CN114670509B - 用于钎焊电池液冷板的高强度铝合金复合板及其制备方法 - Google Patents

用于钎焊电池液冷板的高强度铝合金复合板及其制备方法 Download PDF

Info

Publication number
CN114670509B
CN114670509B CN202210258626.7A CN202210258626A CN114670509B CN 114670509 B CN114670509 B CN 114670509B CN 202210258626 A CN202210258626 A CN 202210258626A CN 114670509 B CN114670509 B CN 114670509B
Authority
CN
China
Prior art keywords
parts
aluminum alloy
brazing
aluminum
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210258626.7A
Other languages
English (en)
Other versions
CN114670509A (zh
Inventor
张全成
王晶振
章建华
彭晓彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Changaluminium Group Co ltd
Original Assignee
Jiangsu Changaluminium Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Changaluminium Group Co ltd filed Critical Jiangsu Changaluminium Group Co ltd
Priority to CN202210258626.7A priority Critical patent/CN114670509B/zh
Publication of CN114670509A publication Critical patent/CN114670509A/zh
Application granted granted Critical
Publication of CN114670509B publication Critical patent/CN114670509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • B22D43/001Retaining slag during pouring molten metal
    • B22D43/004Retaining slag during pouring molten metal by using filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明公开了用于钎焊电池液冷板的高强度铝合金复合板及其制备方法,复合板由流道板和基板经焊接后热轧而成,所述流道板从上至下依次依次为钎焊层、阻挡层、芯材;所述基板从上至下依次为阻挡层、芯材;其中,钎焊层采用4系铝合金,阻挡层采用3系或1系铝合金,芯材采用6系铝合金;本发明的有益效果是,并且在隧道率或者真空钎焊后,放置在自然环境或者人工时效环境中,材料的强度会有提升,所以整体的结构强度有提升,提升比例在50份以上,从而解决了钎焊式液冷板的强度偏低问题,从而可以有效降低材料厚度,实现电池冷却的同时,对汽车轻量化起到一定作用。

Description

用于钎焊电池液冷板的高强度铝合金复合板及其制备方法
技术领域
本发明涉及铝合金板复合板加工技术领域,特别是用于钎焊电池液冷板的高强度铝合金复合板及其制备方法。
背景技术
目前新能源汽车发展方兴未艾,新能源电池是汽车的关键部件,由此动力电池的冷却就尤为重要;目前用于电池冷却的部件为液冷板,流行的方式是两片式钎焊,焊接多采用隧道炉或者真空钎焊工艺,而其中隧道炉钎焊工艺占绝大多数;隧道炉钎焊的原理是使用4系铝合金,如4343或者4045,对3系铝合金进行钎焊连接,因为4系铝合金的熔点多在600℃以下,而3系铝合金的熔点在610℃以上,由此形成了钎焊的窗口,实现钎焊;也就是说,通过热轧过程,将3系铝合金和4系铝合金复合,形成层状复合材料,然后冲压流道,形成流道板,然后再和另外一块3系铝合金基板进行组装,经过钎焊炉,4系铝合金熔化,对流道板和基板进行焊接,形成了密闭的流道,流过的制冷剂对安装在液冷板的电池单元进行冷却,实现热交换的目的;
目前,经过隧道炉或者真空钎焊工艺制作的流道板,均需要经过较高的温度,3系铝合金的强度大幅下降,导致整个动力电池液冷板的结构强度较低,在后续的车辆服役过程中,存在着变形和开裂的风险。
此外,材料的强度较低,需要采用较厚的铝板制作液冷板以保证整个液冷板的刚度,满足车辆服役寿命的要求,这对于车辆轻量化有负面影响;
鉴于上述情况,有必要对现有的铝合金复合板及其制备方式加以改进,使其能够适应现在对铝合金复合板加工使用的需要。
发明内容
由于现有的铝合金复合板使用效果不佳,不能满足人们的使用需求,因此我们在现有技术缺陷的基础上设计了一种用于钎焊电池液冷板的高强度铝合金复合板及其制备方法,能够满足整体材料刚度的同时能够做到轻量化,便于企业进行运用。
实现上述目的本发明的技术方案为,用于钎焊电池液冷板的高强度铝合金复合板,由流道板和基板经焊接后热轧而成,所述流道板从上至下依次依次为钎焊层、阻挡层、芯材;所述基板从上至下依次为阻挡层、芯材;其中,钎焊层采用4系铝合金,阻挡层采用3系或1系铝合金,芯材采用6系铝合金。
对本技术方案的进一步补充,所述流道板的钎焊层截面面积占比在3-20份。
对本技术方案的进一步补充,所述流道板、基板上的阻挡层的截面面积占比在3-20份。
对本技术方案的进一步补充,所述芯材由以下质量份的组分组成:Mg0.25-1.5份,Si0.2-1.25份,Zn0.2-0.35份,Cu0.2-0.4份,Mn0.4-0.8份,Ti0.04-0.09份,Sr0.01-0.04份,Zr0.03-1.2份,6-13份BN,8-10份SiaN,2-5份A1N,3-5份Ti0,0.5-1份VC,1.5-5.5份SiC,杂质总量≤0.05份,单个杂质元素含量≤0.01份,余量为Al。
对本技术方案的进一步补充,所述钎焊层由以下质量份的组成组成:Mg0.3-0.8份,Si为0.2-0.3份,Fe为0.2-0.4份,Cu为0.4-1.5份,Mn为0.20-0.26份,Cr为0.2-0.29份,Zn为6-7.4份,Zr为0.05-0.15份,Ti为0.12-0.18份,余量为Al。
对本技术方案的进一步补充,所述阻挡层由以下质量份的组成组成:Si为0.2-0.3份,Fe为0.1-0.5份,Cu为0.8-2.0份,Mn为0.40-0.60份,Cr为0.08-0.20份,Zn为0.5-1.2份,Zr为0.12-0.31份,Ti为0.09-0.12份,余量为Al。
对本技术方案的进一步补充,所述芯材的制备工艺包括以下步骤:
步骤一:熔炼锻造;
步骤二:头尾锯切和铣面;
步骤三:物料匹配和焊接固定;
步骤四:热轧;
步骤五:冷轧;
步骤六:退火;
步骤七:分切;
其中,熔炼锻造的浇注温度为640-720℃;热轧预热温度440-550℃,成品退火温度为250-420℃。
对本技术方案的进一步补充,所述钎焊层的制备工艺包括以下步骤:
