manufacturing method thereof, and magneto-optical device
CN110240480A (zh) * 2018-03-09 2019-09-17 信越化学工业株式会社 透明陶瓷、其制造方法和磁光学设备
CN111592347A (zh) * 2019-12-11 2020-08-28 中国科学院福建物质结构研究所 一种铽钪铝石榴石及其掺杂的磁光透明陶瓷、及其制备方法
CN113880578A (zh) * 2021-11-05 2022-01-04 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI LIU;YOU-MING ZOU;SHI-LE ZHANG;RAN-RAN ZHANG;CHANG-JIN ZHANG;YU-HENG ZHANG;: "Dy_(2-x)Y_xTi_2O_7: phonon vibration and magnetization with dilution" *
LIXUANZHANG 等: ""Fabrication and properties of transparent Tb2Ti2O7 magneto-optical ceramics"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
谢华 等: ""Er2Ti2O7烧绿石基玻璃陶瓷固化体的制备工艺研究"", 《原子能科学技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594502A (zh) * 2022-10-17 2023-01-13 闽都创新实验室(Cn) 一种磁光透明陶瓷及其制备方法和应用
CN115594502B (zh) * 2022-10-17 2023-10-03 闽都创新实验室 一种磁光透明陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN114685158B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
Liu et al. Effects of ball milling time on microstructure evolution and optical transparency of Nd: YAG ceramics
CN101429642A (zh) BiFeO3靶材及薄膜的制备方法
TW201522274A (zh) 磁光材料以及磁光裝置
CN114773048B (zh) 一种复合陶瓷材料的制备方法及其应用
CN110536876B (zh) 顺磁性石榴石型透明陶瓷、磁光材料和磁光器件
Li et al. Novel (Tb0. 99Ce0. 01) 3Ga5O12 magneto-optical ceramics for Faraday isolators
JP6879264B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
US10012850B2 (en) Light-transmitting rare-earth gallium garnet ceramic, process for producing same, and faraday rotator
Deng et al. Elevating electrical properties of (K, Na) NbO3 ceramics via cold sintering process and post‐annealing
CN101483219A (zh) Co-Ga共掺的ZnO基稀磁半导体薄膜及其制备方法
JP6881390B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
CN114685158A (zh) 一种磁光陶瓷及其制备方法和应用
JP2013079195A (ja) 磁気光学素子用透光性酸化テルビウム焼結体
JP2016169115A (ja) 磁気光学材料及び磁気光学デバイス
Feng et al. Fabrication of transparent Tb 3 Ga 5 O 12 ceramic
CN115557787B (zh) 一种倍半氧化物透明陶瓷及其制备方法
CN114133235B (zh) 一种红外透过性好的稀土铁石榴石磁光陶瓷的轴向热压烧结制备方法
Kim et al. Effect of ZnO and TiO2 doping on the sintering behavior of Y2O3 ceramics
US20230335319A1 (en) Paramagnetic garnet-based transparent ceramic and method for producing same
JP7472996B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
Park et al. Up-and Downconversion Luminescence in Ho 3+, Yb 3+-Co-Doped Y 2 O 3 Transparent Ceramics Prepared by Spark Plasma Sintering
JP5695594B2 (ja) 磁気光学素子用焼結体及び磁気光学素子
JP7472994B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法
JP7472995B2 (ja) 常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant