CN114657533A - 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法 - Google Patents

一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法 Download PDF

Info

Publication number
CN114657533A
CN114657533A CN202210360654.XA CN202210360654A CN114657533A CN 114657533 A CN114657533 A CN 114657533A CN 202210360654 A CN202210360654 A CN 202210360654A CN 114657533 A CN114657533 A CN 114657533A
Authority
CN
China
Prior art keywords
sheet
nano
crystal form
diamond
regular crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210360654.XA
Other languages
English (en)
Other versions
CN114657533B (zh
Inventor
朱嘉琦
梁莹
刘康
李一村
张森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Research Institute Of Harbin Institute Of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210360654.XA priority Critical patent/CN114657533B/zh
Publication of CN114657533A publication Critical patent/CN114657533A/zh
Application granted granted Critical
Publication of CN114657533B publication Critical patent/CN114657533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Plasma & Fusion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,本发明是为了解决现有以金属衬底,采用CVD法制备纳米金刚石得到的纳米金刚石数量少、形状不规则的问题。制备具有规则晶型的纳米金刚石颗粒的方法:一、清洗Mo片及Mo托;二、将Mo片放置在MPCVD装置的沉积系统腔体内,Mo托放置在Mo片上,抽真空后通入H2和CH4,调节微波功率,进行气相沉积,得到带有纳米金刚石的Mo片;三、关闭沉积系统,冷却后将带有纳米金刚石的Mo片放入去离子水中超声,得到纳米金刚石分散液。本发明通过Mo托将等离子体位置提高,使等离子体边缘远离Mo片,减小H等离子体刻蚀,在Mo衬底上制备得到了具有规则晶型的纳米金刚石颗粒。