一、按照各元素质量百分比:Mg0.3-0.8份,Si为0.2-0.3份,Fe为0.2-0.4份,Cu为0.4-1.5份,Mn为0.20-0.26份,Cr为0.2-0.29份,Zn为6-7.4份,Zr为0.05-0.15份,Ti为0.12-0.18份,余量为Al的比例分别称取纯铝锭、纯镁锭、铝硅中间合金、铝钛硼晶粒细化剂、铁硅铬合金;
二、将步骤一称取的纯铝锭、纯锌锭、铝硅中间合金、铁硅铬合金、铝铜中间合金和铝铁中间合金加入到熔炼炉中,设置熔炼温度为700℃-740℃,进行熔化、搅拌及除渣后加入纯镁锭,并加入1号覆盖剂,熔炼15min-30min,然后采用Ar-C1,混合气精炼至每100克铝合金熔体中的氢含量≤0.25mL,再静置30min,获得铝合金熔液;
三、将步骤二得到的铝合金熔液依次经过30ppi和50ppi的陶瓷过滤片过滤,然后浇注至结晶器中,并同时将铝钛硼晶粒细化剂插入流槽中,均匀熔入铝合金熔液中;
四、待铝合金熔液全部流入结晶器中后,在温度为680℃-720℃、水压为0.03MPa-0.10MPa、速度为40mm/min-55mm/min的条件下进行铸造,铸造成4系铝合金铸锭;
五、将步骤四得到的4系铝合金铸锭铣面后,加热至温度达到450℃-480℃,进行热轧至预定厚度,得到热轧板坯后剪切至预定长度及宽度。
一种用于钎焊电池液冷板的高强度铝合金复合板制备方法,包括以下工作步骤:
1)分别制造流道板和基板;
2)将流道板上的钎焊层、阻挡层、芯材以及基板上的阻挡层、芯材依次叠置并焊接;
3)焊接后开始热轧,开轧温度500℃,终轧温度470℃,获得热轧板坯;
4)热轧板坯分别进行冷粗轧、中轧、精轧,至成品厚度,在该厚度下进行成品退火,退火温度为220-420℃,保温1-15小时,出炉后经过拉矫剪切制得成品;
其中,成品厚度为0.5-3mm。
对本技术方案的进一步补充,步骤4)中退火包括一次退火和二次退火,所述一次退火为差温退火,所述差温退火的具体步骤包括:首先升温至220-245℃并保温1-2h,然后升温至400-420℃并保温30-40min,最后降温至280-295℃并保温7-8h;所述二次退火的条件包括:退火温度为400-420℃,退火时间为3-3.8h。
其有益效果在于,本发明铝合金复合板能够达到屈服强度40-70MPa;抗拉强度85-150MPa;延伸率15-40份;并且在隧道率或者真空钎焊后,放置在自然环境或者人工时效环境中,材料的强度会有提升,所以整体的结构强度有提升,提升比例在50份以上,从而解决了钎焊式液冷板的强度偏低问题,从而可以有效降低材料厚度,实现电池冷却的同时,对汽车轻量化起到一定作用;并且使用6系铝合金作为液冷板原材料,其中对于隧道炉焊接有很大的影响,6系铝合金中存在较高比例的Mg元素,在隧道炉焊接的过程中,Mg扩散到铝板的表面与预涂的钎剂发生反应,导致钎剂失效,焊接效果很差,本发明采用复合原理,使用隔离层阻挡Mg的扩散,使6系铝合金可以正常应用于隧道炉钎焊。
具体实施方式
由于现有的隧道炉和真空钎焊使用的钎焊温度,最高超过600℃,在这个温度下,3系铝合金的强度降低很多。主要原因是3系铝合金的强化机理主要为固溶强化,因为两片式水冷板目前使用铝合金板带主要是O态,加工硬化作用比较弱,而且铝合金为面心立方结构,滑移系较多,而三系铝合金对于位错作用的析出相很少,所以组织强化效果也很弱,在钎焊温度下,固溶的金属元素,如Cu和Mn等,也大量析出为金属间化合物相,因此固溶强化效果进一步削弱,强度也会进一步降低,而材料的强度降低,也进一步削弱了液冷板的结构强度和刚度,为此需要增加材料的厚度,补充强度降低的不利影响;但是增加材料厚度的话对于车辆轻量化有负面影响;因此基于此缺陷,我们设计了本技术方案,如下:
实施例1
用于钎焊电池液冷板的高强度铝合金复合板,由流道板和基板经焊接后热轧而成,所述流道板从上至下依次依次为钎焊层、阻挡层、芯材;所述基板从上至下依次为阻挡层、芯材;其中,钎焊层采用4系铝合金,阻挡层采用3系或1系铝合金,芯材采用6系铝合金,所述流道板的钎焊层截面面积占比在8份,所述流道板、基板上的阻挡层的截面面积占比在13份。
其中,所述芯材由以下质量份的组分组成:Mg0.8份,Si0.89份,Zn0.28份,Cu0.3份,Mn0.8份,Ti0.06份,Sr0.025份,Zr0.75份,10份BN,8.5份SiaN,3.5份A1N,4份Ti0,0.75份VC,4份SiC,杂质总量0.04份,单个杂质元素含量0.005份,余量为Al。
其中,所述钎焊层由以下质量份的组成组成:Mg0.7份,Si为0.25份,Fe为0.3份,Cu为0.85份,Mn为0.24份,Cr为0.23份,Zn为6.8份,Zr为0.075份,Ti为0.15份,余量为Al。
所述阻挡层由以下质量份的组成组成:Si为0.25份,Fe为0.4份,Cu为1.5份,Mn为0.45份,Cr为0.13份,Zn为0.95份,Zr为0.22份,Ti为0.1份,余量为Al。
所述芯材的制备工艺包括以下步骤:
步骤一:熔炼锻造;
步骤二:头尾锯切和铣面;
步骤三:物料匹配和焊接固定;
步骤四:热轧;
步骤五:冷轧;
步骤六:退火;
步骤七:分切;
其中,熔炼锻造的浇注温度为640-720℃;热轧预热温度440-550℃,成品退火温度为250-420℃。
所述钎焊层的制备工艺包括以下步骤:
一、按照各元素质量百分比:Mg0.7份,Si为0.25份,Fe为0.3份,Cu为0.85份,Mn为0.24份,Cr为0.23份,Zn为6.8份,Zr为0.075份,Ti为0.15份,余量为Al的比例分别称取纯铝锭、纯镁锭、铝硅中间合金、铝钛硼晶粒细化剂、铁硅铬合金;
二、将步骤一称取的纯铝锭、纯锌锭、铝硅中间合金、铁硅铬合金、铝铜中间合金和铝铁中间合金加入到熔炼炉中,设置熔炼温度为700℃-740℃,进行熔化、搅拌及除渣后加入纯镁锭,并加入1号覆盖剂,熔炼15min-30min,然后采用Ar-C1,混合气精炼至每100克铝合金熔体中的氢含量≤0.25mL,再静置30min,获得铝合金熔液;
三、将步骤二得到的铝合金熔液依次经过30ppi和50ppi的陶瓷过滤片过滤,然后浇注至结晶器中,并同时将铝钛硼晶粒细化剂插入流槽中,均匀熔入铝合金熔液中;
四、待铝合金熔液全部流入结晶器中后,在温度为680℃-720℃、水压为0.03MPa-0.10MPa、速度为40mm/min-55mm/min的条件下进行铸造,铸造成4系铝合金铸锭;
五、将步骤四得到的4系铝合金铸锭铣面后,加热至温度达到450℃-480℃,进行热轧至预定厚度,得到热轧板坯后剪切至预定长度及宽度。
一种用于钎焊电池液冷板的高强度铝合金复合板制备方法,包括以下工作步骤:
1)分别制造流道板和基板;
2)将流道板上的钎焊层、阻挡层、芯材以及基板上的阻挡层、芯材依次叠置并焊接;
3)焊接后开始热轧,开轧温度500℃,终轧温度470℃,获得热轧板坯;
4)热轧板坯分别进行冷粗轧、中轧、精轧,至成品厚度,在该厚度下进行成品退火,退火温度为220-420℃,保温1-15小时,出炉后经过拉矫剪切制得成品;
其中,成品厚度为0.5-3mm。
对本技术方案的进一步补充,步骤4)中退火包括一次退火和二次退火,所述一次退火为差温退火,所述差温退火的具体步骤包括:首先升温至220-245℃并保温1-2h,然后升温至400-420℃并保温30-40min,最后降温至280-295℃并保温7-8h;所述二次退火的条件包括:退火温度为400-420℃,退火时间为3-3.8h。
经过上述制备,铝合金复合板能够达到屈服强度40-70MPa;抗拉强度85-150MPa;延伸率15-40份。
实施例2
用于钎焊电池液冷板的高强度铝合金复合板,由流道板和基板经焊接后热轧而成,所述流道板从上至下依次依次为钎焊层、阻挡层、芯材;所述基板从上至下依次为阻挡层、芯材;其中,钎焊层采用4系铝合金,阻挡层采用3系或1系铝合金,芯材采用6系铝合金,所述流道板的钎焊层截面面积占比在18份,所述流道板、基板上的阻挡层的截面面积占比在13份。