Description

一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法
技术领域
本发明属于纳米材料生长领域,具体涉及一种制备具有规则晶型的分散纳米金刚石颗粒的方法。
背景技术
纳米金刚石是一种一维的碳材料,具有生物相容性,抗菌性等优点,且其内部包含的色心,如NV色心,SiV色心等,特别是在量子光学、纳米尺度磁力计、生物标记与跟踪、磁成像、药物运输等方面具有不可小觑的应用前景。减小金刚石的尺寸,增加色心浓度等均是提高色心荧光强度努力的方向,同时具有规则晶型的表层结构也有利于提高荧光收集效率。然而目前制备纳米金刚石的方法主要包括爆轰法、高温高压法(HPHT)和化学气相沉积法(CVD)。爆轰法过程剧烈不易控制,生产的纳米金刚石一般含有较多的石墨成分。HPHT法纳米金刚石通过将大块金刚石破碎获得,形状各异。CVD法生长纳米金刚石一般结构为膜层结构。目前在制备纳米金刚石时,一般会选择硅片、碳化硅等,也有部分选择金属作为衬底,缺点是纳米金刚石数量少、形状不规则、价格偏高或形成纳米金刚石膜。因此,开发一种经济的、可批量的制备具有规则晶型的分散的高质量的纳米金刚石颗粒的方法是非常重要的。
发明内容
本发明的目的是为了解决现有以金属衬底,采用CVD法制备纳米金刚石得到的纳米金刚石数量少、形状不规则的问题,而提供一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法。
本发明在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法按照以下步骤实现:
一、Mo衬底处理:将Mo片及Mo托分别在丙酮、酒精和水中超声清洗,得到清洗后的Mo片和Mo托;
二、微波等离子体化学气相沉积(MPCVD):将Mo片放置在MPCVD装置的沉积系统腔体内,Mo托放置在Mo片上,腔体抽真空后,通入H2和CH4,控制H2的流量为180~200sccm,CH4的流量为8~15sccm,微波功率为2~4KW,进行气相沉积,得到带有纳米金刚石的Mo片;
三、取样:关闭沉积系统,冷却后将步骤二中带有纳米金刚石的Mo片放入去离子水中超声,取出Mo片,得到纳米金刚石分散液。
本发明以CH4和H2作为气源,使用Mo作为衬底,采用等离子体化学气相沉积法,在温度680℃,压力约14KPa条件下沉积,制备颗粒尺寸约300纳米的具有八面体晶型的纳米金刚石颗粒。本发明通过Mo托将等离子体位置提高,使等离子体边缘远离Mo片,减小H等离子体刻蚀。本发明在Mo衬底上制备得到了具有规则晶型的纳米金刚石颗粒。
本发明具有操作简单、晶型规则,数量多,质量高,颗粒分散等优点,得到的纳米金刚石颗粒在量子光学、纳米尺度磁力计、生物标记与跟踪、磁成像、药物运输等方面具有良好的应用前景。
附图说明
图1为本发明所述生长纳米金刚石的舱体内的结构图;
图2为实施例中生长12h的纳米金刚石的低倍数扫描电镜图片;
图3为实施例中生长12h的纳米金刚石的高倍数扫描电镜图片;
图4为实施例得到的纳米金刚石悬浮液的照片。
具体实施方式
具体实施方式一:本实施方式在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法按照以下步骤实施:
一、Mo衬底处理:将Mo片及Mo托分别在丙酮、酒精和水中超声清洗,得到清洗后的Mo片和Mo托;
二、微波等离子体化学气相沉积(MPCVD):将Mo片放置在MPCVD装置的沉积系统腔体内,Mo托放置在Mo片上,腔体抽真空后,通入H2和CH4,控制H2的流量为180~200sccm,CH4的流量为8~15sccm,微波功率为2~4KW,进行气相沉积,得到带有纳米金刚石的Mo片;
三、取样:关闭沉积系统,冷却后将步骤二中带有纳米金刚石的Mo片放入去离子水中超声,取出Mo片,得到纳米金刚石分散液。
本实施方式使用的衬底为Mo衬底,由Mo片和Mo托组成,沉积时Mo托在Mo片上。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一Mo片及Mo托分别在丙酮、酒精和水中超声清洗15min。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤一中Mo片的厚度为4mm,Mo托的高度为1.5mm。
具体实施方式四:本实施方式与具体实施方式三不同的是Mo片的直径为40~60mm,Mo托的直径为8~15mm。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤二中控制H2的流量为180~200sccm,CH4的流量为8~15sccm,微波功率为3KW。
具体实施方式六:本实施方式与具体实施方式五不同的是步骤二中控制H2的流量为190sccm,CH4的流量为10sccm,微波功率为3KW。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤二中控制沉积系统腔体内压力为12~16KPa。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤二中Mo片上温度为660~700℃。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤二中气相沉积时间为10h~16h。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤三中超声处理时间为10~30min。
实施例:本实施例在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法按照以下步骤实施:
一、Mo衬底处理:将Mo片及Mo托分别在丙酮、酒精和水中超声清洗15min,不使用任何晶种处理,得到清洗后的Mo片和Mo托,其中Mo片的厚度为4mm,Mo托的高度为1.5mm,Mo片的直径为50mm,Mo托的直径为10mm;
二、微波等离子体化学气相沉积(MPCVD):将Mo片(作为衬底)放置在MPCVD装置的沉积系统腔体内,Mo托放置在Mo片上,腔体抽真空后,通入H2和CH4,控制H2的流量为190sccm,CH4的流量为10sccm,微波功率为3KW,压力为14KPa,Mo片上温度为680℃,进行气相沉积12h,得到带有纳米金刚石的Mo片;
三、取样:关闭沉积系统,冷却后将步骤二中带有纳米金刚石的Mo片放入去离子水中超声15min,取出Mo片,将表面沉积的纳米金刚石颗粒制备得到悬浮液。
根据图1所示,本发明MPCVD装置中Mo片和Mo托放置的结构示意图,以Mo片作为衬底,Mo托将等离子体位置提高1.5mm,使等离子体边缘远离Mo片,减小H等离子体刻蚀,通过提高等离子体位置的方法是十分重要且独特的。通入190sccmH2和10sccmCH4,功率为3KW,压力在14KPa左右,Mo片上温度为680℃,沉积时间为12h。沉积结束后取出Mo片,放入大烧杯的去离子水中,超声15min,将表面沉积的纳米颗粒制备成悬浮液后保存。图2为本发明的生长12h的纳米金刚石的低倍数扫描电镜图片,可见不需要特殊处理即可获得分散颗粒,尺寸在300nm左右。由图3可见,为具有规则晶型具有全(111)面的正八面体纳米金刚石。NV色心在(111)面定向,同时(111)面在掺杂方面很有优势,是具有磷和硼掺杂浓度最高的面,正八面体纳米金刚石的制备将促进纳米金刚石器件等领域的发展。由图4(a)可见,为本实施例使用Mo托获得的分散液,图4(b)为不使用钼托获得的分散液,有明显差别。