其中,所述芯材由以下质量份的组分组成:Mg1.25份,Si1份,Zn0.28份,Cu0.3份,Mn0.6份,Ti0.068份,Sr0.03份,Zr0.8份,8.5份BN,8.9份SiaN,4份A1N,3份Ti0,0.78份VC,4份SiC,杂质总量0.04份,单个杂质元素含量0.005份,余量为Al。
其中,所述钎焊层由以下质量份的组成组成:Mg0.65份,Si为0.25份,Fe为0.3份,Cu为1.3份,Mn为0.22份,Cr为0.23份,Zn为6.5份,Zr为0.08-0.15份,Ti为0.17份,余量为Al。
其中,所述阻挡层由以下质量份的组成组成:Si为0.25份,Fe为0.3份,Cu为1.3份,Mn为0.5份,Cr为0.1份,Zn为0.9份,Zr为0.22份,Ti为0.095份,余量为Al。
对本技术方案的进一步补充,所述芯材的制备工艺包括以下步骤:
步骤一:熔炼锻造;
步骤二:头尾锯切和铣面;
步骤三:物料匹配和焊接固定;
步骤四:热轧;
步骤五:冷轧;
步骤六:退火;
步骤七:分切;
其中,熔炼锻造的浇注温度为640-720℃;热轧预热温度440-550℃,成品退火温度为250-420℃。
对本技术方案的进一步补充,所述钎焊层的制备工艺包括以下步骤:
一、按照各元素质量百分比:Mg0.65份,Si为0.25份,Fe为0.3份,Cu为1.3份,Mn为0.22份,Cr为0.23份,Zn为6.5份,Zr为0.08-0.15份,Ti为0.17份,余量为Al的比例分别称取纯铝锭、纯镁锭、铝硅中间合金、铝钛硼晶粒细化剂、铁硅铬合金;
二、将步骤一称取的纯铝锭、纯锌锭、铝硅中间合金、铁硅铬合金、铝铜中间合金和铝铁中间合金加入到熔炼炉中,设置熔炼温度为700℃-740℃,进行熔化、搅拌及除渣后加入纯镁锭,并加入1号覆盖剂,熔炼15min-30min,然后采用Ar-C1,混合气精炼至每100克铝合金熔体中的氢含量≤0.25mL,再静置30min,获得铝合金熔液;
三、将步骤二得到的铝合金熔液依次经过30ppi和50ppi的陶瓷过滤片过滤,然后浇注至结晶器中,并同时将铝钛硼晶粒细化剂插入流槽中,均匀熔入铝合金熔液中;
四、待铝合金熔液全部流入结晶器中后,在温度为680℃-720℃、水压为0.03MPa-0.10MPa、速度为40mm/min-55mm/min的条件下进行铸造,铸造成4系铝合金铸锭;
五、将步骤四得到的4系铝合金铸锭铣面后,加热至温度达到450℃-480℃,进行热轧至预定厚度,得到热轧板坯后剪切至预定长度及宽度。
一种用于钎焊电池液冷板的高强度铝合金复合板制备方法,包括以下工作步骤:
1)分别制造流道板和基板;
2)将流道板上的钎焊层、阻挡层、芯材以及基板上的阻挡层、芯材依次叠置并焊接;
3)焊接后开始热轧,开轧温度500℃,终轧温度470℃,获得热轧板坯;
4)热轧板坯分别进行冷粗轧、中轧、精轧,至成品厚度,在该厚度下进行成品退火,退火温度为220-420℃,保温1-15小时,出炉后经过拉矫剪切制得成品;
其中,成品厚度为0.5-3mm。
对本技术方案的进一步补充,步骤4)中退火包括一次退火和二次退火,所述一次退火为差温退火,所述差温退火的具体步骤包括:首先升温至220-245℃并保温1-2h,然后升温至400-420℃并保温30-40min,最后降温至280-295℃并保温7-8h;所述二次退火的条件包括:退火温度为400-420℃,退火时间为3-3.8h。
经过上述制备,铝合金复合板能够达到屈服强度40-70MPa;抗拉强度85-150MPa;延伸率15-40份。
实施例3
用于钎焊电池液冷板的高强度铝合金复合板,由流道板和基板经焊接后热轧而成,所述流道板从上至下依次依次为钎焊层、阻挡层、芯材;所述基板从上至下依次为阻挡层、芯材;其中,钎焊层采用4系铝合金,阻挡层采用3系或1系铝合金,芯材采用6系铝合金。
所述流道板的钎焊层截面面积占比在3-20份。
对本技术方案的进一步补充,所述流道板、基板上的阻挡层的截面面积占比在3-20份。
其中,所述芯材由以下质量份的组分组成:Mg1.25份,Si0.8份,Zn0.25份,Cu0.3份,Mn0.65份,Ti0.055份,Sr0.02份,Zr0.7份,8份BN,9.5份SiaN,3.8份A1N,4.8份Ti0,0.75份VC,4.8份SiC,杂质总量0.04份,单个杂质元素含量0.0085份,余量为Al。
其中,所述钎焊层由以下质量份的组成组成:Mg0.75份,Si为0.24份,Fe为0.38份,Cu为1.29份,Mn为0.24份,Cr为0.23份,Zn为6.8份,Zr为0.078份,Ti为0.15份,余量为Al。
其中,所述阻挡层由以下质量份的组成组成:Si为0.26份,Fe为0.34份,Cu为1.85份,Mn为0.55份,Cr为0.18份,Zn为0.95份,Zr为0.22份,Ti为0.11份,余量为Al。
其中,所述芯材的制备工艺包括以下步骤:
步骤一:熔炼锻造;
步骤二:头尾锯切和铣面;
步骤三:物料匹配和焊接固定;
步骤四:热轧;
步骤五:冷轧;
步骤六:退火;
步骤七:分切;
其中,熔炼锻造的浇注温度为640-720℃;热轧预热温度440-550℃,成品退火温度为250-420℃。
其中,所述钎焊层的制备工艺包括以下步骤:
一、按照各元素质量百分比:Mg0.75份,Si为0.24份,Fe为0.38份,Cu为1.29份,Mn为0.24份,Cr为0.23份,Zn为6.8份,Zr为0.078份,Ti为0.15份,余量为Al的比例分别称取纯铝锭、纯镁锭、铝硅中间合金、铝钛硼晶粒细化剂、铁硅铬合金;
二、将步骤一称取的纯铝锭、纯锌锭、铝硅中间合金、铁硅铬合金、铝铜中间合金和铝铁中间合金加入到熔炼炉中,设置熔炼温度为700℃-740℃,进行熔化、搅拌及除渣后加入纯镁锭,并加入1号覆盖剂,熔炼15min-30min,然后采用Ar-C1,混合气精炼至每100克铝合金熔体中的氢含量≤0.25mL,再静置30min,获得铝合金熔液;
三、将步骤二得到的铝合金熔液依次经过30ppi和50ppi的陶瓷过滤片过滤,然后浇注至结晶器中,并同时将铝钛硼晶粒细化剂插入流槽中,均匀熔入铝合金熔液中;
四、待铝合金熔液全部流入结晶器中后,在温度为680℃-720℃、水压为0.03MPa-0.10MPa、速度为40mm/min-55mm/min的条件下进行铸造,铸造成4系铝合金铸锭;
五、将步骤四得到的4系铝合金铸锭铣面后,加热至温度达到450℃-480℃,进行热轧至预定厚度,得到热轧板坯后剪切至预定长度及宽度。
一种用于钎焊电池液冷板的高强度铝合金复合板制备方法,包括以下工作步骤:
1)分别制造流道板和基板;
2)将流道板上的钎焊层、阻挡层、芯材以及基板上的阻挡层、芯材依次叠置并焊接;
3)焊接后开始热轧,开轧温度500℃,终轧温度470℃,获得热轧板坯;
4)热轧板坯分别进行冷粗轧、中轧、精轧,至成品厚度,在该厚度下进行成品退火,退火温度为220-420℃,保温1-15小时,出炉后经过拉矫剪切制得成品;
其中,成品厚度为0.5-3mm。
其中,步骤4)中退火包括一次退火和二次退火,所述一次退火为差温退火,所述差温退火的具体步骤包括:首先升温至220-245℃并保温1-2h,然后升温至400-420℃并保温30-40min,最后降温至280-295℃并保温7-8h;所述二次退火的条件包括:退火温度为400-420℃,退火时间为3-3.8h。
经过上述制备,铝合金复合板能够达到屈服强度40-70MPa;抗拉强度85-150MPa;延伸率15-40份。
上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本发明的原理,属于本发明的保护范围之内。