Claims (10)

1.在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于该方法按照以下步骤实现:
一、Mo衬底处理:将Mo片及Mo托分别在丙酮、酒精和水中超声清洗,得到清洗后的Mo片和Mo托;
二、微波等离子体化学气相沉积:将Mo片放置在MPCVD装置的沉积系统腔体内,Mo托放置在Mo片上,腔体抽真空后,通入H2和CH4,控制H2的流量为180~200sccm,CH4的流量为8~15sccm,微波功率为2~4KW,进行气相沉积,得到带有纳米金刚石的Mo片;
三、取样:关闭沉积系统,冷却后将步骤二中带有纳米金刚石的Mo片放入去离子水中超声,取出Mo片,得到纳米金刚石分散液。
2.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤一Mo片及Mo托分别在丙酮、酒精和水中超声清洗15min。
3.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤一中Mo片的厚度为4mm,Mo托的高度为1.5mm。
4.根据权利要求3所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于Mo片的直径为40~60mm,Mo托的直径为8~15mm。
5.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤二中控制H2的流量为180~200sccm,CH4的流量为8~15sccm,微波功率为3KW。
6.根据权利要求5所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤二中控制H2的流量为190sccm,CH4的流量为10sccm,微波功率为3KW。
7.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤二中控制沉积系统腔体内压力为12~16KPa。
8.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤二中Mo片上温度为660~700℃。
9.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤二中气相沉积时间为10h~16h。
10.根据权利要求1所述的在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,其特征在于步骤三中超声处理时间为10~30min。
CN202210360654.XA 2022-04-07 2022-04-07 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法 Active CN114657533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210360654.XA CN114657533B (zh) 2022-04-07 2022-04-07 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210360654.XA CN114657533B (zh) 2022-04-07 2022-04-07 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法

Publications (2)

Publication Number Publication Date
CN114657533A true CN114657533A (zh) 2022-06-24
CN114657533B CN114657533B (zh) 2023-04-28

Family

ID=82034676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210360654.XA Active CN114657533B (zh) 2022-04-07 2022-04-07 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法

Country Status (1)