Claims (1)

1.用于钎焊电池液冷板的高强度铝合金复合板,其特征在于,由流道板和基板经焊接后热轧而成,所述流道板从上至下依次为钎焊层、阻挡层、芯材;所述基板从上至下依次为阻挡层、芯材;其中,钎焊层采用4系铝合金,阻挡层采用3系或1系铝合金,芯材采用6系铝合金;
所述流道板的钎焊层截面面积占比在3-20份;
所述流道板、基板上的阻挡层的截面面积占比在3-20份;
所述芯材由以下质量份的组分组成:Mg0.25-1.5份,Si0.2-1.25份,Zn0.2-0.35份,Cu0.2-0.4份,Mn0.4-0.8份,Ti0.04-0.09份,Sr0.01-0.04份,Zr0.03-1.2份,6-13份BN,8-10份SiaN,2-5份A1N,3-5份Ti0,0.5-1份VC,1.5-5.5份SiC,杂质总量≤0.05份,单个杂质元素含量≤0.01份,余量为Al;
所述钎焊层由以下质量份的组成组成:Mg0.3-0.8份,Si为0.2-0.3份,Fe为0.2-0.4份,Cu为0.4-1.5份,Mn为0.20-0.26份,Cr为0.2-0.29份,Zn为6-7.4份,Zr为0.05-0.15份,Ti为0.12-0.18份,余量为Al;
所述阻挡层由以下质量份的组成组成:Si为0.2-0.3份,Fe为0.1-0.5份,Cu为0.8-2.0份,Mn为0.40-0.60份,Cr为0.08-0.20份,Zn为0.5-1.2份,Zr为0.12-0.31份,Ti为0.09-0.12份,余量为Al;
所述芯材的制备工艺包括以下步骤:
步骤一:熔炼锻造;
步骤二:头尾锯切和铣面;
步骤三:物料匹配和焊接固定;
步骤四:热轧;
步骤五:冷轧;
步骤六:退火;
步骤七:分切;
其中,熔炼锻造的浇注温度为640-720℃;热轧预热温度440-550℃,成品退火温度为250-420℃;
所述钎焊层的制备工艺包括以下步骤:
一、按照各元素质量百分比:Mg0.3-0.8份,Si为0.2-0.3份,Fe为0.2-0.4份,Cu为0.4-1.5份,Mn为0.20-0.26份,Cr为0.2-0.29份,Zn为6-7.4份,Zr为0.05-0.15份,Ti为0.12-0.18份,余量为Al的比例分别称取纯铝锭、纯镁锭、铝硅中间合金、铝钛硼晶粒细化剂、铁硅铬合金、铝铜中间合金和铝铁中间合金;
二、将步骤一称取的纯铝锭、纯锌锭、铝硅中间合金、铁硅铬合金、铝铜中间合金和铝铁中间合金加入到熔炼炉中,设置熔炼温度为700℃-740℃,进行熔化、搅拌及除渣后加入纯镁锭,并加入1号覆盖剂,熔炼15min-30min,然后采用Ar-C1,混合气精炼至每100克铝合金熔体中的氢含量≤0.25mL,再静置30min,获得铝合金熔液;
三、将步骤二得到的铝合金熔液依次经过30ppi和50ppi的陶瓷过滤片过滤,然后浇注至结晶器中,并同时将铝钛硼晶粒细化剂插入流槽中,均匀熔入铝合金熔液中;
四、待铝合金熔液全部流入结晶器中后,在温度为680℃-720℃、水压为0.03MPa-0.10MPa、速度为40mm/min-55mm/min的条件下进行铸造,铸造成4系铝合金铸锭;
五、将步骤四得到的4系铝合金铸锭铣面后,加热至温度达到450℃-480℃,进行热轧至预定厚度,得到热轧板坯后剪切至预定长度及宽度。
CN202210258626.7A 2022-03-16 2022-03-16 用于钎焊电池液冷板的高强度铝合金复合板及其制备方法 Active CN114670509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210258626.7A CN114670509B (zh) 2022-03-16 2022-03-16 用于钎焊电池液冷板的高强度铝合金复合板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210258626.7A CN114670509B (zh) 2022-03-16 2022-03-16 用于钎焊电池液冷板的高强度铝合金复合板及其制备方法