Country Link
CN (1) CN114657533B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106367727A (zh) * 2016-09-06 2017-02-01 武汉工程大学 一种利用掩膜法制备带自支撑框架的金刚石真空窗口的方法
CN106637400A (zh) * 2016-09-30 2017-05-10 浙江工业大学 一种Si‑V发光的纳米金刚石晶粒及其制备方法
CN107059120A (zh) * 2017-05-09 2017-08-18 中国电子科技集团公司第四十六研究所 一种利用方形槽镶嵌式衬底托抑制多晶金刚石生长的方法
CN108977881A (zh) * 2018-08-31 2018-12-11 中南钻石有限公司 一种抑制单晶金刚石棱边多晶化的方法
CN110670035A (zh) * 2019-10-11 2020-01-10 陕西科技大学 一种Cu基CVD金刚石热沉片及其制备方法
CN111441037A (zh) * 2019-03-08 2020-07-24 上海征世科技有限公司 一种用于微波等离子体沉积金刚石膜装置中的刀具托盘
US20220084793A1 (en) * 2020-09-13 2022-03-17 Sigma Carbon Technologies System for growth of one or more crystalline materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106367727A (zh) * 2016-09-06 2017-02-01 武汉工程大学 一种利用掩膜法制备带自支撑框架的金刚石真空窗口的方法
CN106637400A (zh) * 2016-09-30 2017-05-10 浙江工业大学 一种Si‑V发光的纳米金刚石晶粒及其制备方法
CN107059120A (zh) * 2017-05-09 2017-08-18 中国电子科技集团公司第四十六研究所 一种利用方形槽镶嵌式衬底托抑制多晶金刚石生长的方法
CN108977881A (zh) * 2018-08-31 2018-12-11 中南钻石有限公司 一种抑制单晶金刚石棱边多晶化的方法
CN111441037A (zh) * 2019-03-08 2020-07-24 上海征世科技有限公司 一种用于微波等离子体沉积金刚石膜装置中的刀具托盘
CN110670035A (zh) * 2019-10-11 2020-01-10 陕西科技大学 一种Cu基CVD金刚石热沉片及其制备方法
US20220084793A1 (en) * 2020-09-13 2022-03-17 Sigma Carbon Technologies System for growth of one or more crystalline materials

Also Published As

Publication number Publication date
CN114657533B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US11359276B2 (en) Self-supporting ultra-fine nanocrystalline diamond thick film
JP5296533B2 (ja) 高成長速度での無色単結晶cvdダイヤモンド
CN110938864B (zh) 一种高效调控cvd单晶金刚石局部区域位错密度的方法
KR101676213B1 (ko) 사파이어 단결정 육성용 도가니 및 사파이어 단결정 육성용 도가니의 제조 방법
CN103354845A (zh) 单晶合成金刚石材料中的位错设计
TW200303580A (en) Production method of sic monitor wafer
WO2020125482A1 (zh) 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置
US20150329989A1 (en) Multi-crystal diamond body
CN108977881A (zh) 一种抑制单晶金刚石棱边多晶化的方法
US8158011B2 (en) Method of fabrication of cubic boron nitride conical microstructures
CN109705857B (zh) 金刚石纳米针结构及其制备方法与应用
Yang et al. Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching
Zhi et al. High quality CVD single crystal diamonds grown on nanorods patterned diamond seed
CN110885968B (zh) 金刚石涂层的制备方法及其制得的金刚石涂层、刀具
CN113089093B (zh) 金刚石半导体结构的形成方法
CN100432287C (zh) 强磁场下金刚石薄膜的制备方法
CN112899774B (zh) 一种天然金刚石同质外延生长单晶金刚石的方法
CN114657533A (zh) 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法
Alexeev et al. Diamond platelets produced by chemical vapor deposition
CN108505018B (zh) 一种生长高质量金刚石颗粒及金刚石薄膜的方法
CN208346252U (zh) 金属网沉积金刚石涂层装置和金属网沉积金刚石涂层系统
CN102787305A (zh) 一种减少化学气相沉积过程中杂质沉积的装置及方法
Chen et al. Growth of diamond nanoplatelets by CVD
Chayahara et al. Development of single-crystalline diamond wafers-Enlargement of crystal size by microwave plasma CVD and wafer fabrication technology
TW201122143A (en) Method for forming smooth diamond thin film.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhu Jiaqi

Inventor after: Liang Ying

Inventor after: Liu Kang

Inventor after: Li Yicun

Inventor after: Zhang Sen

Inventor after: Zhang Yumin

Inventor before: Zhu Jiaqi

Inventor before: Liang Ying

Inventor before: Liu Kang

Inventor before: Li Yicun

Inventor before: Zhang Sen

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231121

Address after: 450008 Intersection of Longyuan East 7th Street, Longhu Central North Road, Zhengdong New District, Zhengzhou City, Henan Province

Patentee after: Zhengzhou Research Institute of Harbin Institute of Technology

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right