Publications (2)

Publication Number Publication Date
CN114670509A CN114670509A (zh) 2022-06-28
CN114670509B true CN114670509B (zh) 2024-09-17

Family

ID=82073817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210258626.7A Active CN114670509B (zh) 2022-03-16 2022-03-16 用于钎焊电池液冷板的高强度铝合金复合板及其制备方法

Country Status (1)

Country Link
CN (1) CN114670509B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116984844A (zh) * 2023-09-27 2023-11-03 山东三源铝业有限公司 一种实用型新能源水冷板的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372161A (zh) * 2007-08-23 2009-02-25 南通华特铝热传输材料有限公司 钎焊铝合金多层复合板材料及其制造方法
CN101831578A (zh) * 2010-06-02 2010-09-15 东北轻合金有限责任公司 铝镁铒合金铸锭及其制备方法
CN111086289A (zh) * 2019-12-26 2020-05-01 银邦金属复合材料股份有限公司 水冷板及其制造方法、包括水冷板的电池、新能源汽车
CN113710411A (zh) * 2019-04-24 2021-11-26 奥科宁克技术有限责任公司 用于轧制结合的钎焊片材的中间衬垫

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487974B2 (ja) * 2017-08-17 2019-03-20 株式会社Uacj 熱交換器用アルミニウム合金ブレージングシート及び熱交換器用アルミニウム合金ブレージングシートの製造方法
CA3090323A1 (en) * 2018-02-22 2019-08-29 Arconic Technologies Llc Composite braze liner for low temperature brazing and high strength materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372161A (zh) * 2007-08-23 2009-02-25 南通华特铝热传输材料有限公司 钎焊铝合金多层复合板材料及其制造方法
CN101831578A (zh) * 2010-06-02 2010-09-15 东北轻合金有限责任公司 铝镁铒合金铸锭及其制备方法
CN113710411A (zh) * 2019-04-24 2021-11-26 奥科宁克技术有限责任公司 用于轧制结合的钎焊片材的中间衬垫
CN111086289A (zh) * 2019-12-26 2020-05-01 银邦金属复合材料股份有限公司 水冷板及其制造方法、包括水冷板的电池、新能源汽车

Also Published As

Publication number Publication date
CN114670509A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN113245486B (zh) 一种抑制粗晶组织的Al-Mg-Si系铝合金的模锻件的制备方法
US6939416B2 (en) Weldable high strenght Al-Mg-Si alloy
CA2450684C (en) Weldable high strength al-mg-si alloy
CN102796925B (zh) 一种压力铸造用的高强韧压铸铝合金
CN102943193B (zh) 硬质铝合金铸锭的精粒细化加工工艺
EP0030070B1 (en) Method for producing aircraft stringer material
CA2551599A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
CN114670509B (zh) 用于钎焊电池液冷板的高强度铝合金复合板及其制备方法
CN112375949A (zh) 一种车体用高强7系铝合金薄板的热处理工艺
CN117821815B (zh) 一种摩托车轮用高强无粗晶Al-Zn-Mg-Cu系铝合金及其制备方法
CN110218917B (zh) 一种含稀土元素的合金铝棒及其制备工艺
CN102965554A (zh) 硬质铝合金铸锭
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
CN114150190A (zh) 一种Al-Mg-Mn-Cr-Zr-Ti铝合金及其板材制备工艺
CN110938758A (zh) 一种t61状态6系板材的制造方法
CN113737064B (zh) 一种高性能锻件用Al-Mg-Si合金及其制备方法
CN110218916B (zh) 一种高抗拉强度胎铃用铝合金锭及其生产工艺
CN112063896A (zh) 一种高性能铝合金及其制备方法
CN114015916A (zh) 一种高强韧结构件用铝镁合金材料及制备方法
CN117535570A (zh) 一种兼具高成形性和高焊接性能的铝镁合金板材及其制备方法
CN118854127A (zh) 一种铸轧法生产深冲用3004铝合金带坯的方法
JPH05247577A (ja) 成形性に優れたアルミニウム合金とその製造法
CN118389880A (zh) 铝合金水冷板材的制备方法及铝合金水冷板材
CN115710659A (zh) 一种用于罐体的铝镁合金及其制造方法
CN117488116A (zh) 一种宽幅高强度6000系铝板材的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant