CN114656934A - 制冷剂循环装置 - Google Patents

制冷剂循环装置 Download PDF

Info

Publication number
CN114656934A
CN114656934A CN202210340066.XA CN202210340066A CN114656934A CN 114656934 A CN114656934 A CN 114656934A CN 202210340066 A CN202210340066 A CN 202210340066A CN 114656934 A CN114656934 A CN 114656934A
Authority
CN
China
Prior art keywords
hfo
point
refrigerant
mass
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210340066.XA
Other languages
English (en)
Other versions
CN114656934B (zh
Inventor
藤中伸一
田中胜
大久保瞬
板野充司
四元佑树
水野彰人
后藤智行
山田康夫
黑木眸
土屋立美
午坊健司
加留部大辅
高桑达哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/027031 external-priority patent/WO2020017386A1/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to CN202210340066.XA priority Critical patent/CN114656934B/zh
Priority claimed from CN201980058502.0A external-priority patent/CN112654688A/zh
Publication of CN114656934A publication Critical patent/CN114656934A/zh
Application granted granted Critical
Publication of CN114656934B publication Critical patent/CN114656934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/32The mixture being azeotropic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本申请涉及制冷剂循环装置。展示柜具备制冷剂回路和被封入该制冷剂回路的制冷剂。制冷剂回路具有压缩机(121)、散热器(122)、膨胀阀(123)和蒸发器(124)。制冷剂为低GWP制冷剂。

Description

制冷剂循环装置
本申请是分案申请,其原申请的中国国家申请号为201980058502.0,申请日为2019年07月16日,发明名称为“制冷剂循环装置”。
技术领域
涉及冷冻用或冷藏用的制冷剂循环装置。
背景技术
迄今为止,在冷冻用或冷藏用的装置的热循环系统中,多使用R410A、R404A作为制冷剂。R410A是(CH2F2;HFC-32或R32)和五氟乙烷(C2HF5;HFC-125或R125)的二组分混合制冷剂,是准共沸组合物。R404A是R125、R134a、R143a的三组分混合制冷剂,是准共沸组合物。
但是,R410A的全球变暖潜能值(GWP)为2088,R404A的全球变暖潜能值(GWP)为3920。近年来,由于对地球温室化的担忧的提高,所以倾向于使用GWP低的制冷剂。
因此,例如在专利文献1(国际公开第2015/141678号)中,提出了可替代R410A的低GWP混合制冷剂。另外,在专利文献2(日本特开2018-184597号公报)中提出了各种可代替R404A的低GWP混合制冷剂。
发明内容
发明所要解决的课题
迄今为止,对于应当将GWP小的制冷剂中的哪种制冷剂用于冷冻用或冷藏用的制冷剂循环装置,尚未进行任何研究。
用于解决课题的手段
第1观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。制冷剂至少包含1,2-二氟乙烯。
第2观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,制冷剂包含反式-1,2-二氟乙烯(HFO-1132(E))、三氟乙烯(HFO-1123)和2,3,3,3-四氟-1-丙烯(R1234yf)。
第3观点的冷冻用或冷藏用的制冷剂循环装置为第2观点的制冷剂循环装置,其中,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点D(87.6,0.0,12.4)、
点G(18.2,55.1,26.7)、
点H(56.7,43.3,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OD、DG、GH和HO所包围的图形的范围内或上述线段OD、DG和GH上(其中,点O和点H除外),
上述线段DG由
坐标(0.0047y2-1.5177y+87.598,y,-0.0047y2+0.5177y+12.402)
所表示,
上述线段GH由
坐标(-0.0134z2-1.0825z+56.692,0.0134z2+0.0825z+43.308,z)
所表示,并且
上述线段HO和OD为直线。
第4观点的冷冻用或冷藏用的制冷剂循环装置为第2观点的制冷剂循环装置,其中,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点L(72.5,10.2,17.3)、
点G(18.2,55.1,26.7)、
点H(56.7,43.3,0.0)和
点I(72.5,27.5,0.0)
这4个点分别连结而成的线段LG、GH、HI和IL所包围的图形的范围内或上述线段LG、GH和IL上(其中,点H和点I除外),
上述线段LG由
坐标(0.0047y2-1.5177y+87.598,y,-0.0047y2+0.5177y+12.402)
所表示,
上述线段GH由
坐标(-0.0134z2-1.0825z+56.692,0.0134z2+0.0825z+43.308,z)
所表示,并且,
上述线段HI和IL为直线。
第5观点的冷冻用或冷藏用的制冷剂循环装置为第2观点至第4观点中的任一种制冷剂循环装置,其中,上述制冷剂还含有二氟甲烷(R32)。
第6观点的冷冻用或冷藏用的制冷剂循环装置为第5观点的制冷剂循环装置,其中,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R1234yf以及R32的以它们的总和为基准的质量%分别设为x、y和z以及a时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,
在0<a≤10.0时,坐标(x,y,z)在将
点A(0.02a2-2.46a+93.4,0,-0.02a2+2.46a+6.6)、
点B’(-0.008a2-1.38a+56,0.018a2-0.53a+26.3,-0.01a2+1.91a+17.7)、
点C(-0.016a2+1.02a+77.6,0.016a2-1.02a+22.4,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外),
在10.0<a≤16.5时,坐标(x,y,z)在将
点A(0.0244a2-2.5695a+94.056,0,-0.0244a2+2.5695a+5.944)、
点B’(0.1161a2-1.9959a+59.749,0.014a2-0.3399a+24.8,-0.1301a2+2.3358a+15.451)、
点C(-0.0161a2+1.02a+77.6,0.0161a2-1.02a+22.4,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外),或者,
在16.5<a≤21.8时,坐标(x,y,z)在将
点A(0.0161a2-2.3535a+92.742,0,-0.0161a2+2.3535a+7.258)、
点B’(-0.0435a2-0.0435a+50.406,-0.0304a2+1.8991a-0.0661,0.0739a2-1.8556a+49.6601)、
点C(-0.0161a2+0.9959a+77.851,0.0161a2-0.9959a+22.149,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外)。
第7观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂相对于该制冷剂的整体包含合计为99.5质量%以上的HFO-1132(E)和HFO-1123,并且,
该制冷剂相对于该制冷剂的整体包含62.5质量%~72.5质量%的HFO-1132(E)。
第8观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、R32和R1234yf,
在上述制冷剂中,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点A(71.1,0.0,28.9)、
点C(36.5,18.2,45.3)、
点F(47.6,18.3,34.1)和
点D(72.0,0.0,28.0)
这4个点分别连结而成的线段AC、CF、FD以及DA所包围的图形的范围内或上述线段上,
上述线段AC由
坐标(0.0181y2-2.2288y+71.096,y,-0.0181y2+1.2288y+28.904)
所表示,
上述线段FD由
坐标(0.02y2-1.7y+72,y,-0.02y2+0.7y+28)
所表示,并且,
上述线段CF和DA为直线。
第9观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、R32和R1234yf,
在上述制冷剂中,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点A(71.1,0.0,28.9)、
点B(42.6,14.5,42.9)、
点E(51.4,14.6,34.0)和
点D(72.0,0.0,28.0)
这4个点分别连结而成的线段AB、BE、ED以及DA所包围的图形的范围内或上述线段上,
上述线段AB由
坐标(0.0181y2-2.2288y+71.096,y,-0.0181y2+1.2288y+28.904)
所表示,
上述线段ED由
坐标(0.02y2-1.7y+72,y,-0.02y2+0.7y+28)
所表示,并且,
上述线段BE和DA为直线。
第10观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、R32和R1234yf,
在上述制冷剂中,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点G(77.5,6.9,15.6)、
点I(55.1,18.3,26.6)和
点J(77.5.18.4,4.1)
这3个点分别连结而成的线段GI、IJ和JK所包围的图形的范围内或上述线段上,
上述线段GI由
坐标(0.02y2-2.4583y+93.396,y,-0.02y2+1.4583y+6.604)
所表示,并且,
上述线段IJ和JK为直线。
第11观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、R32和R1234yf,
在上述制冷剂中,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点G(77.5,6.9,15.6)、
点H(61.8,14.6,23.6)和
点K(77.5,14.6,7.9)
这3个点分别连结而成的线段GH、HK和KG所包围的图形的范围内或上述线段上,
上述线段GH由
坐标(0.02y2-2.4583y+93.396,y,-0.02y2+1.4583y+6.604)
所表示,并且,
上述线段HK和KG为直线。
第12观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、HFO-1123和R32,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C’(56.7,43.3,0.0)、
点D’(52.2,38.3,9.5)、
点E’(41.8,39.8,18.4)和
点A’(81.6,0.0,18.4)
这5个点分别连结而成的线段OC’、C’D’、D’E’、E’A’和A’O所包围的图形的范围内或上述线段C’D’、D’E’和E’A’上(其中,点C’和A’除外),
上述线段C’D’由
坐标(-0.0297z2-0.1915z+56.7,0.0297z2+1.1915z+43.3,z)
所表示,
上述线段D’E’由
坐标(-0.0535z2+0.3229z+53.957,0.0535z2+0.6771z+46.043,z)
所表示,并且,
上述线段OC’、E’A’和A’O为直线。
第13观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、HFO-1123和R32,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C(77.7,22.3,0.0)、
点D(76.3,14.2,9.5)、
点E(72.2,9.4,18.4)和
点A’(81.6,0.0,18.4)
这5个点分别连结而成的线段OC、CD、DE、EA’和A’O所包围的图形的范围内或上述线段CD、DE和EA’上(其中,点C和A’除外),
上述线段CDE由
坐标(-0.017z2+0.0148z+77.684,0.017z2+0.9852z+22.316,z)
所表示,并且,
上述线段OC、EA’和A’O为直线。
第14观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、HFO-1123和R32,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C’(56.7,43.3,0.0)、
点D’(52.2,38.3,9.5)和
点A(90.5,0.0,9.5)
这5个点分别连结而成的线段OC’、C’D’、D’A和AO所包围的图形的范围内或上述线段C’D’和D’A上(其中,点C’和A除外),
上述线段C’D’由
坐标(-0.0297z2-0.1915z+56.7,0.0297z2+1.1915z+43.3,z)
所表示,并且,
上述线段OC’、D’A和AO为直线。
第15观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含HFO-1132(E)、HFO-1123和R32,
在上述制冷剂中,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C(77.7,22.3,0.0)、
点D(76.3,14.2,9.5)、
点A(90.5,0.0,9.5)
这5个点分别连结而成的线段OC、CD、DA和AO所包围的图形的范围内或上述线段CD和DA上(其中,点C和A除外),
上述线段CD由
坐标(-0.017z2+0.0148z+77.684,0.017z2+0.9852z+22.316,z)
所表示,并且,
上述线段OC、DA和AO为直线。
第16观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含CO2、以及反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(R32)和2,3,3,3-四氟-1-丙烯(R1234yf),
在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,
在0<w≤1.2时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点L(51.7,28.9,19.4-w)
点B”(-1.5278w2+2.75w+50.5,0.0,1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317,0.0,1.9167w+59.683)
点C(0.0,-4.9167w+58.317,3.9167w+41.683)
这7个点分别连结而成的曲线IJ、曲线JK和曲线KL、以及直线LB”、直线B”D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线B”D和直线CI上的点除外),
在1.2<w≤4.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点L(51.7,28.9,19.4-w)
点B”(51.6,0.0,48.4-w)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这7个点分别连结而成的曲线IJ、曲线JK和曲线KL、以及直线LB”、直线B”D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线B”D和直线CI上的点除外),
在4.0<w≤7.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点L(51.7,28.9,19.4-w)
点B”(51.6,0.0,48.4-w)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这7个点分别连结而成的曲线IJ、曲线JK和曲线KL、以及直线LB”、直线B”D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线B”D和直线CI上的点除外),并且
曲线IJ由
坐标(x,0.0236x2-1.716x+72,-0.0236x2+0.716x+28-w)
所表示,
曲线JK由
坐标(x,0.0095x2-1.2222x+67.676,-0.0095x2+0.2222x+32.324-w)
所表示,
曲线KL由
坐标(x,0.0049x2-0.8842x+61.488,-0.0049x2-0.1158x+38.512)
所表示。
第17观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含CO2、以及反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(R32)和2,3,3,3-四氟-1-丙烯(R1234yf),
在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,
在0<w≤1.2时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点F(-0.0833w+36.717,-4.0833w+5.1833,3.1666w+58.0997)
点C(0.0,-4.9167w+58.317,3.9167w+41.683)
这5个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在1.2<w≤1.3时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点F(36.6,-3w+3.9,2w+59.5)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这5个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在1.3<w≤4.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点B’(36.6,0.0,-w+63.4)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这6个点分别连结而成的曲线IJ和曲线JK、以及直线KB’、直线B’D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在4.0<w≤7.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点B’(36.6,0.0,-w+63.4)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这6个点分别连结而成的曲线IJ和曲线JK、以及直线KB’、直线B’D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),并且,
曲线IJ由
坐标(x,0.0236x2-1.716x+72,-0.0236x2+0.716x+28-w)
所表示,
曲线JK由
坐标(x,0.0095x2-1.2222x+67.676,-0.0095x2+0.2222x+32.324-w)
所表示。
第18观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含CO2、以及R32、HFO-1132(E)和R1234yf,
在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,
在0<w≤1.2时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点E(18.2,-1.1111w2-3.1667w+31.9,1.1111w2+2.1667w+49.9)
点C(0.0,-4.9167w+58.317,3.9167w+41.683)
这4个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在1.2<w≤4.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点E(-0.0365w+18.26,0.0623w2-4.5381w+31.856,-0.0623w2+3.5746w+49.884)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这4个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在4.0<w≤7.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点E(18.1,0.0444w2-4.3556w+31.411,-0.0444w2+3.3556w+50.489)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这4个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),并且,
曲线IJ由
坐标(x,0.0236x2-1.716x+72,-0.0236x2+0.716x+28-w)
所表示。
第19观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含CO2、以及R32、HFO-1132(E)和R1234yf,
在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,
在0<w≤0.6时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2+1.4167w+26.2,-1.25w2+0.75w+51.6)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点P(51.7,1.1111w2+20.5,-1.1111w2-w+27.8)
点B”(-1.5278w2+2.75w+50.5,0.0,1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317,0.0,1.9167w+59.683)
这5个点分别连结而成的曲线GO和曲线OP、以及直线PB”、直线B”D和直线DG所包围的图形的范围内或上述线段上(其中,直线B”D上的点除外),
在0.6<w≤1.2时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2+1.4167w+26.2,-1.25w2+0.75w+51.6)
点N(18.2,0.2778w2+3w+27.7,-0.2778w2-4w+54.1)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点P(51.7,1.1111w2+20.5,-1.1111w2-w+27.8)
点B”(-1.5278w2+2.75w+50.5,0.0,1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317,0.0,1.9167w+59.683)
这6个点分别连结而成的曲线GN、曲线NO、以及曲线OP、以及直线PB”、直线B”D和直线DG所包围的图形的范围内或上述线段上(其中,直线B”D上的点除外),并且,
曲线GO在0<w≤0.6时由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
曲线GN在0.6<w≤1.2时由
坐标(x,(0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824,100-w-x-y)
所表示,
曲线NO在0.6<w≤1.2时由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
曲线OP在0<w≤1.2时由
坐标(x,(0.0074w2-0.0133w+0.0064)x2+(-0.5839w2+1.0268w-0.7103)x+11.472w2-17.455w+40.07,100-w-x-y)
所表示,
在1.2<w≤4.0时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+44.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点O(36.8,-0.1392w2+1.4381w+24.475,0.1392w2-2.4381w+38.725)
点P(51.7,-0.2381w2+1.881w+20.186,0.2381w2-2.881w+28.114)
点B”(51.6,0.0,-w+48.4)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这8个点分别连结而成的曲线MW、曲线WN、曲线NO和曲线OP、以及直线PB”、直线B”D、直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线B”D和直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
曲线NO由
坐标(x,(-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078,100-w-x-y)
所表示,
曲线OP由
坐标(x,(-0.000463w2+0.0024w-0.0011)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096,100-w-x-y)
所表示,
在4.0<w≤7.0时,坐标(x,y,z)在将
点M(0.0,-0.0667w2+0.8333w+58.133,0.0667w2-1.8333w+41.867)
点W(10.0,-0.0667w2+1.1w+39.267,0.0667w2-2.1w+50.733)
点N(18.2,-0.0889w2+1.3778w+31.411,0.0889w2-2.3778w+50.389)
点O(36.8,-0.0444w2+0.6889w+25.956,0.0444w2-1.6889w+37.244)
点P(51.7,-0.0667w2+0.8333w+21.633,0.0667w2-1.8333w+26.667)
点B”(51.6,0.0,-w+48.4)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这8个点分别连结而成的曲线MW、曲线WN、曲线NO和曲线OP、以及直线PB”、直线B”D、直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线B”D和直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103,100-w-x-y)
所表示,
曲线WN由
坐标(x,(-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383,100-w-x-y)
所表示,
曲线NO由
坐标(x,0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327,100-w-x-y)
所表示,
曲线OP由
坐标(x,(-0.0006258w2+0.0066w-0.0153)x2+(0.0516w2-0.5478w+0.9894)x-1.074w2+11.651w+10.992,100-w-x-y)
所表示。
第20观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含CO2、以及R32、HFO-1132(E)和R1234yf,
在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,
在0<w≤0.6时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2-1.4167w+26.2,-1.25w2+3.5834w+51.6)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717,-4.0833w+5.1833,3.1666w+58.0997)
这3个点分别连结而成的曲线GO、以及直线OF和直线FG所包围的图形的范围内或上述线段上,并且,
曲线GO由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
在0.6<w≤1.2时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2-1.4167w+26.2,-1.25w2+3.5834w+51.6)
点N(18.2,0.2778w2+3.0w+27.7,-0.2.778w2-4.0w+54.1)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717,-4.0833w+5.1833,3.1666w+58.0997)
这4个点分别连结而成的曲线GN和曲线NO、以及直线OF和直线FG所包围的图形的范围内或上述线段上,并且,
曲线GN在0.6<w≤1.2时由
坐标(x,(0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824,100-w-x-y)
所表示,
曲线NO在0.6<w≤1.2时由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
在1.2<w≤1.3时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+34.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点O(36.8,-0.1392w2+1.4381w+24.475,0.1392w2-2.4381w+38.725)
点F(36.6,-3w+3.9,2w+59.5)
点C(0.1081w2-5.169w+58.447,0.0,-0.1081w2+4.169w+41.553)
这6个点分别连结而成的曲线MW、曲线WN和曲线NO、以及直线OF和直线FC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
曲线NO由
坐标(x,(-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078,100-w-x-y)
所表示,
在1.3<w≤4.0时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+34.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点O(36.8,-0.1392w2+1.4381w+24.475,0.1392w2-2.4381w+38.725)
点B’(36.6,0.0,-w+63.4)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这7个点分别连结而成的曲线MW、曲线WN和曲线NO、以及直线OB’、直线B’D、以及直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
曲线NO由
坐标(x,(-0.00062w2+0.0036w+0.0037)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096,100-w-x-y)
所表示,
在4.0<w≤7.0时,坐标(x,y,z)在将
点M(0.0,-0.0667w2+0.8333w+58.133,0.0667w2-1.8333w+41.867)
点W(10.0,-0.0667w2+1.1w+39.267,0.0667w2-2.1w+50.733)
点N(18.2,-0.0889w2+1.3778w+31.411,0.0889w2-2.3778w+50.389)
点O(36.8,-0.0444w2+0.6889w+25.956,0.0444w2-1.6889w+37.244)
点B’(36.6,0.0,-w+63.4)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这7个点分别连结而成的曲线MW、曲线WN和曲线NO、以及直线OB’、直线B’D、以及直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103,100-w-x-y)
所表示,
曲线WN由
坐标(x,(-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383,100-w-x-y)
所表示,
曲线NO由
坐标(x,(0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327,100-w-x-y)
所表示。
第21观点的冷冻用或冷藏用的制冷剂循环装置为第1观点的制冷剂循环装置,其中,
上述制冷剂包含CO2、以及R32、HFO-1132(E)和R1234yf,
在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,
在1.2<w≤4.0时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+34.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点E(-0.0365w+18.26,0.0623w2-4.5381w+31.856,-0.0623w2+3.5746w+49.884)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这5个点分别连结而成的曲线MW和曲线WN、以及直线NE、直线EC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
在4.0<w≤7.0时,坐标(x,y,z)在将
点M(0.0,-0.0667w2+0.8333w+58.133,0.0667w2-1.8333w+41.867)
点W(10.0,-0.0667w2+1.1w+39.267,0.0667w2-2.1w+50.733)
点N(18.2,-0.0889w2+1.3778w+31.411,0.0889w2-2.3778w+50.389)
点E(18.1,0.0444w2-4.3556w+31.411,-0.0444w2+3.3556w+50.489)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这5个点分别连结而成的曲线MW和曲线WN、以及直线NE、直线EC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103,100-w-x-y)
所表示,
曲线WN由
坐标(x,(-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383,100-w-x-y)
所表示。
第22观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。制冷剂至少包含反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(HFC-32)和2,3,3,3-四氟丙烯(HFO-1234yf)。
第23观点的冷冻用或冷藏用的制冷剂循环装置为第22观点的制冷剂循环装置,其中,上述制冷剂含有反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(HFC-32)和2,3,3,3-四氟丙烯(HFO-1234yf),该三成分的总浓度相对于上述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9质量%)和
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2质量%)
这4个点的图形所包围的区域的范围内。
第24观点的冷冻用或冷藏用的制冷剂循环装置为第23观点的制冷剂循环装置,其中,上述制冷剂含有HFO-1132(E)、HFC-32和HFO-1234yf,该三成分的总浓度相对于上述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5质量%)和
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6质量%)
这4个点的图形所包围的区域的范围内。
第25观点的冷冻用或冷藏用的制冷剂循环装置为第22观点的制冷剂循环装置,其中,上述制冷剂含有HFO-1132(E)、HFC-32和HFO-1234yf,该三成分的总浓度相对于上述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2质量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8质量%)和
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3质量%)
这5个点的图形所包围的区域的范围内。
第26观点的冷冻用或冷藏用的制冷剂循环装置为第23观点~第25观点中的任一种制冷剂循环装置,其中,上述制冷剂仅由HFO-1132(E)、HFC-32和HFO-1234yf构成。
第27观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132(E)、HFO-1123和HFO-1234yf,该三成分的总浓度相对于上述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0质量%)和
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4质量%)
这5个点的图形所包围的区域的范围内。
第28观点的冷冻用或冷藏用的制冷剂循环装置为第27观点的制冷剂循环装置,其中,上述制冷剂含有HFO-1132(E)、HFO-1123和HFO-1234yf,该三成分的总浓度相对于上述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这5个点的图形所包围的区域的范围内。
第29观点的冷冻用或冷藏用的制冷剂循环装置为第27观点或第28观点的制冷剂循环装置,其中,上述制冷剂含有HFO-1132(E)、HFO-1123和HFO-1234yf,该三成分的总浓度相对于上述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8质量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这6个点的图形所包围的区域的范围内。
第30观点的冷冻用或冷藏用的制冷剂循环装置为第27观点~第29观点中的任一种制冷剂循环装置,其中,上述制冷剂仅由HFO-1132(E)、HFO-1123和HFO-1234yf构成。
第31观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132(E)和HFO-1234yf,
相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为35.0~65.0质量%,
HFO-1234yf的含有比例为65.0~35.0质量%。
第32观点的冷冻用或冷藏用的制冷剂循环装置为第31观点的制冷剂循环装置,其中,相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为41.3~53.5质量%,
HFO-1234yf的含有比例为58.7~46.5质量%。
第33观点的冷冻用或冷藏用的制冷剂循环装置为第31观点或第32观点的制冷剂循环装置,其中,上述制冷剂仅由HFO-1132(E)和HFO-1234yf构成。
第34观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132(E)和HFO-1234yf,
相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为40.5~49.2质量%,
HFO-1234yf的含有比例为59.5~50.8质量%。
第35观点的冷冻用或冷藏用的制冷剂循环装置为第34观点的制冷剂循环装置,其中,上述制冷剂仅由HFO-1132(E)和HFO-1234yf构成。
第36观点的冷冻用或冷藏用的制冷剂循环装置为第34观点或第35观点的制冷剂循环装置,其中,蒸发温度为-75~-5℃。
第37观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132(E)和HFO-1234yf,
相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为31.1~39.8质量%,
HFO-1234yf的含有比例为68.9~60.2质量%。
第38观点的冷冻用或冷藏用的制冷剂循环装置为第37观点的制冷剂循环装置,其中,相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为31.1~37.9质量%,
HFO-1234yf的含有比例为68.9~62.1质量%。
第39观点的冷冻用或冷藏用的制冷剂循环装置为第37观点或第38观点的制冷剂循环装置,其中,上述制冷剂仅由HFO-1132(E)和HFO-1234yf构成。
第40观点的冷冻用或冷藏用的制冷剂循环装置为第37观点~第39观点中的任一种制冷剂循环装置,蒸发温度为-75~-5℃。
第41观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132(E)和HFO-1234yf,
相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为21.0~28.4质量%,
HFO-1234yf的含有比例为79.0~71.6质量%。
第42观点的冷冻用或冷藏用的制冷剂循环装置为第41观点的制冷剂循环装置,其中,上述制冷剂仅由HFO-1132(E)和HFO-1234yf构成。
第43观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132(E)和HFO-1234yf,
相对于HFO-1132(E)和HFO-1234yf的总质量,
HFO-1132(E)的含有比例为12.1~72.0质量%,
HFO-1234yf的含有比例为87.9~28.0质量%。
第44观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂含有HFO-1132a和四氟乙烯(FO-1114)中的至少一种、以及HFC-32、HFO-1234yf。
第45观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂含有HFO-1132a。
第46观点的冷冻用或冷藏用的制冷剂循环装置为第45观点的制冷剂循环装置,其中,将HFC-32、HFO-1234yf和HFO-1132a的总量设为100质量%,上述制冷剂含有15.0~24.0质量%的HFC-32以及1.0~7.0质量%的HFO-1132a。
第47观点的冷冻用或冷藏用的制冷剂循环装置为第45观点的制冷剂循环装置,其中,将HFC-32、HFO-1234yf和HFO-1132a的总量设为100质量%,上述制冷剂含有19.5~23.5质量%的HFC-32以及3.1~3.7质量%的HFO-1132a。
第48观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,在将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点R(21.80,3.95,74.25)、
点S(21.80,3.05,75.15)以及
点T(20.95,75.30,3.75)、
这3个点分别连结而成的线段RS、ST和TR所包围的三角形的范围内或上述线段上。
第49观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,在将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点L(74.0,19.9,6.1)、
点F(49.1,25.9,25.0)、
点G(0.0,48.6,51.4)、
点O(0.0,0.0,100)以及
点B(73.9,0.0,26.1)
这5个点分别连结而成的线段LF、FG、GO、OB和BL所包围的图形的范围内或上述线段上(其中,不包括线段GO和OB上),
上述线段LF由
坐标(y=0.0021x2-0.4975x+45.264)所表示,
上述线段FG由
坐标(y=0.0031x2-0.6144x+48.6)所表示,并且,
上述线段GO、OB和BL为直线。
第50观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,在将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点P(59.1,23.2,17.7)、
点F(49.1,25.9,25.0)、
点G(0.0,48.6,51.4)、
点O(0.0,0.0,100)以及
点B’(59.0,0.0,40.2)
这5个点分别连结而成的线段PF、FG、GO、OB’和B’P所包围的图形的范围内或上述线段上(其中,不包括线段GO和OB’上),
上述线段PF由
坐标(y=0.0021x2-0.4975x+45.264)所表示,
上述线段FG由
坐标(y=0.0031x2-0.6144x+48.6)所表示,并且,
上述线段GO、OB’和B’P为直线。
第51观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,在将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点M(74.0,19.5,6.5)、
点I(62.9,15.5,21.6)、
点J(33.5,0.0,66.5)以及
点B(73.9,0.0,26.1)
这4个点分别连结而成的线段MI、IJ、JB和BM所包围的图形的范围内或上述线段上(其中,不包括线段JB上),
上述线段MI由
坐标(y=0.006x2+1.1837x-35.264)所表示,
上述线段IJ由
坐标(y=0.0083x2-0.2719x-0.1953)所表示,并且,
上述线段JB和BM为直线。
第52观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,在将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点Q(59.1,12.7,28.2)、
点J(33.5,0.0,66.5)以及
点B’(59.0,0.0,40.2)
这3个点分别连结而成的线段QJ、JB’和B’Q所包围的图形的范围内或上述线段上(其中,不包括线段JB’上),
上述线段QJ由
坐标(y=0.0083x2-0.2719x-0.1953)所表示,并且,
上述线段JB’和B’Q为直线。
第53观点的冷冻用或冷藏用的制冷剂循环装置为第44观点的制冷剂循环装置,其中,上述制冷剂包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,在将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点Q(59.1,12.7,28.2)、
点U(59.0,5.5,35.5)以及
点V(52.5,8.4,39.1)
这3个点分别连结而成的线段QU、UV和VQ所包围的图形的范围内或上述线段上,
上述线段VQ由
坐标(y=0.0083x2-0.2719x-0.1953)所表示,并且,
上述线段UV由
坐标(y=0.0026x2-0.7385x+39.946)所表示,
上述线段QU为直线。
第54观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂包含二氟甲烷(R32)、二氧化碳(CO2)、五氟乙烷(R125)、1,1,1,2-四氟乙烷(R134a)以及2,3,3,3-四氟丙烯(R1234yf),
在上述制冷剂中,以R32、CO2、R125、R134a和R1234yf的总和为基准、将R32的质量%设为a、CO2的质量%设为b、R125的质量%设为c1、R134a的质量%设为c2、R125和R134a的合计质量%设为c、R1234yf的质量%设为x、c1/(c1+c2)设为r的情况下,
以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中,
1-1-1)在43.8≥x≥41、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.25~0.5((-2.2857x+87.314)r2+(1.7143x-55.886)r+(-0.9643x+55.336),(2.2857x-112.91)r2+(-1.7143x+104.69)r+(-0.25x+11.05),100-a-b-x)、
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.25~0.5Q和QA上的点除外),或者,
1-1-2)在43.8≥x≥41、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-c,0.0)、
点Or=0.5~1.0((-0.2857x+8.5143)r2+(0.5x-10.9)+(-0.8571x+52.543),(-0.2857x+4.5143)r2+(0.5x+0.9)r+(-0.7143x+33.586),100-a-b-x)、
点Dr=0.5~1.0(0.0,(-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.5~1.0Q和QA上的点除外),或者,
1-2-1)在46.5≥x≥43.8、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.25~0.5((1.1852x-64.711)r2+(-0.7407x+51.644)r+(-0.5556x+37.433),(-2.3704x+91.022)r2+(2.0741x-61.244)r+(-0.963x+42.278),100-a-b-x)、
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.25~0.5Q和QA上的点除外),或者,
1-2-2)在46.5≥x≥43、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.5~1.0((0.2963x-16.978)r2+(-0.3704x+27.222)r+(-0.5185x+37.711),-8.0r2+22.8r+(-0.5185x+25.011),100-a-b-x)、
点Dr=0.5~1.0(0.0,-12.8r2+37.2r+(-x+54.3),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.5~1.0Q和QA上的点除外),
1-3-1)在50≥x≥46.5、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.25~0.5(-9.6r2+17.2r+(-0.6571x+42.157),-19.2r2+(0.2286x+24.571)r+(-0.6286x+26.729),100-a-b-x)、
点Dr=0.25~0.5(0.0,(0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.25~0.5Q和QA上的点除外),或者,
1-3-2)在50≥x≥46.5、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.5~1.0((-0.2286x+7.4286)r2+(0.4x-8.6)r+(-0.8x+50.8),(0.2286x-18.629)r2+(-0.2857x+36.086)r+(-0.4286x+20.829),100-a-b-x)、
点Dr=0.5~1.0(0.0,(0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329),100-b-x)和点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.5~1.0Q和QA上的点除外)。
第55观点的冷冻用或冷藏用的制冷剂循环装置具备制冷剂回路和被封入该制冷剂回路中的制冷剂。制冷剂回路具有压缩机、散热器、减压部和吸热器。上述制冷剂包含R32、CO2、R125、R134a和R1234yf,
在上述制冷剂中,以R32、CO2、R125、R134a和R1234yf的总和为基准、将R32的质量%设为a、CO2的质量%设为b、R125的质量%设为c1、R134a的质量%设为c2、R125和R134a的合计质量%设为c、R1234yf的质量%设为x、c1/(c1+c2)设为r的情况下,
以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中,
2-1-1)在43.8≥x≥41、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点Fr=0.25~0.5(0.0,(-1.1429x+37.257)r2+(1.2857x-38.714)r-(-1.7143x+106.89),100-b-x)、
点Pr=0.25~0.5((-1.1429x+34.057)r2+(1.0x-21.0)r+(-0.4643x+27.636),(2.2857x-119.31)r2+(-2.0x+122.0)r+(-0.3929x+19.907),100-a-b-x)和
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.25~ 0.5Fr=0.25~0.5上的点除外),或者,
2-1-2)在43.8≥x≥41、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点Fr=0.5~1.0(0.0,(3.7143x-159.49)r2+(-5.0714x+222.53)r+(0.25x+25.45),100-b-x)、
点Pr=0.5~1.0((3.4286x-138.17)r2+(-5.4286x+203.57)+(1.6071x-41.593),(-2.8571x+106.74)r2+(4.5714x-143.63)r+(-2.3929x+96.027),100-a-b-x)和
点Dr=0.5~1.0(0.0,(-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.5~ 1.0Fr=0.5~1.0上的点除外),或者,
2-2-1)在46.5≥x≥43、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点Fr=0.25~0.5(0.0,(9.4815x-428.09)r2+(-7.1111x+329.07)r+(-0.2593x+43.156),100-b-x)、
点Pr=0.25~0.5((-8.2963x+347.38)r2+(4.8889x-191.33)r+(-0.963x+49.478),(7.1111x-330.67)r2+(-4.1481x+216.09)r+(-0.2593x+14.056),100-a-b-x)和
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.25~ 0.5Fr=0.25~0.5上的点除外),或者,
2-2-2)在46.5≥x≥43、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点Fr=0.5~1.0(0.0,(-4.7407x+210.84)r2+(6.963x-304.58)r+(-3.7407x+200.24),100-b-x)、
点Pr=0.5~1.0((0.2963x-0.9778)r2+(0.2222x-43.933)r+(-0.7778x+62.867),(-0.2963x-5.4222)r2+(-0.0741x+59.844)r+(-0.4444x+10.867),100-a-b-x)和
点Dr=0.5~1.0(0.0,-12.8r2+37.2r+(-x+54.3),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.5~ 1.0Fr=0.5~1.0上的点除外),或者,
2-3-1)在50≥x≥46.5、并且0.37≥r≥0.25时,坐标(a,b,c)在将
点Fr=0.25~0.37(0.0,(-35.714x+1744.0)r2+(23.333x-1128.3)r+(-5.144x+276.32),100-b-x)、
点Pr=0.25~0.37((11.905x-595.24)r2+(-7.6189x+392.61)r+(0.9322x-39.027),(-27.778x+1305.6)r2+(17.46x-796.35)r+(-3.5147x+166.48),100-a-b-x)和
点Dr=0.25~0.37(0.0,(0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.25~ 0.37Fr=0.25~0.37上的点除外),或者,
2-3-2)在50≥x≥46.5、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点Fr=0.5~1.0(0.0,(2.2857x-115.89)r2+(-3.0857x+162.69)r+(-0.3714x+43.571),100-b-x)、
点Pr=0.5~1.0((-3.2x+161.6)r2+(4.4571x-240.86)r+(-2.0857x+123.69),(2.5143x-136.11)r2+(-3.3714x+213.17)r+(0.5429x-35.043),100-a-b-x)和
点Dr=0.5~1.0(0.0,(0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.5~ 1.0Fr=0.5~1.0上的点除外)。
第56观点的冷冻用或冷藏用的制冷剂循环装置为第54观点或第55观点的制冷剂循环装置,其中,上述制冷剂相对于上述制冷剂整体含有合计为99.5质量%以上的R32、CO2、R125、R134a和R1234yf。
附图说明
图1A是燃烧性试验中所用的装置的示意图。
图1B是在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中示出点A~M和O以及将它们相互连结而成的线段的图。
图1C是在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1D是在HFO-1132(E)、HFO-1123和R1234yf的总和为95质量%(R32含有比例为5质量%)的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1E是在HFO-1132(E)、HFO-1123和R1234yf的总和为90质量%(R32含有比例为10质量%)的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1F是在HFO-1132(E)、HFO-1123和R1234yf的总和为85.7质量%(R32含有比例为14.3质量%)的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1G是在HFO-1132(E)、HFO-1123和R1234yf的总和为83.5质量%(R32含有比例为16.5质量%)的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1H是在HFO-1132(E)、HFO-1123和R1234yf的总和为80.8质量%(R32含有比例为19.2质量%)的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1I是在HFO-1132(E)、HFO-1123和R1234yf的总和为78.2质量%(R32含有比例为21.8质量%)的三成分组成图中示出点A~C、B’和O以及将它们相互连结而成的线段的图。
图1J是在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中示出点A~K和O~R以及将它们相互连结而成的线段的图。
图1K是在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中示出点A~D、A’~D’和O以及将它们相互连结而成的线段的图。
图1L是在R32、HFO-1132(E)和R1234yf的总和为100质量%的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1M是在R32、HFO-1132(E)和R1234yf的总和为99.4质量%(CO2含有比例为0.6质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1N是在R32、HFO-1132(E)和R1234yf的总和为98.8质量%(CO2含有比例为1.2质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1O是在R32、HFO-1132(E)和R1234yf的总和为98.7质量%(CO2含有比例为1.3质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1P是在R32、HFO-1132(E)和R1234yf的总和为97.5质量%(CO2含有比例为2.5质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1Q是在R32、HFO-1132(E)和R1234yf的总和为96质量%(CO2含有比例为4质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1R是在R32、HFO-1132(E)和R1234yf的总和为94.5质量%(CO2含有比例为5.5质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1S是在R32、HFO-1132(E)和R1234yf的总和为93质量%(CO2含有比例为7质量%)的三成分组成图中示出规定本发明的制冷剂的点和线段的图。
图1T是用于辨别燃烧性(可燃或不可燃)的实验装置的示意图。
图2A是示出反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(HFC-32)和2,3,3,3-四氟丙烯(HFO-1234yf)的三角组成图中的制冷剂A1所含有的HFO-1132(E)、HFC-32和HFO-1234yf的质量比(通过点A、B、C和D这4个点的图形所包围的区域、以及通过点A、B、E和F这4个点的图形所包围的区域)的图。
图2B是示出HFO-1132(E)、HFC-32和HFO-1234yf的三角组成图中的制冷剂A2所含有的HFO-1132(E)、HFC-32和HFO-1234yf的质量比(通过点P、B、Q、R和S这5个点的图形所包围的区域)的图。
图2C是示出HFO-1132(E)、HFO-1123和HFO-1234yf的三角组成图中的制冷剂B所含有的HFO-1132(E)、HFO-1123和HFO-1234yf的质量比(通过点A、B、C、D和E这5个点的图形所包围的区域、通过点A、B、C、F和G这5个点的图形所包围的区域、以及通过点A、B、C、H、I和G这6个点的图形所包围的区域)的图。
图2D是用于说明本发明的第1方式和第2方式的制冷剂D的组成的三成分组成图。在图2D的放大图中,第1方式的制冷剂D的最大组成为X所表示的四边形的范围内或上述四边形的线段上。在图2D的放大图中,第1方式的优选的制冷剂的组成为Y所表示的四边形的范围内或上述四边形的线段上。另外,在图2D的放大图中,第2方式的制冷剂D的组成为线段RS、ST和TR所包围的三角形的范围内或上述线段上。
图2E是用于说明本发明的第3方式至第7方式的制冷剂D的组成的三成分组成图。
图2F是燃烧性试验中所用的装置的示意图。
图2G是示出逆流型的热交换器的一例的示意图。
图2H是示出逆流型的热交换器的一例的示意图,(a)为俯视图,(b)为立体图。
图2I1是示出本发明的制冷机中的制冷剂回路的一个方式的示意图。
图2I2是示出图2I1的制冷剂回路的变形例的示意图。
图2I3是示出图2I2的制冷剂回路的变形例的示意图。
图2I4是示出图2I2的制冷剂回路的变形例的示意图。
图2I5是说明定时自然除霜(Off-cycle defrost)的示意图。
图2I6是说明加热除霜的示意图。
图2I7是说明逆循环热气除霜的示意图。
图2I8是说明正循环热气除霜的示意图。
图2J关于制冷剂E,是在以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中示出将表6~9所示的ASHRAE不可燃临界点、点Fr=0.25和点Pr=0.25连结而成的直线Fr=0.25Pr=0.25的图。
图2K关于制冷剂E,是在以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中示出将表6~9所示的ASHRAE不可燃临界点、点Fr=0.375和点Pr=0.375连结而成的直线Fr=0.375Pr=0.375的图。
图2L关于制冷剂E,是在以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中示出将表6~9所示的ASHRAE不可燃临界点、点Fr=0.5和点Pr=0.5连结而成的直线Fr=0.5Pr=0.5的图。
图2M关于制冷剂E,是在以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中示出将表6~9所示的ASHRAE不可燃临界点、点Fr=0.75和点Pr=0.75连结而成的直线Fr=0.75Pr=0.75的图。
图2N关于制冷剂E,是在以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中示出将表6~9所示的ASHRAE不可燃临界点、点Fr=1.0和点Pr=1.0连结而成的直线Fr=1.0Pr=1.0的图。
图2O关于制冷剂E,是示出R1234yf的浓度为41质量%时的点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Fr=0.25~1、Pr=0.25~1和Q的三角图。
图2P关于制冷剂E,是示出R1234yf的浓度为43.8质量%时的点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Fr=0.25~1、Pr=0.25~1和Q的三角图。
图2Q关于制冷剂E,是示出R1234yf的浓度为46.5质量%时的点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Fr=0.25~1、Pr=0.25~1和Q的三角图。
图2R关于制冷剂E,是示出R1234yf的浓度为50.0质量%时的点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Pr=0.25~1和Q的三角图。
图2S关于制冷剂E,是示出R1234yf的浓度为46.5质量%时的点Dr=0.25~1、Cr=0.25~1、Fr=0.25~0.37、Fr=0.5~1、Pr=0.25~0.37、Pr=0.50~1和Q的三角图。
图2T关于制冷剂E,是示出R1234yf的浓度为50.0质量%时的点Dr=0.25~1、Cr=0.25~1、Fr=0.25~0.37、Fr=0.37~1、Pr=0.25~0.37、Pr=0.37~1和Q的三角图。
图3是内置型开放展示柜的纵截面侧视图。
图4是单独放置型的展示柜冷却装置的示意图。
图5是展示柜冷却装置的制冷剂回路图。
图6是具有中间喷射的功能的展示柜的制冷剂回路图。
图7是利用旁路进行能力调整的展示柜的制冷剂回路图。
图8是具有吸入喷射的功能的展示柜的制冷剂回路图。
图9是具有中间喷射的功能和过冷却的功能的展示柜的制冷剂回路图。
图10A是两级压缩/单级膨胀的制冷剂回路图。
图10B是两级压缩/单级膨胀的莫里尔曲线图。
图11A是两级压缩/两级膨胀的制冷剂回路图。
图11B是两级压缩/两级膨胀的莫里尔曲线图。
图12是具备热气除霜功能的制冷剂回路图。
具体实施方式
(1)
(1-1)术语的定义
本说明书中,术语“制冷剂”至少包括由ISO817(国际标准化机构)确定的、标注有以表示制冷剂种类的R开始的制冷剂编号(ASHRAE编号)的化合物,此外也包括尽管未标注制冷剂编号、但具有与它们同等的作为制冷剂的特性的物质。制冷剂在化合物的结构方面大致分为“氟碳系化合物”和“非氟碳系化合物”。“氟碳系化合物”包括氯氟烃(CFC)、氢氯氟烃(HCFC)和氢氟烃(HFC)。作为“非氟碳系化合物”,可以举出丙烷(R290)、丙烯(R1270)、丁烷(R600)、异丁烷(R600a)、二氧化碳(R744)和氨(R717)等。
本说明书中,术语“包含制冷剂的组合物”至少包括:(1)制冷剂本身(包括制冷剂混合物);(2)进一步包含其他成分而能够用于通过至少与制冷机油混合而获得制冷机用工作流体的组合物;和(3)含有制冷机油的制冷机用工作流体。本说明书中,将这三种方式中的(2)的组合物区别于制冷剂本身(包括制冷剂混合物)而记为“制冷剂组合物”。另外,将(3)的制冷机用工作流体区别于“制冷剂组合物”而记为“含有制冷机油的工作流体”。
本说明书中,关于术语“替代”,在用第二制冷剂“替代”第一制冷剂的语句中使用的情况下,作为第一类型,是指在为了使用第一制冷剂进行运转而设计的设备中,仅经过根据需要的微小的部件(制冷机油、垫片、密封垫、膨胀阀、干燥器等其他部件中的至少一种)的变更和设备调整,就能够使用第二制冷剂在最佳条件下运转。即,该类型是指对于同一设备“替换”制冷剂进行运转。作为该类型的“替代”的方式,按照置换为第二制冷剂时所需的变更或调整的程度小的顺序,有“直接(drop in)替代”、“近似直接(nealy drop in)替代”和“改造(retrofit)”。
作为第二类型,为了用途与第一制冷剂的现有用途相同,搭载第二制冷剂使用按使用第二制冷剂进行运转而设计的设备,这也属于术语“替代”。该类型是指“替换”制冷剂而提供同一用途。
本说明书中,术语“制冷机(refrigerator)”是指通过夺去物体或空间的热而成为比周围的外部气体低的温度且维持该低温的所有装置。换言之,制冷机是指进行能量转换的转换装置,使热从温度低的一方向高的一方移动而从外部得到能量来进行作功。
本发明中,制冷剂为“不可燃”是指,在美国ANSI/ASHRAE34-2013标准中作为制冷剂允许浓度中的最易燃组成的WCF(Worst case of formulation for flammability)组成被判断为“1级”。
本说明书中,制冷剂为“弱可燃”是指,在美国ANSI/ASHRAE34-2013标准中WCF组成被判断为“2级”。
本发明中,制冷剂为“ASHRAE不可燃”是指,WCF组成或WCFF组成在基于ASTM E681-2009[化学品(蒸气和气体)的易燃性浓度限制的标准试验法]的测定装置和测定方法的试验中可特定为不可燃的情况,分别分类为“1级ASHRAE不可燃(WCF不可燃)”或“1级ASHRAE不可燃(WCFF不可燃)”。需要说明的是,WCFF组成(Worst case of fractionation forflammability:最易燃混合组成)通过进行基于ANSI/ASHRAE34-2013的储藏、输送、使用时的泄漏试验来特定。
本说明书中,制冷剂为“微可燃”是指,在美国ANSI/ASHRAE34-2013标准中WCF组成被判断为“2L级”。
本说明书中,温度滑移(Temperature Glide)可以换称为热循环系统的构成要素内的包含本发明的制冷剂的组合物的相变过程的起始温度与终止温度之差的绝对值。
本说明书中,“车载用空调设备”是指汽油车、混合动力汽车、电动汽车、氢动力汽车等汽车中使用的制冷装置的一种。车载用空调设备是指由下述制冷循环构成的制冷装置:利用蒸发器使液体制冷剂进行热交换,压缩机吸入蒸发的制冷剂气体,利用冷凝器将绝热压缩后的制冷剂气体冷却而使其液化,进而使其通过膨胀阀而发生绝热膨胀后,再次作为液体制冷剂供给到蒸发机中。
本说明书中,“涡轮制冷机”是大型制冷机的一种。涡轮制冷机是指由下述制冷循环构成的制冷装置:利用蒸发器使液体制冷剂进行热交换,离心式压缩机吸入蒸发的制冷剂气体,利用冷凝器将绝热压缩后的制冷剂气体冷却而使其液化,进而使其通过膨胀阀而发生绝热膨胀后,再次作为液体制冷剂供给到蒸发机中。需要说明的是,上述“大型制冷机”是指以建筑物单元中的空调为目的的大型空调机。
本说明书中,“饱和压力”是指饱和蒸气的压力。
本说明书中,“排出温度”是指压缩机的排出口处的混合制冷剂的温度。
本说明书中,“蒸发压力”是指蒸发温度下的饱和压力。
本说明书中,“临界温度”是指临界点处的温度,是指即使压缩气体、只要不为该温度以下的温度就无法成为液体的边界温度。
本说明书中,GWP是指基于IPCC(Intergovernmental panel on Climate Change,政府间气候变化专门委员会)第4次报告书的值的值。
本说明书中,“质量比”的记载与“组成比”的记载含义相同。
(1-2)制冷剂
(1-2)制冷剂
详细情况如后所述,能够使用本发明的制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D、制冷剂1E、制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D以及制冷剂2E中的任一种(有时记为“本发明的制冷剂”)作为制冷剂。
(1-3)制冷剂组合物
本发明的制冷剂组合物至少包含本发明的制冷剂,能够用于与本发明的制冷剂相同的用途。另外,本发明的制冷剂组合物能够进一步用于通过至少与制冷机油混合而得到制冷机用工作流体。
除了含有本发明的制冷剂以外,本发明的制冷剂组合物还含有至少一种其他成分。根据需要,本发明的制冷剂组合物可以含有以下的其他成分中的至少一种。如上所述,在将本发明的制冷剂组合物用作制冷机中的工作流体时,通常至少与制冷机油混合来使用。因此,本发明的制冷剂组合物优选实质上不包含制冷机油。具体而言,本发明的制冷剂组合物中,相对于制冷剂组合物整体的制冷机油的含量优选为0~1质量%,更优选为0~0.1质量%。
(1-3-1)水
本发明的制冷剂组合物可以包含微量的水。制冷剂组合物中的含水比例相对于制冷剂整体优选为0.1质量%以下。通过使制冷剂组合物包含微量的水分,可包含于制冷剂中的不饱和的氟碳系化合物的分子内双键稳定化,另外,也不易引起不饱和的氟碳系化合物的氧化,因此制冷剂组合物的稳定性提高。
(1-3-2)示踪剂
在本发明的制冷剂组合物存在稀释、污染、其他一些变更的情况下,为了能够追踪其变更,在本发明的制冷剂组合物中以能够检测的浓度添加示踪剂。
本发明的制冷剂组合物可以单独含有一种示踪剂,也可以含有两种以上。
作为示踪剂,没有特别限定,可以从通常使用的示踪剂中适当选择。
作为示踪剂,可以举出例如氢氟烃、氢氯氟烃、氯氟烃、氢氯烃、碳氟化合物、氘代烃、氘代氢氟烃、全氟碳、氟醚、溴化化合物、碘化化合物、醇、醛、酮、一氧化二氮(N2O)等。作为示踪剂,特别优选氢氟烃、氢氯氟烃、氯氟烃、氢氯烃、碳氟化合物和氟醚。
作为示踪剂,优选以下的化合物。
FC-14(四氟甲烷、CF4)
HCC-40(氯甲烷、CH3Cl)
HFC-23(三氟甲烷、CHF3)
HFC-41(氟甲烷、CH3Cl)
HFC-125(五氟乙烷、CF3CHF2)
HFC-134a(1,1,1,2-四氟乙烷、CF3CH2F)
HFC-134(1,1,2,2-四氟乙烷、CHF2CHF2)
HFC-143a(1,1,1-三氟乙烷、CF3CH3)
HFC-143(1,1,2-三氟乙烷、CHF2CH2F)
HFC-152a(1,1-二氟乙烷、CHF2CH3)
HFC-152(1,2-二氟乙烷、CH2FCH2F)
HFC-161(氟乙烷、CH3CH2F)
HFC-245fa(1,1,1,3,3-五氟丙烷、CF3CH2CHF2)
HFC-236fa(1,1,1,3,3,3-六氟丙烷、CF3CH2CF3)
HFC-236ea(1,1,1,2,3,3-六氟丙烷、CF3CHFCHF2)
HFC-227ea(1,1,1,2,3,3,3-七氟丙烷、CF3CHFCF3)
HCFC-22(氯二氟甲烷、CHClF2)
HCFC-31(氯氟甲烷、CH2ClF)
CFC-1113(三氟氯乙烯、CF2=CClF)
HFE-125(三氟甲基-二氟甲醚、CF3OCHF2)
HFE-134a(三氟甲基-氟甲醚、CF3OCH2F)
HFE-143a(三氟甲基-甲醚、CF3OCH3)
HFE-227ea(三氟甲基-四氟乙醚、CF3OCHFCF3)
HFE-236fa(三氟甲基-三氟乙醚、CF3OCH2CF3)
本发明的制冷剂组合物可以相对于制冷剂组合物整体包含合计为约10重量百万分数(ppm)~约1000ppm的示踪剂。本发明的制冷剂组合物可以相对于制冷剂组合物整体包含合计优选为约30ppm~约500ppm、更优选为约50ppm~约300ppm的示踪剂。
(1-3-3)紫外线荧光染料
本发明的制冷剂组合物可以单独含有一种紫外线荧光染料,也可以含有两种以上。
作为紫外线荧光染料,没有特别限定,可以从通常使用的紫外线荧光染料中适当选择。
作为紫外线荧光染料,可以举出例如萘二甲酰亚胺、香豆素、蒽、菲、呫吨、噻吨、萘并呫吨和荧光素、以及它们的衍生物。作为紫外线荧光染料,特别优选萘二甲酰亚胺和香豆素中的任一种或两种。
(1-3-4)稳定剂
本发明的制冷剂组合物可以单独含有一种稳定剂,也可以含有两种以上。
作为稳定剂,没有特别限定,可以从通常使用的稳定剂中适当选择。
作为稳定剂,可以举出例如硝基化合物、醚类和胺类等。
作为硝基化合物,可以举出例如硝基甲烷和硝基乙烷等脂肪族硝基化合物、以及硝基苯和硝基苯乙烯等芳香族硝基化合物等。
作为醚类,可以举出例如1,4-二氧六环等。
作为胺类,可以举出例如2,2,3,3,3-五氟丙胺、二苯胺等。
除此以外,可以举出丁基羟基二甲苯、苯并三唑等。
稳定剂的含有比例没有特别限定,相对于制冷剂整体,通常优选为0.01~5质量%、更优选为0.05~2质量%。
(1-3-5)阻聚剂
本发明的制冷剂组合物可以单独含有一种阻聚剂,也可以含有两种以上。
作为阻聚剂,没有特别限定,可以从通常使用的阻聚剂中适当选择。
作为阻聚剂,可以举出例如4-甲氧基-1-萘酚、对苯二酚、对苯二酚甲醚、二甲基叔丁基苯酚、2,6-二叔丁基对甲酚、苯并三唑等。
阻聚剂的含有比例没有特别限定,相对于制冷剂整体,通常优选为0.01~5质量%、更优选为0.05~2质量%。
(1-4)含有制冷机油的工作流体
本发明的含有制冷机油的工作流体至少包含本发明的制冷剂或制冷剂组合物、和制冷机油,其作为制冷机中的工作流体使用。具体而言,本发明的含有制冷机油的工作流体通过在制冷机的压缩机中使用的制冷机油与制冷剂或制冷剂组合物相互混合而得到。含有制冷机油的工作流体中通常包含10~50质量%的制冷机油。
(1-4-1)制冷机油
本发明的组合物可以单独含有一种制冷机油,也可以含有两种以上。
作为制冷机油,没有特别限定,可以从通常使用的制冷机油中适当选择。此时,根据需要,可以适当选择在提高与上述混合物的相容性(miscibility)和上述混合物的稳定性等的作用等方面更优异的制冷机油。
作为制冷机油的基础油,例如,优选选自由聚烷撑二醇(PAG)、多元醇酯(POE)和聚乙烯基醚(PVE)组成的组中的至少一种。
除了基础油以外,制冷机油还可以包含添加剂。添加剂可以为选自由抗氧化剂、极压剂、酸捕捉剂、氧捕捉剂、铜钝化剂、防锈剂、油性剂和消泡剂组成的组中的至少一种。
作为制冷机油,从润滑的方面考虑,优选40℃的运动粘度为5~400cSt的制冷机油。
根据需要,本发明的含有制冷机油的工作流体还可以包含至少一种添加剂。作为添加剂,可以举出例如以下的增容剂等。
(1-4-2)增容剂
本发明的含有制冷机油的工作流体可以单独含有一种增容剂,也可以含有两种以上。
作为增容剂,没有特别限定,可以从通常使用的增容剂中适当选择。
作为增容剂,可以举出例如聚氧化亚烷基二醇醚、酰胺、腈、酮、氯碳、酯、内酯、芳基醚、氟醚和1,1,1-三氟烷烃等。作为增容剂,特别优选聚氧化亚烷基二醇醚。
(1-5)各种制冷剂
以下,对本发明中使用的制冷剂即制冷剂1A~制冷剂1E进行详细说明。
需要说明的是,以下的制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D和制冷剂1E的各记载各自独立,表示点、线段的字母、实施例的编号以及比较例的编号均在制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D和制冷剂1E之间各自独立。例如,制冷剂1A的实施例1和制冷剂1B的实施例1表示关于相互不同的实施方式的实施例。
(1-5-1)制冷剂1A
本发明的制冷剂1A是包含反式-1,2-二氟乙烯(HFO-1132(E))、三氟乙烯(HFO-1123)和2,3,3,3-四氟-1-丙烯(R1234yf)的混合制冷剂。
本发明的制冷剂1A具有作为R410A替代制冷剂所优选的各种特性,即,具有与R410A同等的制冷能力和性能系数,并且GWP足够小。
本发明的制冷剂1A可以是满足以下的条件并包含HFO-1132(E)和R1234yf、以及根据需要的HFO-1123的组合物。该制冷剂1A也具有与R410A同等的制冷能力和性能系数,并且GWP足够小,具有这样的作为R410A替代制冷剂所期望的各种特性。
条件
在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点D(87.6,0.0,12.4)、
点G(18.2,55.1,26.7)、
点H(56.7,43.3,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OD、DG、GH和HO所包围的图形的范围内或上述线段OD、DG和GH上(其中,点O和H除外),
上述线段DG由
坐标(0.0047y2-1.5177y+87.598,y,-0.0047y2+0.5177y+12.402)
所表示,
上述线段GH由
坐标(-0.0134z2-1.0825z+56.692,0.0134z2+0.0825z+43.308,z)
所表示,并且
上述线段HO和OD为直线。本发明的制冷剂1A在满足上述条件的情况下,以R410A为基准的制冷能力比为92.5%以上,并且以R410A为基准的COP比为92.5%以上。
对于本发明的制冷剂1A,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点L(72.5,10.2,17.3)、
点G(18.2,55.1,26.7)、
点H(56.7,43.3,0.0)和
点I(72.5,27.5,0.0)
这4个点分别连结而成的线段LG、GH、HI和IL所包围的图形的范围内或上述线段LG、GH和IL上(其中,点H和点I除外),
上述线段LG由
坐标(0.0047y2-1.5177y+87.598,y,-0.0047y2+0.5177y+12.402)
所表示,
上述线段GH由
坐标(-0.0134z2-1.0825z+56.692,0.0134z2+0.0825z+43.308,z)
所表示,并且
上述线段HI和IL为直线,则是优选的。本发明的制冷剂1A在满足上述条件的情况下,不仅以R410A为基准的制冷能力比为92.5%以上,并且以R410A为基准的COP比为92.5%以上,进而以ASHRAE的标准显示出微可燃性(2L级)。
对于本发明的制冷剂1A,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点D(87.6,0.0,12.4)、
点E(31.1,42.9,26.0)、
点F(65.5,34.5,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OD、DE、EF和FO所包围的图形的范围内或上述线段OD、DE和EF上(其中,点O和点F除外),
上述线段DE由
坐标(0.0047y2-1.5177y+87.598,y,-0.0047y2+0.5177y+12.402)
所表示,
上述线段EF由
坐标(-0.0064z2-1.1565z+65.501,0.0064z2+0.1565z+34.499,z)
所表示,并且
上述线段FO和OD为直线,则是优选的。本发明的制冷剂1A在满足上述条件的情况下,以R410A为基准的制冷能力比为93.5%以上,并且以R410A为基准的COP比为93.5%以上。
对于本发明的制冷剂1A,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点L(72.5,10.2,17.3)、
点E(31.1,42.9,26.0)、
点F(65.5,34.5,0.0)和
点I(72.5,27.5,0.0)
这4个点分别连结而成的线段LE、EF、FI和IL所包围的图形的范围内或上述线段LE、EF和IL上(其中,点F和点I除外),
上述线段LE由
坐标(0.0047y2-1.5177y+87.598,y,-0.0047y2+0.5177y+12.402)
所表示,
上述线段EF由
坐标(-0.0134z2-1.0825z+56.692,0.0134z2+0.0825z+43.308,z)
所表示,并且
上述线段FI和IL为直线,则是优选的。本发明的制冷剂1A在满足上述条件的情况下,不仅以R410A为基准的制冷能力比为93.5%以上,并且以R410A为基准的COP比为93.5%以上,进而以ASHRAE的标准显示出微可燃性(2L级)。
对于本发明的制冷剂1A,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点A(93.4,0.0,6.6)、
点B(55.6,26.6,17.8)、
点C(77.6,22.4,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OA、AB、BC和CO所包围的图形的范围内或上述线段OA、AB和BC上(其中,点O和点C除外),
上述线段AB由
坐标(0.0052y2-1.5588y+93.385,y,-0.0052y2+0.5588y+6.615)
所表示,
上述线段BC由
坐标(-0.0032z2-1.1791z+77.593,0.0032z2+0.1791z+22.407,z)
所表示,并且
上述线段CO和OA为直线,则是优选的。本发明的制冷剂1A在满足上述条件的情况下,以R410A为基准的制冷能力比为95%以上,并且以R410A为基准的COP比为95%以上。
对于本发明的制冷剂1A,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点K(72.5,14.1,13.4)、
点B(55.6,26.6,17.8)和
点J(72.5,23.2,4.3)
这3个点分别连结而成的线段KB、BJ和JK所包围的图形的范围内或上述线段上,上述线段KB由
坐标(0.0052y2-1.5588y+93.385,y,-0.0052y2+0.5588y+6.615)
所表示,
上述线段BJ由
坐标(-0.0032z2-1.1791z+77.593,0.0032z2+0.1791z+22.407,z)
所表示,并且
上述线段JK为直线,则是优选的。本发明的制冷剂1A在满足上述条件的情况下,不仅以R410A为基准的制冷能力比为95%以上,并且以R410A为基准的COP比为95%以上,进而以ASHRAE的标准显示出微可燃性(2L级)。
对于本发明的制冷剂1A,在无损上述特性或效果的范围内,除了HFO-1132(E)、HFO-1123和R1234yf以外,也可以进一步包含二氟甲烷(R32)。R32相对于本发明的制冷剂1A整体的含有比例没有特别限定,可以广泛选择。例如,R32相对于本发明的制冷剂1A整体的含有比例为21.8质量%时,该混合制冷剂的GWP为150,因此也能使R32的含有比例为其以下。R32相对于本发明的制冷剂1A整体的含有比例例如也可以为5质量%以上。
对于本发明的制冷剂1A,除了HFO-1132(E)、HFO-1123和R1234yf以外还包含R32的情况下,在将HFO-1132(E)、HFO-1123和R1234yf以及R32的以它们的总和为基准的质量%分别设为x、y和z以及a时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图(图1C~图1I)中,能够为如下的制冷剂:
在0<a≤10.0时,坐标(x,y,z)在将
点A(0.02a2-2.46a+93.4,0,-0.02a2+2.46a+6.6)、
点B’(-0.008a2-1.38a+56,0.018a2-0.53a+26.3,-0.01a2+1.91a+17.7)、
点C(-0.016a2+1.02a+77.6,0.016a2-1.02a+22.4,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外),
在10.0<a≤16.5时,坐标(x,y,z)在将
点A(0.0244a2-2.5695a+94.056,0,-0.0244a2+2.5695a+5.944)、
点B’(0.1161a2-1.9959a+59.749,0.014a2-0.3399a+24.8,-0.1301a2+2.3358a+15.451)、
点C(-0.0161a2+1.02a+77.6,0.0161a2-1.02a+22.4,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外),或者,
在16.5<a≤21.8时,坐标(x,y,z)在将
点A(0.0161a2-2.3535a+92.742,0,-0.0161a2+2.3535a+7.258)、
点B’(-0.0435a2-0.0435a+50.406,-0.0304a2+1.8991a-0.0661,0.0739a2-1.8556a+49.6601)、
点C(-0.0161a2+0.9959a+77.851,0.0161a2-0.9959a+22.149,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上上(其中,点O和点C除外)。需要说明的是,在上述三成分组成图中,若将以R410A为基准的制冷能力比为95%、并且以R410A为基准的COP比为95%的点作为点B,则点B’是连结以R410A为基准的COP比为95%的点的近似直线与直线AB的交点。本发明的制冷剂1A在满足上述条件的情况下,以R410A为基准的制冷能力比为95%以上,并且以R410A为基准的COP比为95%以上。
对于本发明的制冷剂1A,在无损上述特性或效果的范围内,可以除了HFO-1132(E)、HFO-1123和R1234yf以及R32以外进一步含有其他追加的制冷剂。从该方面考虑,本发明的制冷剂1A优选相对于制冷剂1A整体包含合计为99.5质量%以上的HFO-1132(E)、HFO-1123和R1234yf以及R32,更优选包含99.75质量%以上,进一步优选包含99.9质量%以上。
另外,对于本发明的制冷剂1A,也可以相对于制冷剂1A整体包含合计为99.5质量%以上的HFO-1132(E)、HFO-1123和R1234yf,还可以包含99.75质量%以上,进而也可以包含99.9质量%以上。
另外,对于本发明的制冷剂1A,也可以相对于制冷剂1A整体包含合计为99.5质量%以上的HFO-1132(E)、HFO-1123和R1234yf以及R32,还可以包含99.75质量%以上,进而也可以包含99.9质量%以上。
作为追加的制冷剂,没有特别限定,可以广泛选择。混合制冷剂可以单独包含一种追加的制冷剂,也可以包含两种以上。
本发明的制冷剂1A适合于作为R410A的替代制冷剂的用途。
(制冷剂1A的实施例)
以下,举出制冷剂1A的实施例来进一步详细说明。但是,本发明的制冷剂1A并不限于这些实施例。
将HFO-1132(E)、HFO-1123和R1234yf以它们的总和为基准按照表1~5中各自列出的质量%混合而制备出混合制冷剂。
关于这些各混合制冷剂,分别求出以R410为基准的COP比和制冷能力比。计算条件如下。
蒸发温度:5℃
冷凝温度:45℃
过热度:1K
过冷却度:5K
Ecomp(压缩作功量):0.7kWh
将这些值与关于各混合制冷剂的GWP一并列于表1~5。
【表1】
Figure BDA0003577350500000491
【表2】
Figure BDA0003577350500000501
【表3】
Figure BDA0003577350500000502
【表4】
Figure BDA0003577350500000503
【表5】
Figure BDA0003577350500000511
由这些结果可知,在将HFO-1132(E)、HFO-1123和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点D(87.6,0.0,12.4)、
点G(18.2,55.1,26.7)、
点H(56.7,43.3,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OD、DG、GH和HO所包围的图形(图1B)的范围内或上述线段OD、DG和GH上的情况下(其中,点O和点H除外),以R410A为基准的制冷能力比为92.5%以上,并且以R410A为基准的COP比为92.5%以上。
另外,同样可知,坐标(x,y,z)在将
点D(87.6,0.0,12.4)、
点E(31.1,42.9,26.0)、
点F(65.5,34.5,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OD、DE、EF和FO所包围的图形(图1B)的范围内或上述线段OD、DE和EF上的情况下(其中,点O和点F除外),以R410A为基准的制冷能力比为93.5%以上,并且以R410A为基准的COP比为93.5%以上。
另外,同样可知,坐标(x,y,z)在将
点A(93.4,0.0,6.6)、
点B(55.6,26.6,17.8)、
点C(77.6,22.4,0.0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的线段OA、AB、BC和CO所包围的图形(图1B)的范围内或上述线段OA、AB和BC上的情况下(其中,点O和点C除外),以R410A为基准的制冷能力比为95%以上,并且以R410A为基准的COP比为95%以上。
需要说明的是,在这些组合物中,R1234yf有助于燃烧性的降低和聚合等变质抑制,优选包含R1234yf。
进而,对于这些各混合制冷剂,依据ANSI/ASHRAE34-2013标准测定了燃烧速度。燃烧速度为10cm/s以下时作为“2L级(微可燃性)”。由这些结果可知,在HFO-1132(E)、HFO-1123和R1234yf的混合制冷剂中,以它们的总和为基准包含72.5质量%以下的HFO-1132(E)时,可以判断为“2L级(微可燃性)”。
需要说明的是,燃烧速度试验使用图1A所示的装置如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
将HFO-1132(E)、HFO-1123和R1234yf以及R32以它们的总和为基准按照表6~12中各自列出的质量%混合而制备出混合制冷剂。
关于这些各混合制冷剂,分别求出以R410A为基准的COP比和制冷能力比。计算条件与上述相同。将这些值与关于各混合制冷剂的GWP一并列于表6~12。
【表6】
Figure BDA0003577350500000531
【表7】
Figure BDA0003577350500000532
【表8】
Figure BDA0003577350500000533
【表9】
Figure BDA0003577350500000541
【表10】
Figure BDA0003577350500000542
【表11】
Figure BDA0003577350500000543
【表12】
Figure BDA0003577350500000551
由这些结果可知,在将HFO-1132(E)、HFO-1123和R1234yf以及R32的以它们的总和为基准的质量%分别设为x、y和z以及a时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图(图1C~图1I)中,
在0<a≤10.0时,坐标(x,y,z)在将
点A(0.02a2-2.46a+93.4,0,-0.02a2+2.46a+6.6)、
点B’(-0.008a2-1.38a+56,0.018a2-0.53a+26.3,-0.01a2+1.91a+17.7)、
点C(-0.016a2+1.02a+77.6,0.016a2-1.02a+22.4,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外),
在10.0<a≤16.5时,坐标(x,y,z)在将
点A(0.0244a2-2.5695a+94.056,0,-0.0244a2+2.5695a+5.944)、
点B’(0.1161a2-1.9959a+59.749,0.014a2-0.3399a+24.8,-0.1301a2+2.3358a+15.451)、
点C(-0.0161a2+1.02a+77.6,0.0161a2-1.02a+22.4,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外),或者,
在16.5<a≤21.8时,坐标(x,y,z)在将
点A(0.0161a2-2.3535a+92.742,0,-0.0161a2+2.3535a+7.258)、
点B’(-0.0435a2-0.0435a+50.406,-0.0304a2+1.8991a-0.0661,0.0739a2-1.8556a+49.6601)、
点C(-0.0161a2+0.9959a+77.851,0.0161a2-0.9959a+22.149,0)和
点O(100.0,0.0,0.0)
这4个点分别连结而成的直线所包围的图形的范围内或上述直线OA、AB’和B’C上(其中,点O和点C除外)的本发明的制冷剂中,以R410A为基准的制冷能力比为95%以上,并且以R410A为基准的COP比为95%以上。
需要说明的是,图1C~图1I分别依次表示出R32含有比例a(质量%)为0质量%、5质量%、10质量%、14.3质量%、16.5质量%、19.2质量%和21.8质量%时的组成。
需要说明的是,在上述三成分组成图中,若将以R410A为基准的制冷能力比为95%、并且以R410A为基准的COP比为95%的点作为点B,则点B’是连结包含以R410A为基准的COP比为95%的点C在内的3个点的近似直线与直线AB的交点。
点A、B’和C通过近似计算分别如下求出。
点A是HFO-1123含有比例为0质量%、且以R410A为基准的制冷能力比为95%的点。关于点A,通过计算在以下的三个范围分别求出三个点,求出它们的近似式。
【表13】
Figure BDA0003577350500000561
点C是R1234yf含有比例为0质量%、且以R410A为基准的COP比为95%的点。关于点C,通过计算在以下的三个范围分别求出三个点,求出它们的近似式。
【表14】
Figure BDA0003577350500000571
关于点B’,通过计算在以下的三个范围分别求出三个点,求出它们的近似式。
【表15】
Figure BDA0003577350500000572
(1-5-2)制冷剂1B
本发明的制冷剂1B为混合制冷剂,其中,相对于制冷剂1B的整体包含合计为99.5质量%以上的HFO-1132(E)和HFO-1123,并且,
相对于制冷剂1B的整体包含62.5质量%~72.5质量%的HFO-1132(E)。
本发明的制冷剂1B具有作为R410A替代制冷剂所优选的各种特性,即,(1)具有与R410A同等的性能系数;(2)具有与R410A同等的制冷能力;(3)GWP足够小;以及(4)在ASHRAE的标准中为微可燃性(2L级)。
对于本发明的制冷剂1B来说,若该制冷剂为包含72.5质量%以下的HFO-1132(E)的混合制冷剂,则在ASHRAE的标准中为微可燃性(2L级),故是特别优选的。
对于本发明的制冷剂1B来说,若该制冷剂为包含62.5质量%以上的HFO-1132(E)的混合制冷剂,则是更优选的。这种情况下,本发明的制冷剂1B的以R410A为基准的性能系数比更加优异,并且HFO-1132(E)和/或HFO-1123的聚合反应进一步被抑制,稳定性更加优异。
除了HFO-1132(E)和HFO-1123以外,本发明的制冷剂1B也可以在无损上述特性或效果的范围内进一步含有其他追加的制冷剂。从该方面考虑,本发明的制冷剂1B更优选相对于制冷剂1B整体包含合计为99.75质量%以上的HFO-1132(E)和HFO-1123,进一步优选包含99.9质量%以上。
作为追加的制冷剂,没有特别限定,可以广泛选择。混合制冷剂可以单独包含一种追加的制冷剂,也可以包含两种以上。
本发明的制冷剂1B适合于作为R410A、R407C和R404A等HFC制冷剂、以及R22等HCFC制冷剂的替代制冷剂的用途。
(制冷剂1B的实施例)
以下,举出制冷剂1B的实施例来进一步详细说明。但是,本发明的制冷剂1B并不限于这些实施例。
将HFO-1132(E)和HFO-1123以它们的总和为基准按照表16和表17中各自列出的质量%(质量%)进行混合,制备出混合制冷剂。
含有R410A(R32=50%/R125=50%)的混合物的组合物的GWP基于IPCC(Intergovernmental panel on Climate Change,政府间气候变化专门委员会)第4次报告书的值进行评价。HFO-1132(E)的GWP没有记载,但根据HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,记载于专利文献1中),将其GWP假定为1。含有R410A和HFO-1132(E)与HFO-1123的混合物的组合物的制冷能力使用美国国家科学与技术研究院(NIST)参考流体热力学和传输特性数据库(Refprop9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500000581
另外,将基于这些结果算出的GWP、COP和制冷能力列于表1、表2。需要说明的是,关于比COP和比制冷能力,列出相对于R410A的比例。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
另外,燃烧性依据ANSI/ASHRAE34-2013标准测定燃烧速度。燃烧速度为10cm/s以下时作为“2L级(微可燃性)”。
燃烧速度试验使用图1A所示的装置如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
【表16】
Figure BDA0003577350500000591
【表17】
Figure BDA0003577350500000592
组合物相对于该组合物的整体包含62.5质量%~72.5质量%的HFO-1132(E)时,具有GWP=1这样的低GWP、同时稳定,并且能够确保ASHRAE燃烧性2L,更令人惊讶的是,能够确保与R410A同等的性能。
(1-5-3)制冷剂1C
本发明的制冷剂1C为包含HFO-1132(E)、R32和2,3,3,3-四氟-1-丙烯(R1234yf)的混合制冷剂。
本发明的制冷剂1C具有作为R410A替代制冷剂所优选的各种特性,即,具有与R410A同等的冷却能力,GWP足够小,且在ASHRAE的标准中为微可燃性(2L级)。
对于本发明的制冷剂1C,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点A(71.1,0.0,28.9)、
点C(36.5,18.2,45.3)、
点F(47.6,18.3,34.1)和
点D(72.0,0.0,28.0)
这4个点分别连结而成的线段AC、CF、FD以及DA所包围的图形的范围内或上述线段上,
上述线段AC由
坐标(0.0181y2-2.2288y+71.096,y,-0.0181y2+1.2288y+28.904)
所表示,
上述线段FD由
坐标(0.02y2-1.7y+72,y,-0.02y2+0.7y+28)
所表示,并且
上述线段CF和DA为直线,则是优选的。本发明的制冷剂1C在满足上述条件的情况下,以R410A为基准的制冷能力比为85%以上,GWP为125以下,且在ASHRAE的标准中为微可燃性(2L级)。
对于本发明的制冷剂1C,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点A(71.1,0.0,28.9)、
点B(42.6,14.5,42.9)、
点E(51.4,14.6,34.0)和
点D(72.0,0.0,28.0)
这4个点分别连结而成的线段AB、BE、ED以及DA所包围的图形的范围内或上述线段上,
上述线段AB由
坐标(0.0181y2-2.2288y+71.096,y,-0.0181y2+1.2288y+28.904)
所表示,
上述线段ED由
坐标(0.02y2-1.7y+72,y,-0.02y2+0.7y+28)
所表示,并且
上述线段BE和DA为直线,则是优选的。本发明的制冷剂1C在满足上述条件的情况下,以R410A为基准的制冷能力比为85%以上,GWP为100以下,且在ASHRAE的标准中为微可燃性(2L级)。
对于本发明的制冷剂1C,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点G(77.5,6.9,15.6)、
点I(55.1,18.3,26.6)和
点J(77.5.18.4,4.1)
这3个点分别连结而成的线段GI、IJ和JK所包围的图形的范围内或上述线段上,上述线段GI由
坐标(0.02y2-2.4583y+93.396,y,-0.02y2+1.4583y+6.604)
所表示,并且
上述线段IJ和JK为直线,则是优选的。本发明的制冷剂1C在满足上述条件的情况下,以R410A为基准的制冷能力比为95%以上,GWP为100以下,且难以引起聚合或分解等变化,稳定性优异。
对于本发明的制冷剂1C,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点G(77.5,6.9,15.6)、
点H(61.8,14.6,23.6)和
点K(77.5,14.6,7.9)
这3个点分别连结而成的线段GH、HK和KG所包围的图形的范围内或上述线段上,上述线段GH由
坐标(0.02y2-2.4583y+93.396,y,-0.02y2+1.4583y+6.604)
所表示,并且
上述线段HK和KG为直线,则是优选的。本发明的制冷剂1C在满足上述条件的情况下,以R410A为基准的制冷能力比为95%以上,GWP为100以下,且难以引起聚合或分解等变化,稳定性优异。
对于本发明的制冷剂1C,在无损上述特性或效果的范围内,除了HFO-1132(E)、R32和R1234yf以外可以进一步含有其他追加的制冷剂。从该方面考虑,本发明的制冷剂1C优选相对于制冷剂1C整体包含合计为99.5质量%以上的HFO-1132(E)、R32和R1234yf,更优选包含99.75质量%以上,进一步优选包含99.9质量%以上。
作为追加的制冷剂,没有特别限定,可以广泛选择。混合制冷剂可以单独包含一种追加的制冷剂,也可以包含两种以上。
本发明的制冷剂1C适合于作为R410A的替代制冷剂的用途。
(制冷剂1C的实施例)
以下,举出制冷剂1C的实施例来进一步详细说明。但是,本发明的制冷剂1C并不限于这些实施例。
对于HFO-1132(E)、R32和R1234yf的各混合制冷剂,根据ANSI/ASHRAE34-2013标准测定燃烧速度。以5质量%逐步变化R32的浓度,同时找出燃烧速度显示出10cm/s的组成。将找出的组成列于表18。
需要说明的是,燃烧速度试验使用图1A所示的装置如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
【表18】
项目 单位 点D R32=5质量% R32=10质量% R32=15质量% R32=20质量%
HFO-1132E 质量% 72 64 57 51 46
R32 质量% 0 5 10 15 20
R1234yf 质量% 28 31 33 34 34
燃烧速度 cm/s 10 10 10 10 10
由这些结果可知,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的图1J的三成分组成图中,坐标(x,y,z)在表18所示的5个点分别连结而成的线段上或该线段的右侧时,以ASHRAE的标准为微可燃性(2L级)。
这是因为,可知R1234yf与HFO-1132(E)和R32中的任一者相比燃烧速度均更低。
将HFO-1132(E)、R32和R1234yf以它们的总和为基准按照表19~23中分别列出的质量%进行混合,制备出混合制冷剂。对于表19~23的各混合制冷剂,分别求出以R410为基准的性能系数[Coefficient of Performance(COP)]比和制冷能力比。计算条件如下。
蒸发温度:5℃
冷凝温度:45℃
过热度:1K
过冷却度;5K
Ecomp(压缩作功量):0.7kWh
将这些值与关于各混合制冷剂的GWP一并列于表19~23。
【表19】
Figure BDA0003577350500000631
【表20】
Figure BDA0003577350500000641
【表21】
Figure BDA0003577350500000642
【表22】
Figure BDA0003577350500000643
【表23】
Figure BDA0003577350500000651
由这些结果可知,在将HFO-1132(E)、R32和R1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、R32和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点A(71.1,0.0,28.9)、
点C(36.5,18.2,45.3)、
点F(47.6,18.3,34.1)和
点D(72.0,0.0,28.0)
这4个点分别连结而成的线段AC、CF、FD以及DA所包围的图形(图1J)的范围内或该线段上的情况下,以R410A为基准的制冷能力比为85%以上,GWP为125以下,且在ASHRAE的标准中为微可燃性(2L级)。
另外,同样地,坐标(x,y,z)在将
点A(71.1,0.0,28.9)、
点B(42.6,14.5,42.9)、
点E(51.4,14.6,34.0)和
点D(72.0,0.0,28.0)
这4个点分别连结而成的线段AB、BE、ED以及DA所包围的图形(图1J)的范围内或该线段上的情况下,可知以R410A为基准的制冷能力比为85%以上,GWP为100以下,且在ASHRAE的标准中为微可燃性(2L级)。
另外,同样地,坐标(x,y,z)在将
点G(77.5,6.9,15.6)、
点I(55.1,18.3,26.6)和
点J(77.5.18.4,4.1)
这3个点分别连结而成的线段GI、IJ和JK所包围的图形(图1J)的范围内或该线段上的情况下,可知以R410A为基准的制冷能力比为95%以上,GWP为125以下,且难以引起聚合或分解等变化,稳定性优异。
另外,同样地,坐标(x,y,z)在将
点G(77.5,6.9,15.6)、
点H(61.8,14.6,23.6)和
点K(77.5,14.6,7.9)
这3个点分别连结而成的线段GH、HK和KG所包围的图形(图1J)的范围内或该线段上的情况下,可知以R410A为基准的制冷能力比为95%以上,GWP为100以下,且难以引起聚合或分解等变化,稳定性优异。
(1-5-4)制冷剂1D
本发明的制冷剂1D为包含HFO-1132(E)、HFO-1123和R32混合制冷剂。
本发明的制冷剂1D具有作为R410A替代制冷剂所优选的各种特性,即,具有与R410A同等的冷却能力,且GWP足够小。
对于本发明的制冷剂1D,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C’(56.7,43.3,0.0)、
点D’(52.2,38.3,9.5)、
点E’(41.8,39.8,18.4)和
点A’(81.6,0.0,18.4)
这5个点分别连结而成的线段OC’、C’D’、D’E’、E’A’和A’O所包围的图形的范围内或上述线段C’D’、D’E’和E’A’上(其中,点C’和A’除外),
上述线段C’D’由
坐标(-0.0297z2-0.1915z+56.7,0.0297z2+1.1915z+43.3,z)
所表示,
上述线段D’E’由
坐标(-0.0535z2+0.3229z+53.957,0.0535z2+0.6771z+46.043,z)
所表示,并且
上述线段OC’、E’A’和A’O为直线,则是优选的。本发明的制冷剂1D在满足上述条件的情况下,以R410A为基准的COP比为92.5%以上,且GWP为125以下。
对于本发明的制冷剂1D,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C(77.7,22.3,0.0)、
点D(76.3,14.2,9.5)、
点E(72.2,9.4,18.4)和
点A’(81.6,0.0,18.4)
这5个点分别连结而成的线段OC、CD、DE、EA’和A’O所包围的图形的范围内或上述线段CD、DE和EA’上(其中,点C和A’除外),
上述线段CDE由
坐标(-0.017z2+0.0148z+77.684,0.017z2+0.9852z+22.316,z)
所表示,并且
上述线段OC、EA’和A’O为直线,则是优选的。本发明的制冷剂1D在满足上述条件的情况下,以R410A为基准的COP比为95%以上,且GWP为125以下。
对于本发明的制冷剂1D,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C’(56.7,43.3,0.0)、
点D’(52.2,38.3,9.5)和
点A(90.5,0.0,9.5)
这5个点分别连结而成的线段OC’、C’D’、D’A和AO所包围的图形的范围内或上述线段C’D’和D’A上(其中,点C’和A除外),
上述线段C’D’由
坐标(-0.0297z2-0.1915z+56.7,0.0297z2+1.1915z+43.3,z)
所表示,并且
上述线段OC’、D’A和AO为直线,则是优选的。本发明的制冷剂1D在满足上述条件的情况下,以R410A为基准的COP比为93.5%以上,且GWP为65以下。
对于本发明的制冷剂1D,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R32的总和为100质量%的三成分组成图中,若坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C(77.7,22.3,0.0)、
点D(76.3,14.2,9.5)、
点A(90.5,0.0,9.5)
这5个点分别连结而成的线段OC、CD、DA和AO所包围的图形的范围内或上述线段CD和DA上(其中,点C和A除外),
上述线段CD由
坐标(-0.017z2+0.0148z+77.684,0.017z2+0.9852z+22.316,z)
所表示,并且
上述线段OC、DA和AO为直线,则是优选的。本发明的制冷剂1D在满足上述条件的情况下,以R410A为基准的COP比为95%以上,且GWP为65以下。
对于本发明的制冷剂1D,在无损上述特性或效果的范围内,可以除了HFO-1132(E)、HFO-1123和R32以外进一步含有其他追加的制冷剂。从该方面考虑,本发明的制冷剂1D优选相对于制冷剂1D整体包含合计为99.5质量%以上的HFO-1132(E)、HFO-1123和R32,更优选包含99.75质量%以上,进一步优选包含99.9质量%以上。
作为追加的制冷剂,没有特别限定,可以广泛选择。混合制冷剂可以单独包含一种追加的制冷剂,也可以包含两种以上。
本发明的制冷剂1D适合于作为R410A的替代制冷剂的用途。
(制冷剂1D的实施例)
以下,举出制冷剂1D的实施例来进一步详细说明。但是,本发明的制冷剂1D并不限于这些实施例。
将HFO-1132(E)、HFO-1123和R32以它们的总和为基准按照表24~26中各自列出的质量%进行混合,制备出混合制冷剂。
对于这些各混合制冷剂,分别求出以R410为基准的COP比和制冷能力[Refrigeration Capacity(有时也记为Cooling Capacity或Capacity)]比。计算条件如下。
蒸发温度:5℃
冷凝温度:45℃
过热度:1K
过冷却度;5K
Ecomp(压缩作功量):0.7kWh
将这些值与关于各混合制冷剂的GWP一并列于表24~26。
【表24】
Figure BDA0003577350500000691
【表25】
Figure BDA0003577350500000692
【表26】
Figure BDA0003577350500000701
由这些结果可知,在将HFO-1132(E)、HFO-1123和R32的以它们的总和为基准的质量%分别设为x、y和z时,在HFO-1132(E)、HFO-1123和R1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C’(56.7,43.3,0.0)、
点D’(52.2,38.3,9.5)、
点E’(41.8,39.8,18.4)和
点A’(81.6,0.0,18.4)
这5个点分别连结而成的线段OC’、C’D’、D’E’、E’A’和A’O所包围的图形(图1K)的范围内或上述线段C’D’、D’E’和E’A’上的情况下(其中,点C’和A’除外),以R410A为基准的COP比为92.5%以上,且GWP为125以下。
另外,同样可知,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C(77.7,22.3,0.0)、
点D(76.3,14.2,9.5)、
点E(72.2,9.4,18.4)和
点A’(81.6,0.0,18.4)
这5个点分别连结而成的线段OC、CD、DE、EA’和A’O所包围的图形(图1K)的范围内或上述线段CD、DE和EA’上的情况下(其中,点C和A’除外),以R410A为基准的COP比为95%以上,且GWP为125以下。
另外,同样可知,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C’(56.7,43.3,0.0)、
点D’(52.2,38.3,9.5)和
点A(90.5,0.0,9.5)
这5个点分别连结而成的线段OC’、C’D’、D’A和AO所包围的图形(图1K)的范围内或上述线段C’D’和D’A上的情况下(其中,点C’和A除外),以R410A为基准的COP比为92.5%以上,且GWP为65以下。
另外,同样可知,坐标(x,y,z)在将
点O(100.0,0.0,0.0)、
点C(77.7,22.3,0.0)、
点D(76.3,14.2,9.5)、
点A(90.5,0.0,9.5)
这5个点分别连结而成的线段OC、CD、DA和AO所包围的图形(图1K)的范围内或上述线段CD和DA上的情况下(其中,点C和A除外),以R410A为基准的COP比为95%以上,且GWP为65以下。
另一方面,如比较例2、3和4所示,在不包含R32的情况下,具有双键的HFO-1132(E)和HFO-1123的浓度相对较高,在制冷剂化合物中会导致分解等变质或聚合,故不是优选的。
另外,如比较例3、5和7所示,在不包含HFO-1123的情况下,无法获得其燃烧抑制效果,无法使组合物为微可燃性,故不是优选的。
(1-5-5)制冷剂1E
本发明的制冷剂1E是包含CO2、以及R32、HFO-1132(E)和R1234yf的混合制冷剂。
本发明的制冷剂1E具有作为R410A替代制冷剂所优选的各种特性,即,具有与R410A同等的冷却能力,GWP足够小,且为微可燃性。
对于本发明的制冷剂1E,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点L(51.7,28.9,19.4-w)
点B”(-1.5278w2+2.75w+50.5,0.0,1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317,0.0,1.9167w+59.683)
点C(0.0,-4.9167w+58.317,3.9167w+41.683)
这7个点分别连结而成的曲线IJ、曲线JK和曲线KL、以及直线LB”、直线B”D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线B”D和直线CI上的点除外),
在1.2<w≤4.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点L(51.7,28.9,19.4-w)
点B”(51.6,0.0,48.4-w)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这7个点分别连结而成的曲线IJ、曲线JK和曲线KL、以及直线LB”、直线B”D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线B”D和直线CI上的点除外),
在4.0<w≤7.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点L(51.7,28.9,19.4-w)
点B”(51.6,0.0,48.4-w)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这7个点分别连结而成的曲线IJ、曲线JK和曲线KL、以及直线LB”、直线B”D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线B”D和直线CI上的点除外),并且,
曲线IJ由
坐标(x,0.0236x2-1.716x+72,-0.0236x2+0.716x+28-w)
所表示,
曲线JK由
坐标(x,0.0095x2-1.2222x+67.676,-0.0095x2+0.2222x+32.324-w)
所表示,
曲线KL由
坐标(x,0.0049x2-0.8842x+61.488,-0.0049x2-0.1158x+38.512)
所表示。
对于本发明的制冷剂1E,以R410A为基准的制冷能力比为80%以上,GWP为350以下,并且为WCF微可燃。
对于本发明的制冷剂1E,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,若
在0<w≤1.2时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点F(-0.0833w+36.717,-4.0833w+5.1833,3.1666w+58.0997)
点C(0.0,-4.9167w+58.317,3.9167w+41.683)
这5个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在1.2<w≤1.3时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点F(36.6,-3w+3.9,2w+59.5)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这5个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在1.3<w≤4.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点B’(36.6,0.0,-w+63.4)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这6个点分别连结而成的曲线IJ和曲线JK、以及直线KB’、直线B’D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在4.0<w≤7.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点K(36.8,35.6,27.6-w)
点B’(36.6,0.0,-w+63.4)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这6个点分别连结而成的曲线IJ和曲线JK、以及直线KB’、直线B’D、直线DC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),并且曲线IJ由
坐标(x,0.0236x2-1.716x+72,-0.0236x2+0.716x+28-w)
所表示,
曲线JK由
坐标(x,0.0095x2-1.2222x+67.676,-0.0095x2+0.2222x+32.324-w)
所表示,则是优选的。本发明的制冷剂1E在满足上述条件的情况下,以R410A为基准的制冷能力比为80%以上,GWP为250以下,并且为WCF微可燃。
对于本发明的制冷剂1E,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,若
在0<w≤1.2时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点E(18.2,-1.1111w2-3.1667w+31.9,1.1111w2+2.1667w+49.9)
点C(0.0,-4.9167w+58.317,3.9167w+41.683)
这4个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在1.2<w≤4.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点E(-0.0365w+18.26,0.0623w2-4.5381w+31.856,-0.0623w2+3.5746w+49.884)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这4个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),
在4.0<w≤7.0时,坐标(x,y,z)在将
点I(0.0,72.0,28.0-w)
点J(18.3,48.5,33.2-w)
点E(18.1,0.0444w2-4.3556w+31.411,-0.0444w2+3.3556w+50.489)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这4个点分别连结而成的曲线IJ和曲线JK、以及直线KF、直线FC和直线CI所包围的图形的范围内或上述线段上(其中,直线CI上的点除外),并且,
曲线IJ由
坐标(x,0.0236x2-1.716x+72,-0.0236x2+0.716x+28-w)
所表示,则是优选的。本发明的制冷剂1E在满足上述条件的情况下,以R410A为基准的制冷能力比为80%以上,GWP为125以下,并且为WCF微可燃。
对于本发明的制冷剂1E,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的三成分组成图中,若
在0<w≤0.6时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2+1.4167w+26.2,-1.25w2+0.75w+51.6)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点P(51.7,1.1111w2+20.5,-1.1111w2-w+27.8)
点B”(-1.5278w2+2.75w+50.5,0.0,1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317,0.0,1.9167w+59.683)
这5个点分别连结而成的曲线GO和曲线OP、以及直线PB”、直线B”D和直线DG所包围的图形的范围内或上述线段上(其中,直线B”D上的点除外),
在0.6<w≤1.2时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2+1.4167w+26.2,-1.25w2+0.75w+51.6)
点N(18.2,0.2778w2+3w+27.7,-0.2778w2-4w+54.1)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点P(51.7,1.1111w2+20.5,-1.1111w2-w+27.8)
点B”(-1.5278w2+2.75w+50.5,0.0,1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317,0.0,1.9167w+59.683)
这6个点分别连结而成的曲线GN、曲线NO、以及曲线OP、以及直线PB”、直线B”D和直线DG所包围的图形的范围内或上述线段上(其中,直线B”D上的点除外),并且,
曲线GO在0<w≤0.6时由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
曲线GN在0.6<w≤1.2时由
坐标(x,(0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824,100-w-x-y)
所表示,
曲线NO在0.6<w≤1.2时由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
曲线OP在0<w≤1.2时由
坐标(x,(0.0074w2-0.0133w+0.0064)x2+(-0.5839w2+1.0268w-0.7103)x+11.472w2-17.455w+40.07,100-w-x-y)
所表示,
在1.2<w≤4.0时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+44.422,0.3645w2-4.5024w+55.57)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点O(36.8,-0.1392w2+1.4381w+24.475,0.1392w2-2.4381w+38.725)
点P(51.7,-0.2381w2+1.881w+20.186,0.2381w2-2.881w+28.114)
点B”(51.6,0.0,-w+48.4)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这8个点分别连结而成的曲线MW、曲线WN、曲线NO和曲线OP、以及直线PB”、直线B”D、直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线B”D和直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
曲线NO由
坐标(x,(-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078,100-w-x-y)
所表示,
曲线OP由
坐标(x,(-0.000463w2+0.0024w-0.0011)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096,100-w-x-y)
所表示,
在4.0<w≤7.0时,坐标(x,y,z)在将
点M(0.0,-0.0667w2+0.8333w+58.133,0.0667w2-1.8333w+41.867)
点W(10.0,-0.0667w2+1.1w+39.267,0.0667w2-2.1w+50.733)
点N(18.2,-0.0889w2+1.3778w+31.411,0.0889w2-2.3778w+50.389)
点O(36.8,-0.0444w2+0.6889w+25.956,0.0444w2-1.6889w+37.244)
点P(51.7,-0.0667w2+0.8333w+21.633,0.0667w2-1.8333w+26.667)
点B”(51.6,0.0,-w+48.4)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这8个点分别连结而成的曲线MW、曲线WN、曲线NO和曲线OP、以及直线PB”、直线B”D、直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线B”D和直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103,100-w-x-y)
所表示,
曲线WN由
坐标(x,(-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383,100-w-x-y)
所表示,
曲线NO由
坐标(x,0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327,100-w-x-y)
所表示,
曲线OP由
坐标(x,(-0.0006258w2+0.0066w-0.0153)x2+(0.0516w2-0.5478w+0.9894)x-1.074w2+11.651w+10.992,100-w-x-y)
所表示,则是优选的。本发明的制冷剂1E在满足上述条件的情况下,以R410A为基准的制冷能力比为80%以上,GWP为350以下,并且为ASHRAE微可燃。
对于本发明的制冷剂1E,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-a)质量%的三成分组成图中,若
在0<w≤0.6时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2-1.4167w+26.2,-1.25w2+3.5834w+51.6)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717,-4.0833w+5.1833,3.1666w+58.0997)
这3个点分别连结而成的曲线GO、以及直线OF和直线FG所包围的图形的范围内或上述线段上,并且,
曲线GO由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
在0.6<w≤1.2时,坐标(x,y,z)在将
点G(-5.8333w2-3.1667w+22.2,7.0833w2-1.4167w+26.2,-1.25w2+3.5834w+51.6)
点N(18.2,0.2778w2+3.0w+27.7,-0.2.778w2-4.0w+54.1)
点O(36.8,0.8333w2+1.8333w+22.6,-0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717,-4.0833w+5.1833,3.1666w+58.0997)
这4个点分别连结而成的曲线GN和曲线NO、以及直线OF和直线FG所包围的图形的范围内或上述线段上,并且,
曲线GN在0.6<w≤1.2时由
坐标(x,(0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824,100-w-x-y)
所表示,
曲线NO在0.6<w≤1.2时由
坐标(x,(0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512,100-w-x-y)
所表示,
在1.2<w≤1.3时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w34.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点O(36.8,-0.1392w2+1.4381w+24.475,0.1392w2-2.4381w+38.725)
点F(36.6,-3w+3.9,2w+59.5)
点C(0.1081w2-5.169w+58.447,0.0,-0.1081w2+4.169w+41.553)
这6个点分别连结而成的曲线MW、曲线WN和曲线NO、以及直线OF和直线FC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
曲线NO由
坐标(x,(-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078,100-w-x-y)
所表示,
在1.3<w≤4.0时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+34.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点O(36.8,-0.1392w2+1.4381w+24.475,0.1392w2-2.4381w+38.725)
点B’(36.6,0.0,-w+63.4)
点D(-2.8226w+40.211,0.0,1.8226w+59.789)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这7个点分别连结而成的曲线MW、曲线WN和曲线NO、以及直线OB’、直线B’D、以及直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
曲线NO由
坐标(x,(-0.00062w2+0.0036w+0.0037)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096,100-w-x-y)
所表示,
在4.0<w≤7.0时,坐标(x,y,z)在将
点M(0.0,-0.0667w2+0.8333w+58.133,0.0667w2-1.8333w+41.867)
点W(10.0,-0.0667w2+1.1w+39.267,0.0667w2-2.1w+50.733)
点N(18.2,-0.0889w2+1.3778w+31.411,0.0889w2-2.3778w+50.389)
点O(36.8,-0.0444w2+0.6889w+25.956,0.0444w2-1.6889w+37.244)
点B’(36.6,0.0,-w+63.4)
点D(-2.8w+40.1,0.0,1.8w+59.9)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这7个点分别连结而成的曲线MW、曲线WN和曲线NO、以及直线OB’、直线B’D、以及直线DC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103,100-w-x-y)
所表示,
曲线WN由
坐标(x,(-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383,100-w-x-y)
所表示,
曲线NO由
坐标(x,(0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327,100-w-x-y)
所表示,则是优选的。本发明的制冷剂1E在满足上述条件的情况下,以R410A为基准的制冷能力比为80%以上,GWP为250以下,并且为ASHRAE微可燃。
对于本发明的制冷剂1E,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-a)质量%的三成分组成图中,若
在1.2<w≤4.0时,坐标(x,y,z)在将
点M(0.0,-0.3004w2+2.419w+55.53,0.3004w2-3.419w+44.47)
点W(10.0,-0.3645w2+3.5024w+34.422,0.3645w2-4.5024w+55.578)
点N(18.2,-0.3773w2+3.319w+28.26,0.3773w2-4.319w+53.54)
点E(-0.0365w+18.26,0.0623w2-4.5381w+31.856,-0.0623w2+3.5746w+49.884)
点C(0.0,0.1081w2-5.169w+58.447,-0.1081w2+4.169w+41.553)
这5个点分别连结而成的曲线MW和曲线WN、以及直线NE、直线EC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53,100-w-x-y)
所表示,
曲线WN由
坐标(x,(0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044,100-w-x-y)
所表示,
在4.0<w≤7.0时,坐标(x,y,z)在将
点M(0.0,-0.0667w2+0.8333w+58.133,0.0667w2-1.8333w+41.867)
点W(10.0,-0.0667w2+1.1w+39.267,0.0667w2-2.1w+50.733)
点N(18.2,-0.0889w2+1.3778w+31.411,0.0889w2-2.3778w+50.389)
点E(18.1,0.0444w2-4.3556w+31.411,-0.0444w2+3.3556w+50.489)
点C(0.0,0.0667w2-4.9667w+58.3,-0.0667w2+3.9667w+41.7)
这5个点分别连结而成的曲线MW和曲线WN、以及直线NE、直线EC和直线CM所包围的图形的范围内或上述线段上(其中,直线CM上的点除外),并且,
曲线MW由
坐标(x,(0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103,100-w-x-y)
所表示,
曲线WN由
坐标(x,(-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383,100-w-x-y)
所表示,则是优选的。本发明的制冷剂1E在满足上述条件的情况下,以R410A为基准的制冷能力比为80%以上,GWP为125以下,并且为ASHRAE微可燃。
对于本发明的制冷剂1E,在无损上述特性或效果的范围内,除了CO2、以及R32、HFO-1132(E)和R1234yf以外,也可以进一步含有其他追加的制冷剂。从该方面考虑,本发明的制冷剂1E优选相对于制冷剂整体包含合计为99.5质量%以上的CO2、以及R32、HFO-1132(E)和R1234yf,更优选包含99.75质量%以上,进一步优选包含99.9质量%以上。
作为追加的制冷剂,没有特别限定,可以广泛选择。混合制冷剂可以单独包含一种追加的制冷剂,也可以包含两种以上。
本发明的制冷剂1E可以优选用作制冷机中的工作流体。
本发明的组合物适合于作为R410A的替代制冷剂的用途。
(制冷剂1E的实施例)
以下,举出制冷剂1E的实施例来进一步详细说明。但是,本发明的制冷剂1D并不限于这些实施例。
关于CO2、以及R32、HFO-1132(E)和R1234yf的各混合制冷剂,根据ANSI/ASHRAE34-2013标准测定了燃烧速度。变化CO2的浓度,同时找出燃烧速度显示出10cm/s的组成。将找出的组成列于表27~29。
需要说明的是,燃烧速度试验使用图1A所示的装置如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
WCFF浓度是通过将WCF浓度作为初始浓度并利用NIST标准参考数据库Refleak版本4.0进行泄漏模拟而求出的。
【表27】
0%CO2
Figure BDA0003577350500000851
0.6%CO2
Figure BDA0003577350500000852
1.2%CO2
Figure BDA0003577350500000853
1.3%CO2
Figure BDA0003577350500000854
2.5%CO2
Figure BDA0003577350500000861
4.0%CO2
Figure BDA0003577350500000862
5.5%CO2
Figure BDA0003577350500000863
7.0%CO2
Figure BDA0003577350500000864
【表28】
0%CO2
Figure BDA0003577350500000871
0.6%CO2
Figure BDA0003577350500000872
1.2%CO2
Figure BDA0003577350500000881
1.3%CO2
Figure BDA0003577350500000882
【表29】
2.5%CO2
Figure BDA0003577350500000891
4.0%CO2
Figure BDA0003577350500000892
5.5%CO2
Figure BDA0003577350500000901
7.0%CO2
Figure BDA0003577350500000902
由这些结果可知,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w、以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的图1B~图1I的三成分组成图中,坐标(x,y,z)在将点I、J、K和L分别连结而成的线段上或该线段的下侧时,为WCF微可燃。
另外,可知:在图1B的三成分组成图中,坐标(x,y,z)在将点M、N、O和P分别连结而成的线段上或该线段的下侧时,为ASHRAE微可燃。
对于R32、HFO-1132(E)和R1234yf,以它们的总和为基准按照表30~40中分别示出的质量%进行混合,制备出混合制冷剂。关于表30~37的各混合制冷剂,分别求出以R410为基准的性能系数[Coefficient of Performance(COP)]比和制冷能力比。
含有R1234yf和R410A(R32=50%/R125=50%)的混合物的组合物的GWP基于IPCC(Intergovernmental panel on Climate Change,政府间气候变化专门委员会)第4次报告书的值进行评价。HFO-1132(E)的GWP没有记载,但根据HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,记载于专利文献1中),将其GWP假定为1。含有R410A和HFO-1132(E)、HFO-1123、R1234yf的混合物的组合物的制冷能力使用美国国家科学与技术研究院(NIST)参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
蒸发温度:5℃
冷凝温度:45℃
过热度:5K
过冷却度:5K
ECOmp(压缩作功量):0.7kWh
将这些值与关于各混合制冷剂的GWP一并列于表30~37。需要说明的是,表30~37分别示出了CO2浓度为0质量%、0.6质量%、1.2质量%、1.3质量%、2.5质量%、4质量%、5.5质量%、7质量%的情况。
【表30】
0%CO2
Figure BDA0003577350500000921
Figure BDA0003577350500000922
Figure BDA0003577350500000923
【表31】
0.6%CO2
Figure BDA0003577350500000931
Figure BDA0003577350500000932
Figure BDA0003577350500000933
【表32】
1.2%CO2
Figure BDA0003577350500000941
Figure BDA0003577350500000942
Figure BDA0003577350500000943
【表33】
1.3%CO2
Figure BDA0003577350500000951
Figure BDA0003577350500000952
Figure BDA0003577350500000953
【表34】
2.5%CO2
Figure BDA0003577350500000961
Figure BDA0003577350500000962
Figure BDA0003577350500000963
【表35】
4%CO2
Figure BDA0003577350500000971
Figure BDA0003577350500000972
Figure BDA0003577350500000973
【表36】
5.5%CO2
Figure BDA0003577350500000981
Figure BDA0003577350500000982
Figure BDA0003577350500000983
【表37】
7%CO2
Figure BDA0003577350500000991
Figure BDA0003577350500000992
Figure BDA0003577350500000993
【表38】
Figure BDA0003577350500001001
Figure BDA0003577350500001011
【表39】
Figure BDA0003577350500001023
Figure BDA0003577350500001032
【表40】
Figure BDA0003577350500001041
Figure BDA0003577350500001051
【表41】
Figure BDA0003577350500001061
Figure BDA0003577350500001071
【表42】
Figure BDA0003577350500001081
【表43】
Figure BDA0003577350500001091
Figure BDA0003577350500001101
【表44】
Figure BDA0003577350500001111
Figure BDA0003577350500001121
【表45】
Figure BDA0003577350500001131
Figure BDA0003577350500001141
【表46】
项目 单位 实施例427 实施例428 实施例429 实施例430 实施例431 实施例432
HFO-1132(E) 质量% 47.5 47.5 50.0 50.0 52.5 55.0
R32 质量% 4.5 2.0 3.5 1.0 2.0 1.0
R1234yf 质量% 44.0 46.5 42.5 45.0 41.5 40.0
CO<sub>2</sub> 质量% 4.0 4.0 4.0 4.0 4.0 4.0
GWP - 33 16 26 9 16 9
COP比 %(相对于R410A) 98.4 98.6 98.3 98.5 98.3 98.2
制冷能力比 %(相对于R410A) 88.4 86.3 88.9 86.8 88.9 89.4
冷凝滑移 7.7 8.1 7.6 8.0 7.5 7.4
由这些结果可知,在将CO2、以及R32、HFO-1132(E)和R1234yf的以它们的总和为基准的质量%分别设为w以及x、y和z时,在R32、HFO-1132(E)和R1234yf的总和为(100-w)质量%的图1B~图1I的三成分组成图中,坐标(x,y,z)在直线A”B”的线上时该混合制冷剂的GWP为350,位于该线的右侧时该混合制冷剂的GWP小于350。另外,可知:在图1B~图1I的三成分组成图中,坐标(x,y,z)在直线A’B’的线上时该混合制冷剂的GWP为250,位于该线的右侧时该混合制冷剂的GWP小于250。此外,可知:在图1B~图1I的三成分组成图中,坐标(x,y,z)在直线AB的线上时该混合制冷剂的GWP为125,位于该线的右侧时该混合制冷剂的GWP小于125。
可知:连结点D和点C的直线大致位于连结以R410A为基准的制冷能力比为80%的点的曲线的略靠左侧。由此可知,坐标(x,y,z)位于连结点D和点C的直线的左侧时,以R410A为基准的该混合制冷剂的制冷能力比为80%以上。
点A和B、A’和B’、以及A”和B”的坐标通过基于上述表中记载的各点求出近似式来确定。具体而言,如表47(点A和B)、表48(点A’和B’)以及表49(点A”和B”)所示那样进行计算。
【表47】
点A
Figure BDA0003577350500001161
点B
Figure BDA0003577350500001162
【表48】
点A’
Figure BDA0003577350500001171
点B’
Figure BDA0003577350500001172
【表49】
点A”
Figure BDA0003577350500001181
点B”
Figure BDA0003577350500001182
点C~G的坐标通过基于上述表中记载的各点求出近似式来确定。具体而言,如表50和51所示那样进行计算。
【表50】
点C
Figure BDA0003577350500001191
点D
Figure BDA0003577350500001192
点E
Figure BDA0003577350500001193
点F
Figure BDA0003577350500001194
点G
Figure BDA0003577350500001195
【表51】
点M
Figure BDA0003577350500001201
点W
Figure BDA0003577350500001202
点N
Figure BDA0003577350500001203
点O
Figure BDA0003577350500001204
点P
Figure BDA0003577350500001205
曲线IJ、曲线JK和曲线KL上的点的坐标通过基于上述表中记载的各点求出近似式来确定。具体而言,如表52所示那样进行计算。
【表52】
Figure BDA0003577350500001211
曲线MW和曲线WM上的点的坐标通过基于上述表中记载的各点求出近似式来确定。具体而言,如表53(0质量%<CO2浓度≤1.2质量%时)、表54(1.2质量%<CO2浓度≤4.0质量%时)、表55(4.0质量%<CO2浓度≤7.0质量%时)所示那样进行计算。
【表53】
1.2≥CO2>0
Figure BDA0003577350500001221
【表54】
4.0≥CO2≥1.2
Figure BDA0003577350500001231
【表55】
7.0≥CO2≥4.0
Figure BDA0003577350500001241
曲线NO和曲线OP上的点的坐标通过基于上述表中记载的各点求出近似式来确定。具体而言,如表56(0质量%<CO2浓度≤1.2质量%时)、表57(1.2质量%<CO2浓度≤4.0质量%时)和表58(4.0质量%<CO2浓度≤7.0质量%时)所示那样进行计算。
【表56】
1.2≥CO2>0
Figure BDA0003577350500001251
【表57】
4.0≥CO2≥1.2
Figure BDA0003577350500001252
【表58】
7.0≥CO2≥4.0
Figure BDA0003577350500001261
(1-6)各种制冷剂2
以下,对本发明中使用的制冷剂即制冷剂2A~制冷剂2E进行详细说明。
需要说明的是,以下的制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D和制冷剂2E的各记载各自独立,表示点、线段的字母、实施例的编号以及比较例的编号均在制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D和制冷剂2E之间各自独立。例如,制冷剂2A的实施例1和制冷剂2B的实施例1表示关于相互不同的实施方式的实施例。
(1-6-1)制冷剂2A
作为制冷剂2A,可以举出“制冷剂2A1”和“制冷剂2A2”。以下,分别对制冷剂2A1和制冷剂2A2进行说明。本发明中,制冷剂2A1和制冷剂2A2分别为混合制冷剂。
(1-6-1-1)制冷剂2A1
制冷剂2A1是含有HFO-1132(E)、HFC-32和HFO-1234yf作为必要成分的混合制冷剂。以下,在本项目中,也将HFO-1132(E)、HFC-32和HFO-1234yf称为“三成分”。
制冷剂2A1整体中的三成分的总浓度为99.5质量%以上。换言之,制冷剂2A1含有以这些物质的总浓度计为99.5质量%以上的三成分。
对于制冷剂2A1而言,在以该三成分为各顶点的三角组成图中,三成分的质量比在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9质量%)和
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2质量%)
这4个点的图形所包围的区域的范围内。
换言之,对于制冷剂2A1而言,三成分的质量比在以该三成分为各顶点的图2A的三角组成图所示的:
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9质量%)和
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2质量%)
这4个点分别连结而成的直线a、曲线b、直线c和曲线d所包围的区域的范围内。
本项目中,如图2A所示,以三成分为各顶点的三角组成图是指以上述三成分(HFO-1132(E)、HFC-32和HFO-1234yf)为顶点、并将HFO-1132(E)、HFC-32和HFO-1234yf的浓度的总和设为100质量%的三成分组成图。
制冷剂2A1通过具有这样的构成而具有下述各种特性:(1)GWP足够小(125以下);(2)在作为R404A的替代制冷剂使用时,具有与R404A同等或更高的制冷能力和性能系数(COP);以及(3)根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s以下。
本项目中,与R404A同等或更高的性能系数(COP)是指,相对于R404A的COP比为100%以上(优选为102%以上、更优选为103%以上),与R404A同等或更高的制冷能力是指,相对于R404A的制冷能力比为95%以上(优选为100%以上、更优选为102以上、最优选为103%以上)。另外,GWP足够小是指,GWP为125以下、优选为110以下、更优选为100以下、进一步优选为75以下。
图2A中,点A、点B、点C和点D是白色圆圈(○)所表示的具有上述坐标的点。
点A、B、C和D的技术含义如下。另外,各点的浓度(质量%)与后述实施例中求出的值相同。
A:根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s、HFC-32的浓度(质量%)为1.0质量%的质量比。
B:HFC-32的浓度(质量%)为1.0质量%、制冷能力相对于R404A为95%的质量比。
C:制冷能力相对于R404A为95%、GWP为125的质量比。
D:GWP为125、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s的质量比。
“根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s”是指为用于区分成ANSI/ASHRAE34-2013标准中的2L级(微可燃)的基准即燃烧速度(10cm/s)的一半的数值,在规定为2L级的制冷剂中也是比较安全的。具体而言,若为“燃烧速度(10cm/s)的一半的数值”,即使万一着火的情况下火焰也难以传播,从这点出发是比较安全的。需要说明的是,以下,也将根据ANSI/ASHRAE34-2013标准测定的燃烧速度简称为“燃烧速度”。
在制冷剂2A1中,三成分的混合制冷剂的燃烧速度优选超过0~4.5cm/s、更优选超过0~4cm/s、进一步优选超过0~3.5cm/s、特别优选超过0~3cm/s。
点A和B均在直线a上。即,线段AB为直线a的一部分。直线a是表示HFC-32的浓度(质量%)为1.0质量%的质量比的直线。在相较于直线a更靠近三角组成图的顶点HFC-32侧的区域,三成分的混合制冷剂的HFC-32的浓度超过1质量%。
另外,在相较于直线a更靠近三角组成图的顶点HFC-32侧的区域,制冷能力出乎意料地大。
图2A中,在HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,表示HFC-32的浓度为1.0质量%的质量比的线段由下式所表示的线段来近似。
表示HFC-32为1.0质量%的质量比的线段:连结点A和点B这两点的直线a的一部分(图2A的线段AB)
y=1.0
z=100-x-y
35.3≤x≤51.8
点B和C均在曲线b上。曲线b是表示制冷能力相对于R404A为95%的质量比的曲线。在相较于曲线b更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFC-32侧的区域,三成分的混合制冷剂的制冷能力相对于R404A超过95%。
曲线b如下求出。
表201示出在HFO-1132(E)=1.0、10.1、20.0、35.3质量%(质量%)时相对于R404A的制冷能力比为95%的4个点。曲线b由连结该4个点的线来表示,此处设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,曲线b通过最小二乘法由表201的式子来近似。
【表201】
Figure BDA0003577350500001291
点C和D均在直线c上。即,线段CD为直线c的一部分。直线c是表示GWP为125的质量比直线。在相较于直线c更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFO-1234yf侧的区域,三成分的混合制冷剂的GWP小于125。
图2A中,HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,表示GWP=125的质量比的线段由下式所表示的线段来近似。
表示GWP=125的质量比的线段:连结点C和点D这两点的直线c的一部分(图2A的线段CD)
y=18.0
z=100-x-y
10.1≤x≤27.8
点A和D均在曲线d上。曲线d是表示燃烧速度为5cm/s的质量比的曲线。在相较于曲线d更靠近三角组成图的顶点HFO-1234yf侧的区域,三成分的混合制冷剂的燃烧速度小于5.0cm/s。
曲线d如下求出。
表202示出在HFO-1132(E)=18.0、30.0、40.0、53.5质量%时为WCF微可燃的4个点。曲线d由连结该4个点的线来表示,此处设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z的情况下,曲线d通过最小二乘法由表202的式子来近似。
【表202】
Figure BDA0003577350500001301
对于HFO-1132(E)、HFC-32和HFO-1234yf的三元混合制冷剂而言,在点A、B、C和D这4个点分别连结而成的线所包围的区域(ABCD区域)的范围内的质量比下,GWP为125以下,制冷能力以相对于R404A的比例计为95%以上且燃烧速度为5cm/s以下。
对于制冷剂2A1而言,在以该三成分为各顶点的三角组成图中,三成分的质量比优选在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5质量%)和
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6质量%)、
这4个点的图形所包围的区域的范围内。
换言之,在制冷剂2A1中,三成分的质量比优选在以该三成分为各顶点的图2A的三角组成图所示的:
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5质量%)和
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6质量%)
这4个点分别连结而成的直线a、曲线b、直线e和曲线d所包围的区域的范围内。
关于以上述三成分为各顶点的三角组成图,如上所述。
图2A中,点A、点B、点E和点F是白色圆圈(○)所表示的具有上述坐标的点。
点A、B的技术含义如上所述。
点E和F的技术含义如下。另外,各点的浓度(质量%)与后述实施例中求出的值相同。
E:制冷能力相对于R404A为95%、GWP为100的质量比。
F:GWP为100、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s、GWP=100的质量比。
关于直线a和曲线b,如上所述。点E在曲线b上。
点E和F均在直线e上。即,线段EF为直线e的一部分。直线e是表示GWP为100的质量比的直线。在相较于直线e更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFO-1234yf侧的区域,三成分的混合制冷剂的GWP小于100。
图2A中,HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,表示GWP=100的质量比的线段由下式所表示的线段来近似。
表示GWP=100的质量比的线段:连结点E和点F这两点的直线e的一部分(图的线段EF)
y=14.3
z=100-x-y
15.2≤x≤31.1
点A和F均在曲线d上。关于曲线d,如上所述。
对于HFO-1132(E)、HFC-32和HFO-1234yf的三元混合制冷剂而言,在点A、B、E和F这4个点分别连结而成的线所包围的区域(ABEF区域)的范围内的质量比下,GWP为100以下,制冷能力以相对于R404A的比例计为95%以上且燃烧速度为5.0cm/s以下。
制冷剂2A1含有以这些物质的总浓度计为99.5质量%以上的HFO-1132(E)、HFC-32和HFO-1234yf,其中,制冷剂2A1整体中的HFO-1132(E)、HFC-32和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)、HFC-32和HFO-1234yf以外,制冷剂2A1可以在无损上述特性的范围内进一步包含其他制冷剂。这种情况下,制冷剂2A1整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2A1可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2A1特别优选仅由HFO-1132(E)、HFC-32和HFO-1234yf构成。换言之,制冷剂2A1特别优选制冷剂2A1整体中的HFO-1132(E)、HFC-32和HFO-1234yf的总浓度为100质量%。
制冷剂2A1仅由HFO-1132(E)、HFC-32和HFO-1234yf构成的情况下,在以该三成分为各顶点的三角组成图中,三成分的质量比优选在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9质量%)和
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2质量%)、
这4个点的图形所包围的区域的范围内。
点A、B、C和D的技术含义如上所述。关于通过点A、B、C和D这4个点的图形所包围的区域,如上所述。
该情况下,对于HFO-1132(E)、HFC-32和HFO-1234yf的三元混合制冷剂而言,在点A、B、C和D这4个点分别连结而成的线所包围的区域(ABCD区域)的范围内的质量比下,GWP为125以下,制冷能力以相对于R404A的比例计为95%以上且燃烧速度为5.0cm/s以下。
制冷剂2A1仅由HFO-1132(E)、HFC-32和HFO-1234yf构成的情况下,在以该三成分为各顶点的三角组成图中,三成分的质量比更优选在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5质量%)和
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6质量%)、
这4个点的图形所包围的区域的范围内。
点A、B、E和F的技术含义如上所述。关于通过点A、B、E和F这4个点的图形所包围的区域,如上所述。
该情况下,对于HFO-1132(E)、HFC-32和HFO-1234yf的三元混合制冷剂而言,在点A、B、E和F这4个点分别连结而成的线所包围的区域(ABEF区域)的范围内的质量比下,GWP为100以下,制冷能力以相对于R404A的比例计为95%以上且燃烧速度为5.0cm/s以下。
制冷剂2A1的GWP为125以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
(1-6-1-2)制冷剂2A2
制冷剂2A2是含有HFO-1132(E)、HFC-32和HFO-1234yf作为必要成分的混合制冷剂。以下,在本项目中,也将HFO-1132(E)、HFC-32和HFO-1234yf称为“三成分”。
制冷剂2A2整体中的三成分的总浓度为99.5质量%以上。换言之,制冷剂2A2含有以这些物质的总浓度计为99.5质量%以上的三成分。
对于制冷剂2A2而言,在以该三成分为各顶点的三角组成图中,三成分的质量比在通过
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2质量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8质量%)和
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3质量%)、
这5个点的图形所包围的区域的范围内。
换言之,在制冷剂2A2中,三成分的质量比在以该三成分为各顶点的图2B的三角组成图所示的:
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2质量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8质量%)和
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3质量%)、
这5个点分别连结而成的直线p、曲线q、直线r、直线s和曲线t所包围的区域的范围内。
本项目中,如图2B所示,以三成分为各顶点的三角组成图是指以上述三成分(HFO-1132(E)、HFC-32和HFO-1234yf)为顶点、并将HFO-1132(E)、HFC-32和HFO-1234yf的浓度的总和设为100质量%的三成分组成图。
制冷剂2A2通过具有这样的构成而具有下述各种特性:(1)GWP足够小(200以下);(2)在作为R404A的替代制冷剂使用时,具有与R404A同等或更高的制冷能力和性能系数(COP);以及(3)40℃下的压力为1.85MPa以下。
本项目中,与R404A同等或更高的性能系数(COP)是指,相对于R404A的COP比为100%以上(优选为102%以上、更优选为103%以上)。与R404A同等或更高的制冷能力是指,相对于R404A的制冷能力比为95%以上(优选为100%以上、更优选为102以上、最优选为103%以上)。GWP足够小是指,GWP为200以下、优选为150以下、更优选为125以下、进一步优选为100以下。
图2B中,点P、点B、点Q、点R和点S是白色圆圈(○)所表示的具有上述坐标的点。
点P、点B、点Q、点R和点S的技术含义如下。另外,各点的浓度(质量%)与后述实施例中求出的值相同。
P:40℃下的压力为1.85MPa、HFC-32的浓度(质量%)为1.0质量%的质量比。
B:HFC-32的浓度(质量%)为1.0质量%、制冷能力相对于R404A为95%的质量比。
Q:制冷能力相对于R404A为95%、HFO-1132(E)的浓度(质量%)为1.0质量%的质量比。
R:HFO-1132(E)的浓度(质量%)为1.0质量%、GWP为200的质量比。
S:GWP为200、40℃下的压力为1.85MPa的质量比。
“40℃下的压力为1.85MPa的质量比”是指,温度40(℃)下的饱和压力为1.85MPa的质量比。
在制冷剂2A2中,三成分的混合制冷剂在40℃下的饱和压力超过1.85MPa的情况下,需要从R404A用的制冷装置进行设计变更。三成分的混合制冷剂在40℃下的饱和压力优选为1.50~1.85MPa、更优选为1.60~1.85MPa、进一步优选为1.70~1.85MPa、特别优选为1.75~1.85MPa。
点P和B均在直线p上。即,线段PB为直线p的一部分。直线p是表示HFC-32的浓度(质量%)为1.0质量%的质量比的直线。在相较于直线p更靠近三角组成图的顶点HFC-32侧的区域,三成分的混合制冷剂的HFC-32的浓度超过1.0质量%。另外,在相较于直线p更靠近三角组成图的顶点HFC-32侧的区域,制冷能力出乎意料地大。
在图2B中,设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,表示HFC-32的浓度为1.0质量%的质量比的线段由下式所表示的线段来近似。
表示HFC-32的浓度(质量%)为1.0质量%的质量比的线段:连结点P和点B这两点的直线p的一部分(图2B的线段PB)
y=1.0
z=100-x-y
35.3≤x≤45.6
点B和Q均在曲线q上。曲线q是表示制冷能力相对于R404A为95%的质量比的曲线。在相较于曲线q更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFC-32侧的区域,三成分的混合制冷剂的制冷能力相对于R404A超过95%。
曲线q如下求出。
表203示出在HFO-1132(E)=1.0、10.1、20.0、35.3质量%(质量%)时相对于R404A的制冷能力比为95%的4个点。曲线q由连结该4个点的线来表示,此处设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,曲线q通过最小二乘法由表203的式子来近似。
【表203】
Figure BDA0003577350500001361
点Q和R均在直线r上。即,线段QR为直线r的一部分。直线r是表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的直线。在相较于直线r更靠近三角组成图的顶点HFO-1132(E)侧的区域,三成分的混合制冷剂的HFO-1132(E)的浓度超过1.0质量%。另外,在相较于直线r更靠近三角组成图的顶点HFO-1132(E)侧的区域,制冷能力出乎意料地大。
图2B中,设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,表示HFO-1132(E)的浓度为1.0质量%的质量比的线段由下式所表示的线段来近似。
表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的线段:连结点Q和点R这两点的直线r的一部分(图2B的线段QR)
x=1.0
z=100-x-y
24.8≤y≤29.2
点R和S均在直线s上。即,线段RS为直线s的一部分。直线s是表示GWP为200的质量比。在相较于直线s更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFO-1234yf侧的区域,三成分的混合制冷剂的GWP小于200。
图2B中,设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,表示GWP=200的质量比的线段由下式所表示的线段来近似。
表示GWP=200的质量比的线段:连结点R和点S这两点的直线s的一部分(图2B的线段RS)
y=29.2
z=100-x-y
1.0≤x≤6.5
点P和S均在曲线t上。曲线t是表示40℃下的压力为1.85MPa的质量比的曲线。在相较于曲线t更靠近三角组成图的顶点HFO-1234yf侧的区域,三成分的混合制冷剂在40℃下的压力小于1.85MPa。
曲线t如下求出。
表204示出在HFO-1132(E)=5.95、18.00、32.35、47.80质量%时40℃下的压力为1.85MPa的4个点。曲线t由连结该4个点的线来表示,此处设HFO-1132(E)的质量%=x、HFC-32的质量%=y和HFO-1234yf的质量%=z时,曲线t通过最小二乘法由表204的式子来近似。
【表204】
Figure BDA0003577350500001371
对于HFO-1132(E)、HFC-32和HFO-1234yf的三元混合制冷剂而言,在点P、B、Q、R和S这5个点分别连结而成的线所包围的区域(PBQRS区域)的范围内的质量比下,GWP为200以下,制冷能力以相对于R404A的比例计为95%以上且40℃下的压力为1.85MPa以下。
制冷剂2A2含有以这些物质的总浓度计为99.5质量%以上的HFO-1132(E)、HFC-32和HFO-1234yf,其中,制冷剂2A2整体中的HFO-1132(E)、HFC-32和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)、HFC-32和HFO-1234yf以外,制冷剂2A2可以在无损上述特性的范围内进一步包含其他制冷剂。这种情况下,制冷剂2A2整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2A2可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2A2特别优选仅由HFO-1132(E)、HFC-32和HFO-1234yf构成。换言之,制冷剂2A2特别优选制冷剂2A2整体中的HFO-1132(E)、HFC-32和HFO-1234yf的总浓度为100质量%。
制冷剂2A2仅由HFO-1132(E)、HFC-32和HFO-1234yf构成的情况下,在以该三成分为各顶点的三角组成图中,三成分的质量比优选在通过
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2质量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8质量%)和
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3质量%)、
这5个点的图形所包围的区域的范围内。
点P、点B、点Q、点R和点S的技术含义如上所述。关于通过点P、点B、点Q、点R和点S这5个点的图形所包围的区域,如上所述。
该情况下,对于HFO-1132(E)、HFC-32和HFO-1234yf的三元混合制冷剂而言,在点P、B、Q、R和S这5个点分别连结而成的线所包围的区域(PBQRS区域)的范围内的质量比下,GWP为300以下,制冷能力以相对于R404A的比例计为95%以上且40℃下的压力为1.85MPa。
制冷剂2A2的GWP为200以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
[制冷剂2A的实施例]
以下,举出实施例来进一步详细说明。但是,本发明并不限于这些实施例。
试验例1
实施例1-1~1-11、比较例1-1~1-6和参考例1-1(R404A)所示的混合制冷剂的GWP基于IPCC(Intergovernmental panel on Climate Change,政府间气候变化专门委员会)第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力和40℃下的饱和压力使用美国国家科学与技术研究院(NIST)参考流体热力学和传输特性数据库(Refprop9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001391
将试验例1的结果示于表205和表206。表205和206示出了本发明的制冷剂2A1的实施例和比较例。在表205和206中,“COP比(相对于R404A)”和“制冷能力比(相对于R404A)”表示相对于R404A的比例(%)。在表205和206中,“饱和压力(40℃)”是指饱和温度40℃下的饱和压力。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。
燃烧速度试验如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。无法计测燃烧速度的情况下(0cm/s),作为“无(不可燃)”。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)实施测定。具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。
<试验条件>
试验容器:
Figure BDA0003577350500001392
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g(23℃下的相对湿度50%的水含量)
制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=有火焰传播(可燃)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
Figure BDA0003577350500001411
Figure BDA0003577350500001421
试验例2
实施例2-1~2-11、比较例2-1~2-5和参考例2-1(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力和40℃下的饱和压力使用美国国家科学与技术研究院(NIST)参考流体热力学和传输特性数据库(Refprop9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001431
将试验例2的结果示于表207和208。表207和208示出了本发明的制冷剂2A2的实施例和比较例。表207和208中,各术语的含义与试验例1相同。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
混合制冷剂的燃烧性与试验例1同样地进行判断。燃烧速度试验与试验例1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T),在与试验例1相同的方法和试验条件下进行测定。
Figure BDA0003577350500001441
Figure BDA0003577350500001451
(1-6-2)制冷剂2B
制冷剂2B是含有HFO-1132(E)、HFO-1123和HFO-1234yf作为必要成分的混合制冷剂。以下,在本项目中,也将HFO-1132(E)、HFO-1123和HFO-1234yf称为“三成分”。
制冷剂2B整体中的三成分的总浓度为99.5质量%以上。换言之,制冷剂2B含有以这些物质的总浓度计为99.5质量%以上的三成分。
对于制冷剂2B而言,在以该三成分为各顶点的三角组成图中,三成分的质量比在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0质量%)和
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4质量%)
这5个点的图形所包围的区域的范围内。
换言之,在制冷剂2B中,三成分的质量比在以该三成分为各顶点的图2C的三角组成图所示的:
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0质量%)和
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4质量%)
这5个点分别连结而成的直线a、曲线b、直线c、曲线d和直线e所包围的区域的范围内。
本项目中,如图2C所示,以三成分为各顶点的三角组成图是指以上述三成分(HFO-1132(E)、HFO-1123和HFO-1234yf)为顶点、并将HFO-1132(E)、HFO-1123和HFO-1234yf的浓度的总和设为100质量%的三成分组成图。
制冷剂2B通过具有这样的构成而具有下述各种特性:(1)GWP足够小(125以下);(2)在作为R404A的替代制冷剂使用时,具有与R404A同等或更高的制冷能力;(3)具有与R404A同等或更高的性能系数(COP);以及(4)根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s以下。
本发明中,与R404A同等或更高的性能系数(COP)是指,相对于R404A的COP比为100%以上(优选为101%以上、更优选为102%以上、特别优选为103%以上)。
本发明中,与R404A同等或更高的制冷能力是指,相对于R404A的制冷能力比为85%以上(优选为90%以上、更优选为95%以上、进一步优选为100%以上、特别优选为102%以上)。
本发明中,GWP足够小是指,GWP为125以下、优选为110以下、更优选为100以下、特别优选为75以下。
图2C中,点A、点B、点C、点D和点E是白色圆圈(○)所表示的具有上述坐标的点。
点A、B、C、D和E的技术含义如下。另外,各点的浓度(质量%)与后述实施例中求出的值相同。
A:根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s、HFO-1123的浓度(质量%)为1.0质量%的质量比。
B:HFO-1123的浓度(质量%)为1.0质量%、制冷能力相对于R404A为85%的质量比。
C:制冷能力相对于R404A为85%、HFO-1132(E)的浓度(质量%)为1.0质量%的质量比。
D:HFO-1132(E)的浓度(质量%)为1.0质量%、40℃下的饱和压力为2.25MPa的质量比。
E:40℃下的饱和压力为2.25MPa、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s的质量比。
“根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s”是指,为小于用于区分成ANSI/ASHRAE34-2013标准中的2L级(微可燃)的基准即燃烧速度(10cm/s)的一半的数值,在规定为2L级的制冷剂中也是比较安全的。
具体而言,若为“小于燃烧速度(10cm/s)的一半的数值”,即使万一着火的情况下火焰也难以传播,从这点出发是比较安全的。需要说明的是,以下,也将根据ANSI/ASHRAE34-2013标准测定的燃烧速度简称为“燃烧速度”。
在制冷剂2B中,三成分的混合制冷剂的燃烧速度优选超过0且为2.5cm/s以下、更优选超过0且为2.0cm/s以下、进一步优选超过0且为1.5cm/s以下。
点A和B均在直线a上。即,线段AB为直线a的一部分。直线a是表示HFO-1123的浓度(质量%)为1.0质量%的质量比的直线。在相较于直线a更靠近三角组成图的顶点HFO-1123侧的区域,三成分的混合制冷剂的HFO-1123的浓度超过1.0质量%。
图2C中,设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,表示HFO-1123的浓度为1.0质量%的质量比的线段由下式所表示的线段来近似。
表示HFO-1123的浓度(质量%)为1.0质量%的质量比的线段:连结点A和点B这两点的直线c的一部分(图2C的线段AB)
y=1.0
z=100-x-y
27.1≤x≤42.5
点B和C均在曲线b上。曲线b是表示制冷能力相对于R404A为85%的质量比的曲线。在相较于曲线b更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFO-1123侧的区域,三成分的混合制冷剂的制冷能力相对于R404A超过85%。
曲线b如下求出。
表209示出在HFO-1132(E)=1.0、15.0、27.1质量%(质量%)时相对于R404A的制冷能力比为85%的3个点。曲线b由连结该3个点的线来表示,此处设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,曲线b通过最小二乘法由表209的式子来近似。
【表209】
Figure BDA0003577350500001481
点C和D均在直线c上。即,线段CD为直线c的一部分。直线c是表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的直线。在相较于直线c更靠近三角组成图的顶点HFO-1132(E)侧的区域,三成分的混合制冷剂的HFO-1132(E)的浓度超过1.0质量%。
图2C中,设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的线段由下式所表示的线段来近似。
表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的线段:连结点C和点D这两点的直线c的一部分(图2C的线段CD)
x=1.0
z=100-x-y
30.4≤y≤57.0
点D和E均在曲线d上。曲线d是表示40℃下的饱和压力为2.25MPa的质量比的曲线。在相较于曲线d更靠近三角组成图的顶点HFO-1234yf侧的区域,三成分的混合制冷剂在40℃下的饱和压力小于2.25MPa。
曲线d如下求出。
表210示出在HFO-1132(E)=1.0、20.0、42.5质量%时40℃下的饱和压力为2.25MPa的3个点。曲线d由连结该3个点的线来表示,此处设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,曲线d通过最小二乘法由表210的式子来近似。
【表210】
Figure BDA0003577350500001491
点A和E均在直线e上。直线e是表示燃烧速度为3.0cm/s的质量比的直线。在相较于直线e更靠近三角组成图的顶点HFO-1234yf侧和顶点HFO-1123侧的区域,三成分的混合制冷剂的燃烧速度小于3.0cm/s。
图2C中,设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,燃烧速度为3.0cm/s的质量比由下式所表示的线段来近似。
表示燃烧速度为3.0cm/s的质量比的线段:连结点A和点E这两点的直线e的一部分(图2C的线段AE)
x=42.5
z=100-x-y
1.0≤y≤24.1
HFO-1132(E)、HFO-1123和HFO-1234yf的三元混合制冷剂在点A、B、C、D和E这5个点分别连结而成的线所包围的区域(ABCDE区域)的范围内的质量比下具有下述各种特性:(1)GWP为125以下;(2)制冷能力以相对于R404A的比例计为85%以上;(3)40℃下的饱和压力为2.25MPa以下;以及(4)燃烧速度为3.0cm/s以下。
对于在制冷剂2B而言,在以该三成分为各顶点的三角组成图中,三成分的质量比优选在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这5个点的图形所包围的区域的范围内。
换言之,在制冷剂2B中,三成分的质量比优选在以该三成分为各顶点的图2C的三角组成图所示的:
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这5个点分别连结而成的直线a、曲线b、直线c、曲线f和直线e所包围的区域的范围内。
关于以上述三成分为各顶点的三角组成图,如上所述。
图2C中,点A、点B、点C、点F和点G是白色圆圈(○)所表示的具有上述坐标的点。
点A、B和C的技术含义如上所述。
点F和G的技术含义如下。另外,各点的浓度(质量%)与后述实施例中求出的值相同。
F:HFO-1132(E)的浓度(质量%)为1.0质量%、40℃下的饱和压力为2.15MPa的质量比。
G:40℃下的饱和压力为2.15MPa、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s的质量比。
关于直线a、曲线b、直线c和直线e,如上所述。点F在直线c上,点G在直线e上。
点F和G均在曲线f上。曲线f是表示40℃下的饱和压力为2.15MPa的质量比的曲线。在相较于曲线f更靠近三角组成图的顶点HFO-1234yf侧的区域,三成分的混合制冷剂在40℃下的饱和压力小于2.15MPa。
曲线f如下求出。
表211示出在HFO-1132(E)=1.0、20.0、42.5质量%时40℃下的饱和压力为2.25MPa的3个点。曲线f由连结该3个点的线来表示,此处设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,曲线f通过最小二乘法由表211的式子来近似。
【表211】
Figure BDA0003577350500001511
HFO-1132(E)、HFO-1123和HFO-1234yf的三元混合制冷剂在点A、B、C、F和G这5个点分别连结而成的线所包围的区域(ABCFG区域)的范围内的质量比下具有下述各种特性:(1)GWP为125以下;(2)制冷能力以相对于R404A的比例计为85%以上;(3)40℃下的饱和压力为2.15MPa以下;以及(4)燃烧速度为3.0cm/s以下。
对于制冷剂2B而言,在以该三成分为各顶点的三角组成图中,三成分的质量比优选在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8质量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这6个点的图形所包围的区域的范围内。
换言之,在制冷剂2B中,三成分的质量比优选在以该三成分为各顶点的图2C的三角组成图所示的:
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8质量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这6个点分别连结而成的直线a、曲线b、直线c、曲线g、曲线f和直线e所包围的区域的范围内。
关于以上述三成分为各顶点的三角组成图,如上所述。
图2C中,点A、点B、点C、点G、点H和点I是白色圆圈(○)所表示的具有上述坐标的点。
点A、B、C和G的技术含义如上所述。
点H和I的技术含义如下。另外,各点的浓度(质量%)与后述实施例中求出的值相同。
H:HFO-1132(E)的浓度(质量%)为1.0质量%、COP相对于R404A为100%的质量比。
I:COP相对于R404A为100%、40℃下的饱和压力为2.15MPa的质量比。
关于直线a、曲线b、直线c、直线e和曲线f,如上所述。点H在直线c上,点I在曲线f上。
点H和I均在曲线g上。曲线g是表示COP相对于R404A为100%的质量比的曲线。在相较于曲线g更靠近三角组成图的顶点HFO-1132(E)侧和顶点HFO-1234yf侧的区域,三成分的混合制冷剂的COP相对于R404A小于100%。
曲线g如下求出。
表212示出在HFO-1132(E)=1.0、20.0、42.5质量%时40℃下的饱和压力为2.25MPa的3个点。曲线f由连结该3个点的线来表示,此处设HFO-1132(E)的质量%=x、HFO-1123的质量%=y和HFO-1234yf的质量%=z时,曲线f通过最小二乘法由表212的式子来近似。
【表212】
Figure BDA0003577350500001531
HFO-1132(E)、HFO-1123和HFO-1234yf的三元混合制冷剂在点A、B、C、H、I和G这6个点分别连结而成的线所包围的区域(ABCHIG区域)的范围内的质量比下具有下述各种特性:(1)GWP为125以下;(2)制冷能力以相对于R404A的比例计为85%以上;(3)COP以相对于R404A的比例计为100%以上;(4)40℃下的饱和压力为2.15MPa以下;以及(5)燃烧速度为3.0cm/s以下。
制冷剂2B含有以这些物质的总浓度计为99.5质量%以上的HFO-1132(E)、HFO-1123和HFO-1234yf,其中,制冷剂2B整体中的HFO-1132(E)、HFO-1123和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)、HFO-1123和HFO-1234yf以外,制冷剂2B可以在无损上述特性的范围内进一步包含其他制冷剂。这种情况下,制冷剂2B整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2B可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2B特别优选仅由HFO-1132(E)、HFO-1123和HFO-1234yf构成。换言之,制冷剂2B特别优选制冷剂2B整体中的HFO-1132(E)、HFO-1123和HFO-1234yf的总浓度为100质量%。
制冷剂2B仅由HFO-1132(E)、HFO-1123和HFO-1234yf构成的情况下,在以该三成分为各顶点的三角组成图中,三成分的质量比优选在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0质量%)和
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4质量%)
这5个点的图形所包围的区域的范围内。
点A、B、C、D和E的技术含义如上所述。关于通过点A、B、C、D和E这5个点的图形所包围的区域,如上所述。
该情况下,HFO-1132(E)、HFO-1123和HFO-1234yf的三元混合制冷剂在点A、B、C、D和E这5个点分别连结而成的线所包围的区域(ABCDE区域)的范围内的质量比下具有下述各种特性:(1)GWP为125以下;(2)制冷能力以相对于R404A的比例计为85%以上;(3)40℃下的饱和压力为2.25MPa以下;以及(4)燃烧速度为3.0cm/s以下。
制冷剂2B仅由HFO-1132(E)、HFO-1123和HFO-1234yf构成的情况下,在以该三成分为各顶点的三角组成图中,三成分的质量比更优选在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这5个点的图形所包围的区域的范围内。
点A、B、C、F和G的技术含义如上所述。关于通过点A、B、C、F和G这5个点的图形所包围的区域,如上所述。
该情况下,HFO-1132(E)、HFO-1123和HFO-1234yf的三元混合制冷剂在点A、B、C、F和G这5个点分别连结而成的线所包围的区域(ABCFG区域)的范围内的质量比下具有下述各种特性:(1)GWP为125以下;(2)制冷能力以相对于R404A的比例计为85%以上;(3)40℃下的饱和压力为2.15MPa以下;以及(4)燃烧速度为3.0cm/s以下。
制冷剂2B仅由HFO-1132(E)、HFO-1123和HFO-1234yf构成的情况下,在以该三成分为各顶点的三角组成图中,三成分的质量比进一步优选在通过
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5质量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9质量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6质量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8质量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8质量%)和
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6质量%)
这6个点的图形所包围的区域的范围内。
点A、B、C、G、H和I的技术含义如上所述。关于通过点A、B、C、H、I和G这6个点的图形所包围的区域,如上所述。
该情况下,HFO-1132(E)、HFO-1123和HFO-1234yf的三元混合制冷剂在点A、B、C、H、I和G这6个点分别连结而成的线所包围的区域(ABCHIG区域)的范围内的质量比下具有下述各种特性:(1)GWP为125以下;(2)制冷能力以相对于R404A的比例计为85%以上;(3)COP以相对于R404A的比例计为100%以上;(4)40℃下的饱和压力为2.15MPa以下;以及(5)燃烧速度为3.0cm/s以下。
制冷剂2B的GWP为125以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
[制冷剂2B的实施例]
以下,举出实施例来进一步详细说明。但是,本发明并不限于这些实施例。
试验例1
实施例1~38、比较例1~9和参考例1(R404A)所示的混合制冷剂的GWP基于IPCC(Intergovernmental panel on Climate Change,政府间气候变化专门委员会)第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力和40℃下的饱和压力使用美国国家科学与技术研究院(NIST)参考流体热力学和传输特性数据库(Refprop9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001561
将试验例1的结果示于表213~216。在表213~216中,“COP比(相对于R404A)”和“制冷能力比(相对于R404A)”表示相对于R404A的比例(%)。在表213~216中,“饱和压力(40℃)”是指饱和温度40℃下的饱和压力。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。
燃烧速度试验如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。无法计测燃烧速度的情况下(0cm/s),作为“无(不可燃)”。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)实施测定。具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。
<试验条件>
试验容器:
Figure BDA0003577350500001571
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g(23℃下的相对湿度50%的水含量)
制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=有火焰传播(可燃)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
Figure BDA0003577350500001581
Figure BDA0003577350500001591
Figure BDA0003577350500001601
Figure BDA0003577350500001611
(1-6-3)制冷剂2C
在一个方式中,制冷剂2C含有HFO-1132(E)和HFO-1234yf,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例为35.0~65.0质量%,HFO-1234yf的含有比例为65.0~35.0质量%。有时将该制冷剂称为“制冷剂2C1”。
(1-6-3-1)制冷剂2C1
制冷剂2C1通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R404A同等或更高的COP;以及(3)具有与R404A同等或更高的制冷能力。
在制冷剂2C1中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为35.0质量%以上,从而可得到与R404A同等或更高的制冷能力。
另外,在制冷剂2C1中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为65.0质量%以下,从而能够将制冷剂2C1的制冷循环中的饱和温度40℃的饱和压力维持为合适的范围(特别是2.10Mpa以下)。
在制冷剂2C1中,相对于R404A的制冷能力为95%以上即可,优选为98%以上、更优选为100%以上、进一步优选为101%以上、特别优选为102%以上。
制冷剂2C1的GWP为100以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
对于制冷剂2C1来说,从能量消耗效率的方面出发,优选相对于R404A的在制冷循环中消耗的功率与制冷能力之比(性能系数(COP))高,具体而言,相对于R404A的COP优选为98%以上、更优选为100%以上、特别优选为102%以上。
在制冷剂2C1中,相对于HFO-1132(E)和HFO-1234yf的总质量,优选HFO-1132(E)的含有比例为40.5~59.0质量%,HFO-1234yf的含有比例为59.5~41.0质量%。这种情况下,制冷剂2C1的GWP为100以下,相对于R404A的COP为101%以上,并且相对于R404A的制冷能力为99%以上。进而,在该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.75MPa以上2.00MPa以下,因此无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C1中,相对于HFO-1132(E)和HFO-1234yf的总质量,更优选HFO-1132(E)的含有比例为41.3~59.0质量%,HFO-1234yf的含有比例为58.7~41.0质量%。这种情况下,制冷剂2C1的GWP为100以下,相对于R404A的COP为101%以上,并且相对于R404A的制冷能力为99.5%以上。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上2.00MPa以下,因此无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C1中,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为41.3~55.0质量%,HFO-1234yf的含有比例为58.7~45.0质量%。这种情况下,制冷剂2C1的GWP为100以下,相对于R404A的COP为101%以上,并且相对于R404A的制冷能力为99.5%以上。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.95MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C1中,相对于HFO-1132(E)和HFO-1234yf的总质量,特别优选HFO-1132(E)的含有比例为41.3~53.5质量%,HFO-1234yf的含有比例为58.7~46.5质量%。这种情况下,制冷剂2C1具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上,并且相对于R404A的制冷能力为99.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.94MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C1中,相对于HFO-1132(E)和HFO-1234yf的总质量,格外优选HFO-1132(E)的含有比例为41.3~51.0质量%,HFO-1234yf的含有比例为58.7~49.0质量%。这种情况下,制冷剂2C1具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上,并且相对于R404A的制冷能力为99%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.90MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C1中,相对于HFO-1132(E)和HFO-1234yf的总质量,最优选HFO-1132(E)的含有比例为41.3~49.2质量%,HFO-1234yf的含有比例为58.7~50.8质量%。这种情况下,制冷剂2C1具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上,并且相对于R404A的制冷能力为99.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C1中,饱和温度40℃的饱和压力通常为2.10MPa以下、优选为2.00MPa以下、更优选为1.95MPa以下、进一步优选为1.90MPa以下、特别优选为1.88MPa以下。若饱和温度40℃的饱和压力在这种范围,无需大幅变更设计即可将制冷剂2C1适用于市售的R404A用制冷装置。
在制冷剂2C1中,饱和温度40℃的饱和压力通常为1.70MPa以上、优选为1.73MPa以上、更优选为1.74MPa以上、进一步优选为1.75MPa以上、特别优选为1.76MPa以上。若饱和温度40℃的饱和压力在这种范围,无需大幅变更设计即可将制冷剂2C1适用于市售的R404A用制冷装置。
本发明中,为了运转制冷循环而使用制冷剂2C1的情况下,从延长市售的R404A用制冷装置的部件寿命的方面出发,排出温度优选为150℃以下、更优选为140℃以下、进一步优选为130℃以下、特别优选为120℃以下。
通过使用制冷剂2C1以运转蒸发温度为-75~-5℃的制冷循环,从而具有可得到与R404A同等或更高的制冷能力的优点。
在使用本发明的制冷剂2C1的制冷循环中,蒸发温度超过-5℃的情况下,压缩比小于2.5,作为制冷循环的效率变差。在使用本发明的制冷剂2C1的制冷循环中,蒸发温度小于-75℃的情况下,蒸发压力小于0.02MPa,难以将制冷剂吸入压缩机中。需要说明的是,压缩比可以通过下式求出。
压缩比=冷凝压力(Mpa)/蒸发压力(Mpa)
在使用本发明的制冷剂2C1的制冷循环中,蒸发温度优选为-7.5℃以下、更优选为-10℃以下、进一步优选-35℃以下。
在使用本发明的制冷剂2C1的制冷循环中,蒸发温度优选为-65℃以上、更优选为-60℃以上、进一步优选为-55℃以上、特别优选为-50℃以上。
在使用本发明的制冷剂2C1的制冷循环中,蒸发温度优选为-65℃以上-5℃以下、更优选为-60℃以上-5℃以下、进一步优选为-55℃以上-7.5℃以下、特别优选为-50℃以上-10℃以下。
在使用本发明的制冷剂2C1的制冷循环中,从提高压缩机中的制冷剂吸入的方面出发,蒸发压力优选为0.02MPa以上、更优选为0.03MPa以上、进一步优选为0.04MPa以上、特别优选为0.05MPa以上。
在使用本发明的制冷剂2C1的制冷循环中,从提高作为制冷循环的效率的方面出发,压缩比优选为2.5以上、更优选为3.0以上、进一步优选为3.5以上、特别优选为4.0以上。在使用本发明的制冷剂2C1的制冷循环中,从提高作为制冷循环的效率的方面出发,压缩比优选为200以下、更优选为150以下、进一步优选为100以下、特别优选为50以下。
制冷剂2C1可以含有以这些物质的总浓度计通常为99.5质量%以上的HFO-1132(E)和HFO-1234yf。本发明中,制冷剂2C1整体中的HFO-1132(E)和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)和HFO-1234yf以外,制冷剂2C1可以在无损上述特性的范围内进一步含有其他制冷剂。这种情况下,制冷剂2C1整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2C1可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2C1特别优选仅由HFO-1132(E)和HFO-1234yf构成。换言之,制冷剂2C1特别优选制冷剂2C1整体中的HFO-1132(E)和HFO-1234yf的总浓度为100质量%。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例通常为35.0~65.0质量%,HFO-1234yf的含有比例通常为65.0~35.0质量%。制冷剂2C1通过具有这样的构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R404A同等或更高的COP;以及(3)具有与R404A同等或更高的制冷能力。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,优选HFO-1132(E)的含有比例为40.5~59.0质量%,HFO-1234yf的含有比例为59.5~41.0质量%。这种情况下,制冷剂2C1的GWP为100以下,相对于R404A的COP为101%以上,并且相对于R404A的制冷能力为99%以上。
进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.75MPa以上2.00MPa以下,因此无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,更优选HFO-1132(E)的含有比例为41.3~59.0质量%,HFO-1234yf的含有比例为58.7~41.0质量%。这种情况下,制冷剂2C1的GWP为100以下,相对于R404A的COP为101%以上,并且相对于R404A的制冷能力为99.5%以上。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上2.00MPa以下,因此无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为41.3~55.0质量%,HFO-1234yf的含有比例为58.7~45.0质量%。这种情况下,制冷剂2C1的GWP为100以下,相对于R404A的COP为101%以上,并且相对于R404A的制冷能力为99.5%以上。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.95MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,特别优选HFO-1132(E)的含有比例为41.3~53.5质量%,HFO-1234yf的含有比例为58.7~46.5质量%。这种情况下,制冷剂2C1具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上,并且相对于R404A的制冷能力为99.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.94MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,格外优选HFO-1132(E)的含有比例为41.3~51.0质量%,HFO-1234yf的含有比例为58.7~49.0质量%。这种情况下,制冷剂2C1具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上,并且相对于R404A的制冷能力为99%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.90MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C1仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,最优选HFO-1132(E)的含有比例为41.3~49.2质量%,HFO-1234yf的含有比例为58.7~50.8质量%。这种情况下,制冷剂2C1具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上,并且相对于R404A的制冷能力为99.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C1在饱和温度40℃下的饱和压力为1.76MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
(1-6-3-2)制冷剂2C2
在一个方式中,本发明的组合物所包含的制冷剂含有HFO-1132(E)和HFO-1234yf,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例为40.5~49.2质量%,HFO-1234yf的含有比例为59.5~50.8质量%。有时将该制冷剂称为“制冷剂2C2”。
制冷剂2C2通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R404A同等或更高的COP;(3)具有与R404A同等或更高的制冷能力;以及(4)在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.75MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为40.5质量%以上,可得到与R404A同等或更高的制冷能力。
另外,在制冷剂2C2中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为49.2质量%以下,能够将制冷剂2C2的制冷循环中的饱和温度40℃的饱和压力维持为合适的范围(特别是2.10Mpa以下)。
在制冷剂2C2中,相对于R404A的制冷能力为99%以上即可,优选为100%以上、更优选为101%以上、进一步优选为102%以上、特别优选为103%以上。
制冷剂2C2的GWP为100以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
对于制冷剂2C2来说,从能量消耗效率的方面出发,优选相对于R404A的在制冷循环中消耗的功率与制冷能力之比(性能系数(COP))高,具体而言,相对于R404A的COP优选为98%以上、更优选为100%以上、进一步优选为101%以上、特别优选为102%以上。
在制冷剂2C2中,相对于HFO-1132(E)和HFO-1234yf的总质量,优选HFO-1132(E)的含有比例为41.3~49.2质量%,HFO-1234yf的含有比例为58.7~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为99.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.76MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,相对于HFO-1132(E)和HFO-1234yf的总质量,更优选HFO-1132(E)的含有比例为43.0~49.2质量%,HFO-1234yf的含有比例为57.0~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为101%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.78MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为44.0~49.2质量%,HFO-1234yf的含有比例为56.0~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为101%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.80MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,相对于HFO-1132(E)和HFO-1234yf的总质量,特别优选HFO-1132(E)的含有比例为45.0~49.2质量%,HFO-1234yf的含有比例为55.0~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为102%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.81MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,相对于HFO-1132(E)和HFO-1234yf的总质量,格外优选HFO-1132(E)的含有比例为45.0~48.0质量%,HFO-1234yf的含有比例为55.0~52.0质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102.5%以上;相对于R404A的制冷能力为102.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.81MPa以上1.87MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,相对于HFO-1132(E)和HFO-1234yf的总质量,最优选HFO-1132(E)的含有比例为45.0~47.0质量%,HFO-1234yf的含有比例为55.0~53.0质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102.5%以上;相对于R404A的制冷能力为102.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.81MPa以上1.85MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
在制冷剂2C2中,饱和温度40℃的饱和压力通常为2.10MPa以下、优选为2.00MPa以下、更优选为1.95MPa以下、进一步优选为1.90MPa以下、特别优选为1.88MPa以下。若饱和温度40℃的饱和压力在这种范围,无需大幅变更设计即可将制冷剂2C2适用于市售的R404A用制冷装置。
在制冷剂2C2中,饱和温度40℃的饱和压力通常为1.70MPa以上、优选为1.73MPa以上、更优选为1.74MPa以上、进一步优选为1.75MPa以上、特别优选为1.76MPa以上。若饱和温度40℃的饱和压力在这种范围,无需大幅变更设计即可将制冷剂2C2适用于市售的R404A用制冷装置。
本发明中,为了运转制冷循环而使用制冷剂2C2的情况下,从延长市售的R404A用制冷装置的部件寿命的方面出发,排出温度优选为150℃以下、更优选为140℃以下、进一步优选为130℃以下、特别优选为120℃以下。
本发明中,从得到与R404A同等或更高的制冷能力的方面出发,制冷剂2C2优选用于使蒸发温度为-75~15℃的制冷循环运转。
在使用本发明的制冷剂2C2的制冷循环中,蒸发温度优选为15℃以下、更优选为5℃以下、进一步优选为0℃以下、特别优选为-5℃以下。
在使用本发明的制冷剂2C2的制冷循环中,蒸发温度优选为-65℃以上、更优选为-60℃以上、进一步优选为-55℃以上、特别优选为-50℃以上。
在使用本发明的制冷剂2C2的制冷循环中,蒸发温度优选为-65℃以上15℃以下、更优选为-60℃以上5℃以下、进一步优选-55℃以上0℃以下、特别优选为-50℃以上-5℃以下。
在使用本发明的制冷剂2C2的制冷循环中,从提高压缩机中的制冷剂吸入的方面出发,蒸发压力优选为0.02MPa以上、更优选为0.03MPa以上、进一步优选为0.04MPa以上、特别优选为0.05MPa以上。
在使用本发明的制冷剂2C2的制冷循环中,从提高作为制冷循环的效率的方面出发,压缩比优选为2.5以上、更优选为3.0以上、进一步优选为3.5以上、特别优选为4.0以上。
制冷剂2C2可以含有以这些物质的总浓度计通常为99.5质量%以上的HFO-1132(E)和HFO-1234yf。本发明中,制冷剂2C2整体中的HFO-1132(E)和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)和HFO-1234yf以外,制冷剂2C2可以在无损上述特性的范围内进一步含有其他制冷剂。这种情况下,制冷剂2C2整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2C2可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2C2特别优选仅由HFO-1132(E)和HFO-1234yf构成。换言之,制冷剂2C2特别优选制冷剂2C2整体中的HFO-1132(E)和HFO-1234yf的总浓度为100质量%。
制冷剂2C2仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例通常为40.5~49.2质量%,HFO-1234yf的含有比例通常为59.5~50.8质量%。制冷剂2C2通过具有这样的构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R404A同等或更高的COP;(3)具有与R404A同等或更高的制冷能力;以及(4)在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.75MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C2仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,优选HFO-1132(E)的含有比例为41.3~49.2质量%,HFO-1234yf的含有比例为58.7~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为99.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。
进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.76MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C2仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,更优选HFO-1132(E)的含有比例为43.0~49.2质量%,HFO-1234yf的含有比例为57.0~50.8质量%为。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为101%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.78MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C2仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为44.0~49.2质量%,HFO-1234yf的含有比例为56.0~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为101%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.80MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C2仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,特别优选HFO-1132(E)的含有比例为45.0~49.2质量%,HFO-1234yf的含有比例为55.0~50.8质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102%以上;相对于R404A的制冷能力为102%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.81MPa以上1.88MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
制冷剂2C2仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,格外优选HFO-1132(E)的含有比例为45.0~48.0质量%,HFO-1234yf的含有比例为55.0~52.0质量%。这种情况下,制冷剂2C2具有下述各种特性:GWP为100以下;相对于R404A的COP为102.5%以上;相对于R404A的制冷能力为102.5%以上;以及在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C2在饱和温度40℃下的饱和压力为1.81MPa以上1.87MPa以下,无需大幅变更设计即可适用于市售的R404A用制冷装置。
(1-6-3-3)制冷剂2C3
在一个方式中,本发明的组合物所包含的制冷剂含有HFO-1132(E)和HFO-1234yf,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例为31.1~39.8质量%,HFO-1234yf的含有比例为68.9~60.2质量%。有时将该制冷剂称为“制冷剂2C3”。
制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R134a同等程度的COP;(3)与R134a相比具有150%以上的制冷能力;以及(4)排出温度为90℃以下。
在制冷剂2C3中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为31.1质量%以上,从而与R134a相比可得到150%以上的制冷能力。
另外,在制冷剂2C3中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为39.8质量%以下,从而能够将制冷剂2C3的制冷循环中的排出温度维持为90℃以下,能够较长地确保R134a用制冷装置的部件的寿命。
在制冷剂2C3中,相对于R134a的制冷能力为150%以上即可,优选为151%以上、更优选为152%以上、进一步优选为153%以上、特别优选为154%以上。
在制冷剂2C3中,制冷循环中的排出温度优选为90.0℃以下、更优选为89.7℃以下、进一步优选为89.4℃以下、特别优选为89.0℃以下。
制冷剂2C3的GWP为100以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
对于制冷剂2C3来说,从能量消耗效率的方面出发,优选相对于R134a的在制冷循环中消耗的功率与制冷能力之比(性能系数(COP))高,具体而言,相对于R134a的COP优选为90%以上、更优选为91%以上、进一步优选为91.5%以上、特别优选为92%以上。
在制冷剂2C3中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例通常为31.1~39.8质量%,HFO-1234yf的含有比例通常为68.9~60.2质量%。
制冷剂2C3通过具有这样的构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R134a同等程度的COP;(3)与R134a相比具有150%以上的制冷能力;以及(4)排出温度为90.0℃以下。
在制冷剂2C3中,相对于HFO-1132(E)和HFO-1234yf的总质量,优选HFO-1132(E)的含有比例为31.1~37.9质量%,HFO-1234yf的含有比例为68.9~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有150%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
在制冷剂2C3中,相对于HFO-1132(E)和HFO-1234yf的总质量,更优选HFO-1132(E)的含有比例为32.0~37.9质量%,HFO-1234yf的含有比例为68.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有151%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
在制冷剂2C3中,相对于HFO-1132(E)和HFO-1234yf的总质量,更进一步优选HFO-1132(E)的含有比例为33.0~37.9质量%,HFO-1234yf的含有比例为67.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有152%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
在制冷剂2C3中,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为34.0~37.9质量%,HFO-1234yf的含有比例为66.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有153%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
在制冷剂2C3中,相对于HFO-1132(E)和HFO-1234yf的总质量,特别优选HFO-1132(E)的含有比例为35.0~37.9质量%,HFO-1234yf的含有比例为65.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有155%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
本发明中,为了运转制冷循环而使用制冷剂2C3的情况下,从延长市售的R134a用制冷装置的部件寿命的方面出发,排出温度优选为90.0℃以下、更优选为89.7℃以下、进一步优选为89.4℃以下、特别优选为89.0℃以下。
本发明中,为了运转制冷循环而使用制冷剂2C3的情况下,制冷循环中需要制冷剂的液化(冷凝)的过程,因此临界温度需要显著高于用于使制冷剂液化的冷却水或冷却空气的温度。从这种方面出发,在使用本发明的制冷剂2C3的制冷循环中,临界温度优选为80℃以上、更优选为81℃以上、进一步优选为81.5℃以上、特别优选为82℃以上。
本发明中,从与R134a相比得到150%以上的制冷能力的方面出发,制冷剂2C3通常用于使蒸发温度为-75~15℃的制冷循环运转。
在使用本发明的制冷剂2C3的制冷循环中,蒸发温度优选为15℃以下、更优选为5℃以下、进一步优选为0℃以下、特别优选为-5℃以下。
在使用本发明的制冷剂2C3的制冷循环中,蒸发温度优选为-65℃以上、更优选为-60℃以上、进一步优选为-55℃以上、特别优选为-50℃以上。
在使用本发明的制冷剂2C3的制冷循环中,蒸发温度优选为-65℃以上15℃以下、更优选为-60℃以上5℃以下、进一步优选为-55℃以上0℃以下、特别优选为-50℃以上-5℃以下。
在使用本发明的制冷剂2C3的制冷循环中,从性能提高的方面出发,制冷剂的临界温度优选为80℃以上、更优选为81℃以上、进一步优选为81.5℃以上、特别优选为82℃以上。
制冷剂2C3可以含有以这些物质的总浓度计通常为99.5质量%以上的HFO-1132(E)和HFO-1234yf。本发明中,制冷剂2C3整体中的HFO-1132(E)和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)和HFO-1234yf以外,制冷剂2C3可以在无损上述特性的范围内进一步含有其他制冷剂。这种情况下,制冷剂2C3整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2C3可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2C3特别优选仅由HFO-1132(E)和HFO-1234yf构成。换言之,制冷剂2C3特别优选制冷剂2C3整体中的HFO-1132(E)和HFO-1234yf的总浓度为100质量%。
制冷剂2C3仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例通常为31.1~39.8质量%,HFO-1234yf的含有比例通常为68.9~60.2质量%。制冷剂2C3通过具有这样的构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R134a同等程度的COP;(3)与R134a相比具有150%以上的制冷能力;以及(4)排出温度为90℃以下。
制冷剂2C3仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,优选HFO-1132(E)的含有比例为31.1~37.9质量%,HFO-1234yf的含有比例为68.9~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有150%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
制冷剂2C3仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,更优选HFO-1132(E)的含有比例为32.0~37.9质量%,HFO-1234yf的含有比例为68.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有151%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
制冷剂2C3仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为33.0~37.9质量%,HFO-1234yf的含有比例为67.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有152%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
制冷剂2C3仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为34.0~37.9质量%,HFO-1234yf的含有比例为66.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有153%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
制冷剂2C3仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,进一步优选HFO-1132(E)的含有比例为35.0~37.9质量%,HFO-1234yf的含有比例为65.0~62.1质量%。这种情况下,制冷剂2C3通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)与R134a相比具有92%以上的COP;(3)与R134a相比具有155%以上的制冷能力;(4)排出温度为90.0℃以下;以及(5)临界温度为81℃以上。
(1-6-3-4)制冷剂2C4
在一个方式中,本发明的组合物所包含的制冷剂含有HFO-1132(E)和HFO-1234yf,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例为21.0~28.4质量%,HFO-1234yf的含有比例为79.0~71.6质量%。有时将该制冷剂称为“制冷剂2C4”。
制冷剂2C4通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R1234yf同等程度的COP;以及(3)与R1234yf相比具有140%以上的制冷能力;以及(4)在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.380MPa以上0.420MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为21.0质量%以上,与R1234yf相比可得到140%以上的制冷能力。另外,在制冷剂2C4中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为28.4质量%以下,容易确保83.5℃以上的临界温度。
在制冷剂2C4中,相对于R1234yf的制冷能力为140%以上即可,优选为142%以上、更优选为143%以上、进一步优选为145%以上、特别优选为146%以上。
制冷剂2C4的GWP为100以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
对于制冷剂2C4来说,从能量消耗效率的方面出发,优选相对于R1234yf的在制冷循环中消耗的功率与制冷能力之比(性能系数(COP))高,具体而言,相对于R1234yf的COP优选为95%以上、更优选为96%以上、进一步优选为97%以上、特别优选为98%以上。
在制冷剂2C4中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例优选为21.5~28.0质量%,HFO-1234yf的含有比例优选为78.5~72.0质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为140%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为65.0℃以下;临界温度为83.5℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.383MPa以上0.418MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例更优选为22.0~27.7质量%,HFO-1234yf的含有比例更优选为78.0~72.3质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为140%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为65.0℃以下;临界温度为83.5℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.385MPa以上0.417MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例进一步优选为22.5~27.5质量%,HFO-1234yf的含有比例进一步优选为77.5~72.5质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为140%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.8℃以下;临界温度为83.8℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.388MPa以上0.414MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例特别优选为23.0~27.2质量%,HFO-1234yf的含有比例特别优选为77.0~72.8质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为141%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.8℃以下;临界温度为83.8℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.390MPa以上0.414MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例格外优选为23.5~27.0质量%,HFO-1234yf的含有比例格外优选为76.5~73.0质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为142%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.8℃以下;临界温度为83.8℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.390MPa以上0.414MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例最优选为24.0~26.7质量%,HFO-1234yf的含有比例最优选为76.0~73.3质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为144%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.6℃以下;临界温度为84.0℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.396MPa以上0.411MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,饱和温度-10℃的饱和压力通常为0.420MPa以下、优选为0.418MPa以下、更优选为0.417MPa以下、进一步优选为0.415MPa以下、特别优选为0.413MPa以下。若在这种范围,无需大幅变更设计即可将制冷剂2C4适用于市售的R1234yf用制冷装置。
在制冷剂2C4中,饱和温度-10℃的饱和压力通常为0.380MPa以上、优选为0.385MPa以上、更优选为0.390MPa以上、进一步优选为0.400MPa以上、特别优选为0.410MPa以上。这些情况下,无需大幅变更设计即可将制冷剂2C4适用于市售的R1234yf用制冷装置。
本发明中,为了运转制冷循环而使用制冷剂2C4的情况下,从延长市售的R1234yf用制冷装置的部件寿命的方面出发,排出温度优选为65℃以下、更优选为64.8℃以下、进一步优选为64.7℃以下、特别优选为64.5℃以下。
本发明中,从与R1234yf相比得到140%以上的制冷能力的方面出发,制冷剂2C4优选用于使蒸发温度为-75~5℃的制冷循环运转。
在使用本发明的制冷剂2C4的制冷循环中,从与R1234yf相比得到140%以上的制冷能力的方面出发,蒸发温度优选为5℃以下、更优选为0℃以下、进一步优选-5℃以下、特别优选为-10℃以下。
在使用本发明的制冷剂2C4的制冷循环中,从与R1234yf相比得到140%以上的制冷能力的方面出发,蒸发温度优选为-75℃以上、更优选为-60℃以上、进一步优选-55℃以上、特别优选为-50℃以上。
在使用本发明的制冷剂2C4的制冷循环中,从与R1234yf相比得到140%以上的制冷能力的方面出发,蒸发温度优选为-65℃以上0℃以下、更优选为-60℃以上-5℃以下、进一步优选为-55℃以上-7.5℃以下、特别优选为-50℃以上-10℃以下。
在使用本发明的制冷剂2C4的制冷循环中,从延长市售的R1234yf用制冷装置的部件寿命的方面出发,排出温度优选为65.0℃以下、更优选为64.9℃以下、进一步优选为64.8℃以下、特别优选为64.7℃以下。
本发明中,为了运转制冷循环而使用制冷剂2C4的情况下,制冷循环中需要制冷剂的液化(冷凝)的过程,因此临界温度需要显著高于用于使制冷剂液化的冷却水或冷却空气的温度。从这种方面出发,在使用本发明的制冷剂2C4的制冷循环中,临界温度优选为83.5℃以上、更优选为83.8℃以上、进一步优选为84.0℃以上、特别优选为84.5℃以上。
除了HFO-1132(E)和HFO-1234yf以外,制冷剂2C4可以在无损上述特性的范围内进一步含有其他制冷剂。这种情况下,制冷剂2C4整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2C4可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2C4特别优选仅由HFO-1132(E)和HFO-1234yf构成。换言之,制冷剂2C4特别优选制冷剂2C4整体中的HFO-1132(E)和HFO-1234yf的总浓度为100质量%。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例通常为21.0~28.4质量%,HFO-1234yf的含有比例通常为79.0~71.6质量%。制冷剂2C4通过具有这样的构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R1234yf同等程度的COP;以及(3)与R1234yf相比具有140%以上的制冷能力;以及(4)在ASHRAE的标准中为微可燃性(2L级)。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.380MPa以上0.420MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例优选为21.5~28.0质量%,HFO-1234yf的含有比例优选为78.5~72.0质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为140%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为65.0℃以下;临界温度为83.5℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.383MPa以上0.418MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例更优选为22.0~27.7质量%,HFO-1234yf的含有比例更优选为78.0~72.3质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为140%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为65.0℃以下;临界温度为83.5℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.385MPa以上0.417MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例进一步优选为22.5~27.5质量%,HFO-1234yf的含有比例进一步优选为77.5~72.5质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为140%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.8℃以下;临界温度为83.8℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.388MPa以上0.414MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例特别优选为23.0~27.2质量%,HFO-1234yf的含有比例特别优选为77.0~72.8质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为141%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.8℃以下;临界温度为83.8℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.390MPa以上0.414MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例格外优选为23.5~27.0质量%,HFO-1234yf的含有比例格外优选为76.5~73.0质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为142%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.8℃以下;临界温度为83.8℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.390MPa以上0.414MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
制冷剂2C4仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例最优选为24.0~26.7质量%,HFO-1234yf的含有比例最优选为76.0~73.3质量%。这种情况下,制冷剂2C4具有下述各种特性:GWP为100以下;相对于R1234yf的COP为98%以上;相对于R1234yf的制冷能力为144%以上;在ASHRAE的标准中为微可燃性(为2L级);排出温度为64.6℃以下;临界温度为84.0℃以上。进而,该情况下,制冷剂2C4的饱和温度-10℃的饱和压力为0.396MPa以上0.411MPa以下,无需大幅变更设计即可适用于市售的R1234yf用制冷装置。
(1-6-3-5)制冷剂2C5
在一个方式中,本发明的组合物所包含的制冷剂含有HFO-1132(E)和HFO-1234yf,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例为12.1~72.0质量%,HFO-1234yf的含有比例为87.9~28.0质量%。有时将该制冷剂称为“制冷剂2C5”。
本发明中,制冷剂2C5被用于车载用空调设备。
制冷剂2C5通过具有上述构成而具有下述各种特性:(1)GWP足够小(100以下);(2)具有与R1234yf同等程度的COP;(3)与R1234yf相比具有128%以上的制冷能力;以及(4)燃烧速度小于10.0cm/s。
在制冷剂2C5中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为12.1质量%以上,能够确保在电动汽车中利用热泵制暖时有利的-40℃以下的沸点。需要说明的是,-40℃以下的沸点是指,在-40℃下饱和压力为大气压以上;在上述用途中沸点在-40℃以下的范围越低越优选。另外,在制冷剂2C5中,通过使HFO-1132(E)相对于HFO-1132(E)和HFO-1234yf的总质量的含有比例为72.0质量%以下,能够确保用于车载用空调设备时有助于安全性的小于10.0cm/s的燃烧速度。
在制冷剂2C5中,相对于R1234yf的制冷能力为128%以上即可,优选为130%以上、更优选为140%以上、进一步优选为150%以上、特别优选为160%以上。
制冷剂2C5的GWP为5以上100以下,由此,从地球温室化的方面出发,与其他通用制冷剂相比能够显著抑制环境负担。
在制冷剂2C5中,从能量消耗效率的方面出发,相对于R1234yf的在制冷循环中消耗的功率与制冷能力之比(性能系数(COP))为100%以上即可。
通过将制冷剂2C5用于车载用空调设备,具有能够利用消耗功率少于电加热器的热泵制暖的优点。
对于制冷剂2C5,上述空调设备优选为汽油车用、混合动力汽车用、电动汽车用或氢动力汽车用。这些之中,从在利用热泵使车室内制暖、同时提高车的行驶距离的方面出发,对于制冷剂2C5,上述空调设备特别优选为电动汽车用。即,本发明中,特别优选将制冷剂2C5用于电动汽车。
本发明中,制冷剂2C5被用于车载用空调设备。本发明中,制冷剂2C5优选被用于汽油车的空调设备、混合动力汽车的空调设备、电动汽车的空调设备或氢动力汽车的空调设备。本发明中,制冷剂2C5特别优选被用于电动汽车的空调设备。
本发明中,在利用热泵对车室内进行制暖时,在-40℃下需要大气压以上的压力,因此制冷剂2C5的沸点优选为-51.2~-40.0℃、更优选为-50.0~-42.0℃、进一步优选为-48.0~-44.0℃。
在制冷剂2C5中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例优选为15.0~65.0质量%,HFO-1234yf的含有比例优选为85.0~35.0质量%。
在制冷剂2C5中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例更优选为20.0~55.0质量%,HFO-1234yf的含有比例更优选为80.0~45.0质量%。
在制冷剂2C5中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例进一步优选为25.0~50.0质量%,HFO-1234yf的含有比例进一步优选为75.0~50.0质量%。
在制冷剂2C5中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例特别优选为30.0~45.0质量%,HFO-1234yf的含有比例特别优选为70.0~55.0质量%。
在制冷剂2C5中,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例最优选为35.0~40.0质量%,HFO-1234yf的含有比例最优选为65.0~60.0质量%。
本发明中,制冷剂2C5的燃烧速度优选小于10.0cm/s、更优选小于5.0cm/s、进一步优选小于3.0cm/s、特别优选为2.0cm/s。
本发明中,从得到与R1234yf同等或更高的制冷能力的方面出发,制冷剂2C5优选用于使蒸发温度为-40~10℃的制冷循环运转。
本发明中,为了运转制冷循环而使用制冷剂2C5的情况下,排出温度优选为79℃以下、更优选为75℃以下、进一步优选为70℃以下、特别优选为67℃以下。
制冷剂2C5可以含有以这些物质的总浓度计通常为99.5质量%以上的HFO-1132(E)和HFO-1234yf。本发明中,制冷剂2C5整体中的HFO-1132(E)和HFO-1234yf的总量优选为99.7质量%以上、更优选为99.8质量%以上、进一步优选为99.9质量%以上。
除了HFO-1132(E)和HFO-1234yf以外,制冷剂2C5可以在无损上述特性的范围内进一步含有其他制冷剂。这种情况下,制冷剂2C5整体中的其他制冷剂的含有比例优选为0.5质量%以下、更优选为0.3质量%以下、进一步优选为0.2质量%以下、特别优选为0.1质量%以下。作为其他制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。制冷剂2C5可以单独包含其他制冷剂,也可以包含2种以上的其他制冷剂。
制冷剂2C5特别优选仅由HFO-1132(E)和HFO-1234yf构成。换言之,制冷剂2C5特别优选制冷剂2C5整体中的HFO-1132(E)和HFO-1234yf的总浓度为100质量%。
制冷剂2C5仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例通常为12.1~72.0质量%,HFO-1234yf的含有比例通常为87.9~28.0质量%。
制冷剂2C5仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例优选为15.0~65.0质量%,HFO-1234yf的含有比例优选为85.0~35.0质量%。
制冷剂2C5仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例更优选为20.0~55.0质量%,HFO-1234yf的含有比例更优选为80.0~45.0质量%。
制冷剂2C5仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例进一步优选为25.0~50.0质量%,HFO-1234yf的含有比例进一步优选为75.0~50.0质量%。
制冷剂2C5仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例特别优选为30.0~45.0质量%,HFO-1234yf的含有比例特别优选为70.0~55.0质量%。
制冷剂2C5仅由HFO-1132(E)和HFO-1234yf构成的情况下,相对于HFO-1132(E)和HFO-1234yf的总质量,HFO-1132(E)的含有比例最优选为35.0~40.0质量%,HFO-1234yf的含有比例最优选为65.0~60.0质量%。
[制冷剂2C的实施例]
以下,举出实施例来进一步详细说明。但是,本发明并不限于这些实施例。
试验例1-1
实施例1-1~1-13、比较例1-1~1-2和参考例1-1(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001841
Figure BDA0003577350500001851
“蒸发温度-50℃”是指,制冷装置所具备的蒸发器中的混合制冷剂的蒸发温度为-50℃。另外,“冷凝温度40℃”是指,制冷装置所具备的冷凝器中的混合制冷剂的冷凝温度为40℃。
将试验例1-1的结果示于表217。表217示出本发明的制冷剂2C1的实施例和比较例。表217中,“COP比”和“制冷能力比”表示相对于R404A的比例(%)。
表217中,“饱和压力(40℃)”表示饱和温度40℃下的饱和压力。表217中,“排出温度(℃)”表示,在上述混合制冷剂的制冷循环理论计算中,制冷循环中温度最高的温度。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
压缩比通过下式求出。
压缩比=冷凝压力(Mpa)/蒸发压力(Mpa)
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。燃烧速度为0cm/s~10cm/s时作为“2L级(微可燃)”,燃烧速度超过10cm/s时作为“2级(弱可燃)”,无火焰传播时作为“1级(不可燃)”。表217中,“ASHRAE燃烧性区分”表示基于该判定基准的结果。
燃烧速度试验如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)实施测定。
具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。
<试验条件>
试验容器:
Figure BDA0003577350500001861
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g(23℃下的相对湿度50%的水含量)
制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=有火焰传播(可燃)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
Figure BDA0003577350500001871
试验例1-2
实施例1-14~1-26、比较例1-3~1-4和参考例1-2(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001881
上述术语的含义与试验例1-1相同。
将试验例1-2的结果示于表218。表218示出本发明的制冷剂2C1的实施例和比较例。表218中,各术语的含义与试验例1-1相同。
性能系数(COP)和压缩比与试验例1-1同样地求出。
混合制冷剂的燃烧性与试验例1-1同样地进行判断。燃烧速度试验与试验例1-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T),在与试验例1-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500001891
试验例1-3
实施例1-27~1-39、比较例1-5~1-6和参考例1-3(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001901
上述术语的含义与试验例1-1相同。
将试验例1-3的结果示于表219。表219示出本发明的制冷剂2C1的实施例和比较例。表219中,各术语的含义与试验例1-1相同。
性能系数(COP)和压缩比与试验例1-1同样地求出。
混合制冷剂的燃烧性与试验例1-1同样地进行判断。燃烧速度试验与试验例1-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例1-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500001911
试验例1-4
比较例1-7~1-21和参考例1-4(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001921
上述术语的含义与试验例1-1相同。
将试验例1-4的结果示于表220。表220示出本发明的制冷剂2C1的比较例。表220中,各术语的含义与试验例1-1相同。
性能系数(COP)和压缩比与试验例1-1同样地求出。
混合制冷剂的燃烧性与试验例1-1同样地进行判断。燃烧速度试验与试验例1-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例1-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500001931
试验例1-5
比较例1-22~1-36和参考例1-5(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001941
上述术语的含义与试验例1-1相同。
将试验例1-5的结果示于表221。表221示出本发明的制冷剂2C1的比较例。表221中,各术语的含义与试验例1-1相同。
性能系数(COP)和压缩比与试验例1-1同样地求出。
混合制冷剂的燃烧性与试验例1-1同样地进行判断。燃烧速度试验与试验例1-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例1-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500001951
试验例2-1
实施例2-1~2-6、比较例2-1~2-9和参考例2-1(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001961
“蒸发温度-50℃”是指,制冷装置所具备的蒸发器中的混合制冷剂的蒸发温度为-50℃。另外,“冷凝温度40℃”是指,制冷装置所具备的冷凝器中的混合制冷剂的冷凝温度为40℃。
将试验例2-1的结果示于表22。表22示出本发明的制冷剂2C2的实施例和比较例。表22中,“COP比”和“制冷能力比”表示相对于R404A的比例(%)。
表22中,“饱和压力(40℃)”表示饱和温度40℃下的饱和压力。表22中,“排出温度(℃)”表示,在上述混合制冷剂的制冷循环理论计算中,制冷循环中温度最高的温度。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
压缩比通过下式求出。
压缩比=冷凝压力(Mpa)/蒸发压力(Mpa)
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。燃烧速度为0cm/s~10cm/s时作为“2L级(微可燃)”,燃烧速度超过10cm/s时作为“2级(弱可燃)”,无火焰传播时作为“1级(不可燃)”。表22中,“ASHRAE燃烧性区分”表示基于该判定基准的结果。
燃烧速度试验如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)实施测定。
具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。
<试验条件>
试验容器:
Figure BDA0003577350500001971
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g(23℃下的相对湿度50%的水含量)
制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=有火焰传播(可燃)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
Figure BDA0003577350500001981
试验例2-2
实施例2-7~2-12、比较例2-10~2-18和参考例2-2(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500001991
上述术语的含义与试验例2-1相同。
将试验例2-2的结果示于表223。表223示出本发明的制冷剂2C2的实施例和比较例。表223中,各术语的含义与试验例2-1相同。
性能系数(COP)和压缩比与试验例2-1同样地求出。
混合制冷剂的燃烧性与试验例2-1同样地进行判断。燃烧速度试验与试验例2-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例2-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500002001
试验例2-3
实施例2-13~2-18、比较例2-19~2-27和参考例2-3(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002011
上述术语的含义与试验例2-1相同。
将试验例2-3的结果示于表224。表224示出本发明的制冷剂2C2的实施例和比较例。表224中,各术语的含义与试验例2-1相同。
性能系数(COP)和压缩比与试验例2-1同样地求出。
混合制冷剂的燃烧性与试验例2-1同样地进行判断。燃烧速度试验与试验例2-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例2-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500002021
试验例2-4
实施例2-19~2-24、比较例2-28~2-36和参考例2-4(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002031
上述术语的含义与试验例2-1相同。
将试验例2-4的结果示于表225。表225示出本发明的制冷剂2C2的实施例和比较例。表225中,各术语的含义与试验例2-1相同。
性能系数(COP)和压缩比与试验例2-1同样地求出。
混合制冷剂的燃烧性与试验例2-1同样地进行判断。燃烧速度试验与试验例2-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例2-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500002041
试验例2-5
实施例2-25~2-30、比较例2-37~2-45和参考例2-5(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度40℃下的饱和压力、冷凝压力和蒸发压力使用NIST和Refprop 9.0,在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002051
上述术语的含义与试验例2-1相同。
将试验例2-5的结果示于表226。表226示出本发明的制冷剂2C2的实施例和比较例。表226中,各术语的含义与试验例2-1相同。
性能系数(COP)和压缩比与试验例2-1同样地求出。
混合制冷剂的燃烧性与试验例2-1同样地进行判断。燃烧速度试验与试验例2-1同样地进行。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)在与试验例2-1相同的方法和试验条件下进行测定。
Figure BDA0003577350500002061
试验例3
实施例3-1~3-5、比较例3-1~3-5、参考例3-1(R134a)和参考例3-2(R404A)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度、饱和温度45℃下的饱和压力、冷凝压力和蒸发压力使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002071
“蒸发温度-10℃”是指,制冷装置所具备的蒸发器中的混合制冷剂的蒸发温度为-10℃。另外,“冷凝温度45℃”是指,制冷装置所具备的冷凝器中的混合制冷剂的冷凝温度为45℃。
将试验例3的结果示于表227。表227示出本发明的制冷剂2C3的实施例和比较例。表227中,“COP比”和“制冷能力比”表示相对于R134a的比例(%)。表227中,“饱和压力(45℃)”表示饱和温度45℃下的饱和压力。表227中,“排出温度(℃)”是指,在上述混合制冷剂的制冷循环理论计算中,制冷循环中温度最高的温度。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
临界温度使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),通过实施计算而求出。
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。燃烧速度为0cm/s~10cm/s时作为“2L级(微可燃)”,燃烧速度超过10cm/s时作为“2级(弱可燃)”,无火焰传播时作为“1级(不可燃)”。表227中,“ASHRAE燃烧性区分”表示基于该判定基准的结果。
燃烧速度试验如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)实施测定。
具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。
<试验条件>
试验容器:
Figure BDA0003577350500002081
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g(23℃下的相对湿度50%的水含量)
制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=有火焰传播(可燃)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
Figure BDA0003577350500002091
试验例4
实施例4-1~4-7和比较例4-1~4-5所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、排出温度和饱和温度-10℃下的饱和压力使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002101
“蒸发温度5℃”是指,制冷装置所具备的蒸发器中的混合制冷剂的蒸发温度为5℃。另外,“冷凝温度45℃”是指,制冷装置所具备的冷凝器中的混合制冷剂的冷凝温度为45℃。
将试验例4的结果示于表228。表228示出本发明的制冷剂2C4的实施例和比较例。表228中,“COP比”和“制冷能力比”表示相对于R1234yf的比例(%)。表228中,“饱和压力(-10℃)”表示作为冷藏条件的蒸发温度的代表值的饱和温度-10℃下的饱和压力。表228中,“排出温度(℃)”表示,在上述混合制冷剂的制冷循环理论计算中,制冷循环中温度最高的温度。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
临界温度使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),通过实施计算而求出。
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。燃烧速度为0cm/s~10cm/s时作为“2L级(微可燃)”,燃烧速度超过10cm/s时作为“2级(弱可燃)”,无火焰传播时作为“1级(不可燃)”。表228中,“ASHRAE燃烧性区分”表示基于该判定基准的结果。
燃烧速度试验如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
混合制冷剂的燃烧范围使用基于ASTM E681-09的测定装置(参照图1T)实施测定。
具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。
<试验条件>
试验容器:
Figure BDA0003577350500002111
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g(23℃下的相对湿度50%的水含量)
制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=有火焰传播(可燃)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
Figure BDA0003577350500002121
试验例5
实施例5-1~5-13、比较例5-1~5-3和参考例5-1(R134a)所示的混合制冷剂的GWP基于IPCC第4次报告书的值进行评价。
这些混合制冷剂的COP、制冷能力、沸点和排出温度使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002131
“蒸发温度-30℃”是指,制冷装置所具备的蒸发器中的混合制冷剂的蒸发温度为-30℃。另外,“冷凝温度30℃”是指,制冷装置所具备的冷凝器中的混合制冷剂的冷凝温度为30℃。
将试验例5的结果示于表229。表229示出本发明的制冷剂2C5的实施例和比较例。表229中,“COP比”和“制冷能力比”表示相对于R1234yf的比例(%)。表229中,“排出温度(℃)”表示,在上述混合制冷剂的制冷循环理论计算中,制冷循环中温度最高的温度的。表229中,“沸点(℃)”表示混合制冷剂的液相为大气压(101.33kPa)的温度。表229中,“动力的耗电量(%)”表示用于使电动汽车行驶的电能,其是以与使制冷剂为HFO-1234yf时的耗电量之比来表示的。表229中,“制暖的耗电量(%)”表示用于使电动汽车的制暖运转的电能,其是以与使制冷剂为HFO-1234yf时的耗电量之比来表示的。表229中,“可行驶距离”是指,在搭载有一定电容的二次电池的电动汽车中,将不制暖(制暖的消耗功率为0)而行驶时的可行驶距离设为100%时,以相对比例(%)来表示在有制暖下行驶时的可行驶距离。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
关于混合制冷剂的燃烧性,将混合制冷剂的混合组成作为WCF浓度,根据ANSI/ASHRAE34-2013标准测定燃烧速度,由此来进行判断。燃烧速度的测定如下进行。首先,使所使用的混合制冷剂为99.5%或其以上的纯度,反复进行冷冻、抽吸和解冻的循环,直至在真空计上看不到空气的痕迹为止,由此进行脱气。通过封闭法测定燃烧速度。初始温度为环境温度。点火是通过在样品池的中心使电极间产生电火花而进行的。放电的持续时间为1.0~9.9ms,点火能量典型地为约0.1~1.0J。使用纹影照片将火焰蔓延视觉化。使用具备使光通过的2个亚克力窗的圆筒形容器(内径:155mm、长度:198mm)作为样品池,使用氙灯作为光源。利用高速数字摄像机以600fps的帧速记录火焰的纹影图像,保存在PC中。
关于制暖方法,在沸点超过-40℃的制冷剂的情况下,制暖使用电加热器方式,在沸点为-40℃以下的制冷剂的情况下,制暖使用热泵方式。
制暖使用时的耗电量通过下式求出。
制暖使用时的耗电量=制暖能力/制暖COP
需要说明的是,制暖COP是指“制暖效率”。
关于制暖效率,在电加热器的情况下,制暖COP=1,制暖消耗与动力同等的电极。即,制暖的消耗功率为E=E/(1+COP)。另一方面,在热泵的情况下,使用美国国家科学与技术研究院(NIST)和参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出制暖COP。
Figure BDA0003577350500002141
可行驶距离通过下式求出。
可行驶距离=(电池容量)/(动力的耗电量+制暖的耗电量)
Figure BDA0003577350500002151
(1-6-4)制冷剂2D
本发明的制冷剂2D的特征在于,含有二氟甲烷(HFC-32)、2,3,3,3-四氟丙烯(HFO-1234yf)、以及1,1-二氟乙烯(HFO-1132a)和四氟乙烯(FO-1114)中的至少一种。并且,具有上述特征的本发明的制冷剂2D兼具下述三种性能:具有与R404A和/或R410A同等或更高的性能系数(COP)和制冷能力(Cap),且GWP足够小。
需要说明的是,本发明中,与R404A同等或更高的性能系数(COP)是指,相对于R404A的COP比为100%以上(优选为103%以上、更优选为105%以上),与R404A同等或更高的制冷能力(Cap)是指相对于R404A的Cap比为80%以上(优选为90%以上、更优选为95%以上、最优选为100%以上)。
另外,与R410A同等或更高的性能系数(COP)是指,相对于R410A的COP比为90%以上(优选为93%以上、更优选为95%以上、最优选为100%以上),与R410A同等或更高的制冷能力(Cap)是指,相对于R410A的Cap比为80%以上(优选为95%以上、更优选为99%以上、最优选为100%以上)。
此外,GWP足够小是指,GWP为500以下、优选为400以下、更优选为300以下,在后述第1方式的制冷剂2D的情况下,是指GWP为200以下、优选为170以下、更优选为150以下、进一步优选为130以下。
本发明的制冷剂2D含有HFO-1132a和FO-1114中的至少一种、以及HFC-32、HFO-1234yf即可,只要可发挥出上述性能则对其组成就没有特别限定,其中优选该制冷剂的GWP为500以下(特别是,在后述第1方式的制冷剂2D的情况下优选为170以下)的组成。关于HFO-1132a和FO-1114中的至少一种,可以包含任一者或两者,本发明中优选含有HFO-1132a。
具体而言,本发明的制冷剂2D优选含有HFC-32、HFO-1234yf以及HFO-1132a的方式,将这三种成分的总量设为100质量%,优选为包含HFO-1234yf、且包含15.0~24.0质量%的HFC-32、1.0~7.0质量%的HFO-1132a的混合制冷剂(第1方式的制冷剂2D;在图2D的放大图中,X所表示的四边形的范围内或上述四边形的线段上)。其中,优选为包含HFO-1234yf、且包含19.5~23.5质量%的HFC-32、3.1~3.7质量%的HFO-1132a的混合制冷剂(第1方式的优选的制冷剂2D;在图2D的放大图中,Y所表示的四边形的范围内或上述四边形的线段上)。若为上述组成范围,则容易发挥出本发明规定的效果。该第1方式的制冷剂2D作为R404A的替代制冷剂特别有用。
本发明的制冷剂2D(第1方式的制冷剂2D)的冷凝温度滑移优选为12℃以下、更优选为10℃以下、进一步优选为9℃以下。另外,压缩机出口压力优选为1.60~2.00MPa的范围内、更优选为1.73~1.91MPa的范围内。需要说明的是,本发明的制冷剂2D在与后述公知的制冷机油混合的情况下具有与制冷机油的相容性良好的特性。
上述第1方式的制冷剂2D在其组成范围内包含第2方式的制冷剂2D。
本发明的制冷剂2D(第2方式的制冷剂2D)的特征在于,其包含HFC-32、HFO-1234yf和HFO-1132a,在上述制冷剂中,将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点R(21.80,3.95,74.25)、
点S(21.80,3.05,75.15)以及
点T(20.95,75.30,3.75)
这3个点分别连结而成的线段RS、ST和TR所包围的三角形的范围内或上述线段上(图2D的放大图中,线段RS、ST和TR所包围的三角形的范围内或上述线段上)。
本发明的制冷剂2D(第2方式的制冷剂2D)在满足上述条件的情况下,具有与R404A同等或更高的性能系数(COP)和95%以上的制冷能力(Cap),GWP为150以下,冷凝温度滑移为9℃以下。
除了上述的第1方式和第2方式的制冷剂2D以外,本发明的制冷剂2D还包含下述的第3方式至第7方式的制冷剂2D。这些第3方式至第7方式的制冷剂2D作为R410A的替代制冷剂特别有用
本发明的制冷剂2D(第3方式的制冷剂2D)包含HFC-32、HFO-1234yf和HFO-1132a,
在上述制冷剂中,其特征在于,将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点L(74.0,19.9,6.1)、
点F(49.1,25.9,25.0)、
点G(0.0,48.6,51.4)、
点O(0.0,0.0,100)以及
点B(73.9,0.0,26.1)
这5个点分别连结而成的线段LF、FG、GO、OB和BL所包围的图形的范围内或上述线段上(其中,线段GO和OB上除外),
上述线段LF由
坐标(y=0.0021x2-0.4975x+45.264)所表示,
上述线段FG由
坐标(y=0.0031x2-0.6144x+48.6)所表示,并且,
上述线段GO、OB和BL为直线。
本发明的制冷剂2D(第3方式的制冷剂2D)在满足上述条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为500以下,以R410A为基准的压缩机出口压力为1.25倍以下。这种压缩机出口压力优选为3.4MPa以下、更优选为3.0MPa以下。
需要说明的是,对于线段EF(包括线段LF、线段PF),由本说明书的表和图的点E、实施例24和点F这3个点,利用最小二乘法求出近似曲线;对于线段FG,由点F、实施例26和点G这3个点,利用最小二乘法求出近似曲线。
本发明的制冷剂2D(第4方式的制冷剂2D)的特征在于,其包含HFC-32、HFO-1234yf和HFO-1132a,
在上述制冷剂中,将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点P(59.1,23.2,17.7)、
点F(49.1,25.9,25.0)、
点G(0.0,48.6,51.4)、
点O(0.0,0.0,100)和
点B’(59.0,0.0,40.2)
这5个点分别连结而成的线段PF、FG、GO、OB’和B’P所包围的图形的范围内或上述线段上(其中,线段GO和OB’上除外),
上述线段PF由
坐标(y=0.0021x2-0.4975x+45.264)所表示,
上述线段FG由
坐标(y=0.0031x2-0.6144x+48.6)所表示,并且,
上述线段GO、OB’和B’P为直线。
本发明的制冷剂2D(第4方式的制冷剂2D)在满足上述条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为400以下,以R410A为基准的压缩机出口压力变为1.25倍以下。这种压缩机出口压力优选为3.4MPa以下、更优选为3.0MPa以下。
本发明的制冷剂2D(第5方式的制冷剂2D)的特征在于,其包含HFC-32、HFO-1234yf和HFO-1132a,
在上述制冷剂中,将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点M(74.0,19.5,6.5)、
点I(62.9,15.5,21.6)、
点J(33.5,0.0,66.5)以及
点B(73.9,0.0,26.1)
这4个点分别连结而成的线段MI、IJ、JB和BM所包围的图形的范围内或上述线段上(其中,线段JB上除外),
上述线段MI由
坐标(y=0.006x2+1.1837x-35.264)所表示,
上述线段IJ由
坐标(y=0.0083x2-0.2719x-0.1953)所表示,并且,
上述线段JB和BM为直线。
本发明的制冷剂2D(第5方式的制冷剂2D)在满足上述条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为500以下,以R410A为基准的压缩机出口压力为1.25倍以下,这种压缩机出口压力优选为3.4Mpa以下、更优选为3.0Mpa以下。另外,冷凝温度滑移和蒸发温度滑移均小至5℃以下,特别适合作为R410A的替代。
需要说明的是,对于线段HI(包括线段MI),由本说明书的表和图的点H、实施例21和点I这3个点,利用最小二乘法求出近似曲线;对于线段IJ,由点I、实施例23和点J这3个点,利用最小二乘法求出近似曲线。
本发明的制冷剂2D(第6方式的制冷剂2D)的特征在于,其包含HFC-32、HFO-1234yf和HFO-1132a,
在上述制冷剂中,将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点Q(59.1,12.7,28.2)、
点J(33.5,0.0,66.5)以及
点B’(59.0,0.0,40.2)
这3个点分别连结而成的线段QJ、JB’和B’Q所包围的图形的范围内或上述线段上(其中,线段JB’上除外),
上述线段QJ由
坐标(y=0.0083x2-0.2719x-0.1953)所表示,并且,
上述线段JB’和B’Q为直线。
本发明的制冷剂2D(第6方式的制冷剂2D)在满足上述条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为400以下,以R410A为基准的压缩机出口压力为1.25倍以下,这种压缩机出口压力优选为3.4Mpa以下、更优选为3.0Mpa以下。另外,蒸发温度滑移小至5℃以下,优选为4℃以下、更优选为3.5℃以下,特别适合作为R410A的替代。
本发明的制冷剂2D(第7方式的制冷剂2D)的特征在于,其包含HFC-32、HFO-1234yf和HFO-1132a,
在上述制冷剂中,将HFC-32、HFO-1132a和HFO-1234yf的以它们的总和为基准的质量%分别设为x、y和z时,在HFC-32、HFO-1132a和HFO-1234yf的总和为100质量%的三成分组成图中,坐标(x,y,z)在将
点Q(59.1,12.7,28.2)、
点U(59.0,5.5,35.5)以及
点V(52.5,8.4,39.1)
这3个点分别连结而成的线段QU、UV和VQ所包围的图形的范围内或上述线段上,
上述线段VQ由
坐标(y=0.0083x2-0.2719x-0.1953)所表示,并且,
上述线段UV由
坐标(y=0.0026x2-0.7385x+39.946)所表示,
上述线段QU为直线。
本发明的制冷剂2D(第7方式的制冷剂2D)在满足上述条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap)(相对于R410A的制冷能力99%以上),GWP为400以下,以R410A为基准的压缩机出口压力为1.25倍以下,这种压缩机出口压力优选为3.4Mpa以下、更优选为3.0Mpa以下。另外,蒸发温度滑移小至5℃以下,优选为4℃以下、更优选为3.5℃以下,特别适合作为R410A的替代。
需要说明的是,对于线段UV,由本说明书的表和图2E的点U、实施例28和点V这3个点,利用最小二乘法求出近似曲线。
需要说明的是,如第1方式至第7方式的制冷剂2D中示例出的那样,本发明首次提出了使用HFO-1132a的R12、R22、R134a、R404A、R407A、R407C、R407F、R407H、R410A、R413A、R417A、R422A、R422B、R422C、R422D、R423A、R424A、R426A、R427A、R430A、R434A、R437A、R438A、R448A、R449A、R449B、R449C、R452A、R452B、R454A、R454B、R454C、R455A、R459A、R465A、R502、R507、R513A等现有制冷剂的替代制冷剂,本发明最广义地包括下述发明:“一种组合物,其为含有制冷剂的组合物,其中,上述制冷剂被用作含有1,1-二氟乙烯(HFO-1132a)的R12、R22、R134a、R404A、R407A、R407C、R407F、R407H、R410A、R413A、R417A、R422A、R422B、R422C、R422D、R423A、R424A、R426A、R427A、R430A、R434A、R437A、R438A、R448A、R449A、R449B、R449C、R452A、R452B、R454A、R454B、R454C、R455A、R459A、R465A、R502、R507或R513A的替代制冷剂。”。其中,包括下述发明作为优选的发明:“一种组合物,其为含有制冷剂的组合物,其中,上述制冷剂被用作含有1,1-二氟乙烯(HFO-1132a)的R410A的替代制冷剂。”。
<进一步含有其他追加的制冷剂的混合制冷剂>
本发明的制冷剂2D也可以为下述混合制冷剂,其中,除了HFO-1132a和FO-1114中的至少一种、以及HFC-32、HFO-1234yf以外,还可以在无损上述特性或效果的范围内进一步含有其他追加的制冷剂。这种情况下,HFO-1132a和FO-1114中的至少一种、以及HFC-32、HFO-1234yf的总量相对于本发明的制冷剂整体优选为99.5质量%以上且小于100质量%、更优选为99.75质量%以上且小于100质量%、进一步优选为99.9质量%%以上且小于100质量%。作为上述追加的制冷剂,没有特别限定,可以从该领域中广泛使用的公知的制冷剂中广泛选择。上述混合制冷剂可以单独包含上述追加的制冷剂,也可以包含2种以上上述追加的制冷剂。
[制冷剂2D的实施例]
以下,举出实施例来进一步详细说明。但是,本发明并不限于这些实施例。
实施例1~16和比较例1(与第1方式和第2方式的制冷剂2D对应)
实施例17~87和比较例2~18(与第3方式~第7方式的制冷剂2D对应)
各实施例和比较例所示的混合制冷剂的GWP、以及R404A(R125/143a/R134a=44/52/4重量%)、R410A(R32/R125=50/50重量%)的GWP基于IPCC(Intergovernmental panelon Climate Change,政府间气候变化专门委员会)第4次报告书的值进行评价。
另外,各实施例和比较例所示的混合制冷剂的COP和制冷能力、以及R404A的COP和制冷能力使用美国国家科学与技术研究院(NIST)、参考流体热力学和传输特性数据库(Refprop 9.0)求出。具体而言,实施例1~16和比较例1(与第1方式和第2方式的制冷剂2D对应)通过在下述条件下实施混合制冷剂的制冷循环理论计算来求出,
Figure BDA0003577350500002221
实施例17~87和比较例2~18(与第3方式~第7方式的制冷剂2D对应)通过在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002222
Figure BDA0003577350500002231
进而,关于使用各实施例和比较例所示的混合制冷剂时的冷凝温度滑移、蒸发温度滑移和压缩机出口压力,也使用Refprop 9.0求出。
另外,将基于这些结果计算出的GWP、COP和制冷能力示于表230和表231-1~表231-12。需要说明的是,关于COP比和制冷能力比,实施例1~16和比较例1表示相对于R404A的比例(%),实施例17~87和比较例2~18表示相对于R410A的比例(%)。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
【表230】
Figure BDA0003577350500002232
由表230的结果可知,特别是第2方式的制冷剂2D具有与R404A同等或更高的性能系数(COP)和95%以上的制冷能力(Cap),GWP为150以下,冷凝温度滑移为9℃以下,可知作为R404A替代制冷剂特别优异。
【表231-1】
Figure BDA0003577350500002241
【表231-2】
Figure BDA0003577350500002242
【表231-3】
Figure BDA0003577350500002243
【表231-4】
项目 单位 实施例30 实施例31 实施例32 实施例33 实施例34 比较例11 实施例35 实施例36
R32 质量% 30.0 40.0 50.0 60.0 70.0 80.0 30.0 40.0
R1132a 质量% 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0
R1234yf 质量% 65.0 55.0 45.0 35.0 25.0 15.0 60.0 50.0
GWP - 205 272 339 406 474 541 205 272
COP比 %(相对于R410A) 101 101 101 101 101 101 100 99
制冷能力比 %(相对于R410A) 79 86 93 99 104 109 86 93
压缩机出口压力比 %(相对于R410A) 80 87 93 97 101 105 88 95
冷凝滑移 7.6 5.9 4.5 3.5 2.8 2.2 8.9 7.0
蒸发滑移 6.8 5.4 4.1 3.1 2.4 2.0 8.1 6.5
【表231-5】
项目 单位 实施例37 实施例38 实施例39 比较例12 实施例40 实施例41 实施例42 实施例43
R32 质量% 50.0 60.0 70.0 80.0 30.0 40.0 50.0 60.0
R1132a 质量% 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
R1234yf 质量% 40.0 30.0 20.0 10.0 55.0 45.0 35.0 25.0
GWP - 339 406 473 541 205 272 339 406
COP比 %(相对于R410A) 99 99 99 100 98 98 98 98
制冷能力比 %(相对于R410A) 100 105 110 115 92 99 106 112
压缩机出口压力比 %(相对于R410A) 101 105 109 112 96 103 108 113
冷凝滑移 5.6 4.6 3.8 3.3 9.7 7.7 6.2 5.2
蒸发滑移 5.2 4.2 3.6 3.2 9.1 7.4 6.1 5.1
【表231-6】
项目 单位 实施例44 比较例13 实施例45 实施例46 实施例47 实施例48 实施例49 实施例50
R32 质量% 70.0 80.0 30.0 40.0 50.0 60.0 70.0 30.0
R1132a 质量% 15.0 15.0 20.0 20.0 20.0 20.0 20.0 25.0
R1234yf 质量% 15.0 5.0 50.0 40.0 30.0 20.0 10.0 45.0
GWP - 473 540 205 272 339 406 473 205
COP比 %(相对于R410A) 98 98 97 96 96 96 97 95
制冷能力比 %(相对于R410A) 117 121 98 106 112 118 122 104
压缩机出口压力比 %(相对于R410A) 116 119 104 111 116 120 124 112
冷凝滑移 4.5 3.9 9.9 7.9 6.4 5.5 4.8 9.7
蒸发滑移 4.5 4.1 9.8 8.0 6.7 5.8 5.2 10.2
【表231-7】
项目 单位 实施例51 实施例52 比较例14 比较例15 实施例53 比较例16 比较例17 比较例18
R32 质量% 40.0 50.0 60.0 70.0 30.0 40.0 50.0 60.0
R1132a 质量% 25.0 25.0 25.0 25.0 30.0 30.0 30.0 30.0
R1234yf 质量% 35.0 25.0 15.0 5.0 40.0 30.0 20.0 10.0
GWP - 272 339 406 473 204 272 339 406
COP比 %(相对于R410A) 95 95 95 95 93 93 93 93
制冷能力比 %(相对于R410A) 112 118 123 128 110 117 123 129
压缩机出口压力比 %(相对于R410A) 119 124 128 131 120 127 132 136
冷凝滑移 7.7 6.3 5.4 4.8 9.2 7.3 6.0 5.1
蒸发滑移 8.3 7.0 6.2 5.7 10.3 8.4 7.1 6.4
【表231-8】
项目 单位 实施例54 实施例55 实施例56 实施例57 实施例58 实施例59 实施例60 实施例61
R32 质量% 39.0 41.0 43.0 45.0 47.0 49.0 51.0 53.0
R1132a 质量% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
R1234yf 质量% 60.0 58.0 56.0 54.0 52.0 50.0 48.0 46.0
GWP - 266 279 293 306 319 333 346 360
COP比 %(相对于R410A) 102 102 102 102 102 102 102 102
制冷能力比 %(相对于R410A) 80 82 83 85 86 87 88 90
压缩机出口压力比 %(相对于R410A) 80 81 83 84 85 86 87 88
冷凝滑移 4.6 4.3 4.1 3.8 3.6 3.3 3.1 2.9
蒸发滑移 4.4 4.1 3.9 3.6 3.3 3.1 2.9 2.7
【表231-9】
项目 单位 实施例62 实施例63 实施例64 实施例65 实施例66 实施例67 实施例68 实施例69
R32 质量% 55.0 57.0 59.0 45.0 47.0 49.0 51.0 53.0
R1132a 质量% 1.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0
R1234yf 质量% 44.0 42.0 40.0 52.0 50.0 48.0 46.0 44.0
GWP - 373 386 400 306 319 333 346 360
COP比 %(相对于R410A) 102 102 102 101 101 101 101 101
制冷能力比 %(相对于R410A) 91 92 93 87 89 90 91 92
压缩机出口压力比 %(相对于R410A) 89 90 91 87 88 89 90 91
冷凝滑移 2.7 2.5 2.3 4.5 4.3 4.0 3.8 3.6
蒸发滑移 2.5 2.3 2.1 4.2 3.9 3.7 3.4 3.2
【表231-10】
项目 单位 实施例70 实施例71 实施例72 实施例73 实施例74 实施例75 实施例76 实施例77
R32 质量% 55.0 57.0 59.0 47.0 49.0 51.0 53.0 55.0
R1132a 质量% 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0
R1234yf 质量% 42.0 40.0 38.0 48.0 46.0 44.0 42.0 40.0
GWP - 373 386 400 319 333 346 359 373
COP比 %(相对于R410A) 101 101 101 101 101 101 101 101
制冷能力比 %(相对于R410A) 93 95 96 91 92 94 95 96
压缩机出口压力比 %(相对于R410A) 92 93 94 91 92 93 94 95
冷凝滑移 3.4 3.2 3.0 4.9 4.6 4.4 4.2 3.9
蒸发滑移 3.0 2.8 2.7 4.4 4.2 4.0 3.7 3.5
【表231-11】
项目 单位 实施例78 实施例79 实施例80 实施例81 实施例82 实施例83 实施例84 实施例85
R32 质量% 57.0 59.0 53.0 55.0 57.0 59.0 55.0 57.0
R1132a 质量% 5.0 5.0 7.0 7.0 7.0 7.0 9.0 9.0
R1234yf 质量% 38.0 36.0 40.0 38.0 36.0 34.0 36.0 34.0
GWP - 386 400 359 373 386 400 373 386
COP比 %(相对于R410A) 101 101 100 100 100 100 100 100
制冷能力比 %(相对于R410A) 97 98 98 99 100 101 101 102
压缩机出口压力比 %(相对于R410A) 96 97 97 98 99 100 101 102
冷凝滑移 3.8 3.6 4.7 4.4 4.2 4.1 4.9 4.7
蒸发滑移 3.4 3.2 4.2 4.0 3.8 3.7 4.5 4.3
【表231-12】
项目 单位 实施例86 实施例87
R32 质量% 59.0 59.0
R1132a 质量% 9.0 11.0
R1234yf 质量% 32.0 30.0
GWP - 400 400
COP比 %(相对于R410A) 100 99
制冷能力比 %(相对于R410A) 104 106
压缩机出口压力比 %(相对于R410A) 103 106
冷凝滑移 4.5 4.8
蒸发滑移 4.1 4.5
由上述表231-1至表231-12的结果可知,第3方式的制冷剂2D在满足规定条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为500以下,以R410A为基准的压缩机出口压力为1.25倍以下。第4方式的制冷剂2D在满足规定条件的情况下,可知:具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为400以下,以R410A为基准的压缩机出口压力为1.25倍以下。第5方式的制冷剂2D在满足规定条件的情况下,可知:具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为500以下,以R410A为基准的压缩机出口压力为1.25倍以下,并且冷凝温度滑移和蒸发温度滑移均小至5℃以下。另外,第6方式的制冷剂2D在满足规定条件的情况下,可知:具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap),GWP为400以下,以R410A为基准的压缩机出口压力为1.25倍以下,并且蒸发温度滑移小至5℃以下。另外,可知:第7方式的制冷剂2D在满足规定条件的情况下,具有与R410A同等或更高的性能系数(COP)和制冷能力(Cap)(99%以上相对于R410A),GWP为400以下,以R410A为基准的压缩机出口压力为1.25倍以下,并且蒸发温度滑移小至5℃以下。这些第3方式至第7方式的制冷剂2D均适合作为R410A的替代制冷剂,特别是冷凝温度滑移和/或蒸发温度滑移小的第5方式或第6方式的制冷剂2D特别适合作为R410A的替代制冷剂。进而,冷凝温度滑移和/或蒸发温度滑移小、并且为与R410A同等或更高的性能系数(COP)和制冷能力(Cap)(99%以上相对于R410A的)的第7方式的制冷剂2D作为R410A的替代制冷剂更加优异。
(1-6-5)制冷剂2E
本发明的制冷剂2E是含有R32、CO2、R125、R134a和R1234yf的混合制冷剂。
本发明的制冷剂2E具有下述通常对于R410A替代制冷剂所要求的各种特性:(1)GWP为750以下;(2)为WCF不可燃或ASHRAE不可燃;以及(3)具有与R410A同等的COP和制冷能力。
除了上述以外,本发明的制冷剂2E具有温度滑移,因此通过在具有制冷剂的流动与外部热介质的流动为逆流的热交换器的制冷机中使用,还起到改善能量效率和/或制冷能力的效果。
本发明的制冷剂2E在满足下述条件1-1-1~1-3-2时,GWP为750以下,并且为WCF不可燃,故优选。需要说明的是,以下,以R32、CO2、R125、R134a和R1234yf的总和为基准,将R32的质量%设为a、CO2的质量%设为b、R125的质量%设为c1、R134a的质量%设为c2、R125和R134a的合计质量%设为c、R1234yf的质量%设为x、c1/(c1+c2)设为r。
以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中,
条件1-1-1)
在43.8≥x≥41、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.25~0.5((-2.2857x+87.314)r2+(1.7143x-55.886)r+(-0.9643x+55.336),(2.2857x-112.91)r2+(-1.7143x+104.69)r+(-0.25x+11.05),100-a-b-x)、
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.25~0.5Q和QA上的点除外),或者,
条件1-1-2)
在43.8≥x≥41、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-c,0.0)、
点Or=0.5~1.0((-0.2857x+8.5143)r2+(0.5x-10.9)+(-0.8571x+52.543),(-0.2857x+4.5143)r2+(0.5x+0.9)r+(-0.7143x+33.586),100-a-b-x)、
点Dr=0.5~1.0(0.0,(-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.5~1.0Q和QA上的点除外),或者,
1-2-1)
在46.5≥x≥43.8、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.25~0.5((1.1852x-64.711)r2+(-0.7407x+51.644)r+(-0.5556x+37.433),(-2.3704x+91.022)r2+(2.0741x-61.244)r+(-0.963x+42.278),100-a-b-x)、
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.25~0.5Q和QA上的点除外),或者,
条件1-2-2)
在46.5≥x≥43、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.5~1.0((0.2963x-16.978)r2+(-0.3704x+27.222)r+(-0.5185x+37.711),-8.0r2+22.8r+(-0.5185x+25.011),100-a-b-x)、
点Dr=0.5~1.0(0.0,-12.8r2+37.2r+(-x+54.3),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.5~1.0Q和QA上的点除外),
条件1-3-1)
在50≥x≥46.5、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.25~0.5(-9.6r2+17.2r+(-0.6571x+42.157),-19.2r2+(0.2286x+24.571)r+(-0.6286x+26.729),100-a-b-x)、
点Dr=0.25~0.5(0.0,(0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914),100-b-x)和
点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.25~0.5Q和QA上的点除外),或者,
条件1-3-2)
在50≥x≥46.5、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点A(-0.6902x+43.307,100-a-x,0.0)、
点Or=0.5~1.0((-0.2286x+7.4286)r2+(0.4x-8.6)r+(-0.8x+50.8),(0.2286x-18.629)r2+(-0.2857x+36.086)r+(-0.4286x+20.829),100-a-b-x)、
点Dr=0.5~1.0(0.0,(0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329),100-b-x)和点Q(0.0,100-x,0.0)
连结而成的线段所包围的四边形的范围内或该线段上(其中,线段Dr=0.5~1.0Q和QA上的点除外)。
本发明的制冷剂2E在满足下述条件2-1-1~2-3-2时,GWP为750以下,并且为ASHRAE不可燃,故优选。
条件2-1-1)
在43.8≥x≥41、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点Fr=0.25~0.5(0.0,(-1.1429x+37.257)r2+(1.2857x-38.714)r-(-1.7143x+106.89),100-b-x)、
点Pr=0.25~0.5((-1.1429x+34.057)r2+(1.0x-21.0)r+(-0.4643x+27.636),(2.2857x-119.31)r2+(-2.0x+122.0)r+(-0.3929x+19.907),100-a-b-x)和
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.25~ 0.5Fr=0.25~0.5上的点除外),或者,
条件2-1-2)在43.8≥x≥41、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点Fr=0.5~1.0(0.0,(3.7143x-159.49)r2+(-5.0714x+222.53)r+(0.25x+25.45),100-b-x)、
点Pr=0.5~1.0((3.4286x-138.17)r2+(-5.4286x+203.57)+(1.6071x-41.593),(-2.8571x+106.74)r2+(4.5714x-143.63)r+(-2.3929x+96.027),100-a-b-x)和
点Dr=0.5~1.0(0.0,(-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.5~ 1.0Fr=0.5~1.0上的点除外),或者,
2-2-1)在46.5≥x≥43、并且0.5≥r≥0.25时,坐标(a,b,c)在将
点Fr=0.25~0.5(0.0,(9.4815x-428.09)r2+(-7.1111x+329.07)r+(-0.2593x+43.156),100-b-x)、
点Pr=0.25~0.5((-8.2963x+347.38)r2+(4.8889x-191.33)r+(-0.963x+49.478),(7.1111x-330.67)r2+(-4.1481x+216.09)r+(-0.2593x+14.056),100-a-b-x)和
点Dr=0.25~0.5(0.0,-28.8r2+54.0r+(-x+49.9),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.25~ 0.5Fr=0.25~0.5上的点除外),或者,
2-2-2)在46.5≥x≥43、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点Fr=0.5~1.0(0.0,(-4.7407x+210.84)r2+(6.963x-304.58)r+(-3.7407x+200.24),100-b-x)、
点Pr=0.5~1.0((0.2963x-0.9778)r2+(0.2222x-43.933)r+(-0.7778x+62.867),(-0.2963x-5.4222)r2+(-0.0741x+59.844)r+(-0.4444x+10.867),100-a-b-x)和
点Dr=0.5~1.0(0.0,-12.8r2+37.2r+(-x+54.3),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.5~ 1.0Fr=0.5~1.0上的点除外),或者,
2-3-1)在50≥x≥46.5、并且0.37≥r≥0.25时,坐标(a,b,c)在将
点Fr=0.25~0.37(0.0,(-35.714x+1744.0)r2+(23.333x-1128.3)r+(-5.144x+276.32),100-b-x)、
点Pr=0.25~0.37((11.905x-595.24)r2+(-7.6189x+392.61)r+(0.9322x-39.027),(-27.778x+1305.6)r2+(17.46x-796.35)r+(-3.5147x+166.48),100-a-b-x)和
点Dr=0.25~0.37(0.0,(0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.25~ 0.37Fr=0.25~0.37上的点除外),或者,
2-3-2)在50≥x≥46.5、并且1.0≥r≥0.5时,坐标(a,b,c)在将
点Fr=0.5~1.0(0.0,(2.2857x-115.89)r2+(-3.0857x+162.69)r+(-0.3714x+43.571),100-b-x)、
点Pr=0.5~1.0((-3.2x+161.6)r2+(4.4571x-240.86)r+(-2.0857x+123.69),(2.5143x-136.11)r2+(-3.3714x+213.17)r+(0.5429x-35.043),100-a-b-x)和
点Dr=0.5~1.0(0.0,(0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329),100-b-x)
连结而成的线段所包围的三角形的范围内或该线段上(其中,线段Dr=0.5~ 1.0Fr=0.5~1.0上的点除外)。
除了R32、CO2、R125、R134a和R1234yf以外,本发明的制冷剂2E也可以在无损上述特性或效果的范围内进一步含有其他追加的制冷剂和/或不可避免的杂质。从该方面考虑,本发明的制冷剂2E优选相对于制冷剂2E整体包含合计为99.5质量%以上的R32、CO2、R125、R134a和R1234yf。此时,追加的制冷剂和不可避免的杂质的总含量相对于制冷剂2E整体为0.5质量%以下。从该方面考虑,制冷剂2E更优选相对于制冷剂2E整体包含合计为99.75质量%以上的R32、CO2、R125、R134a和R1234yf,进一步优选包含99.9质量%以上。
作为追加的制冷剂,没有特别限定,可以广泛选择。混合制冷剂可以单独包含一种追加的制冷剂,也可以包含两种以上。
[制冷剂2E的实施例]
以下,举出实施例进一步详细说明。但是,本发明并不限于这些实施例。
1.WCF不可燃极限、以及ASHRAE不可燃极限(WCF&WCFF不可燃)的计算
仅由R32、CO2、R125、R134a和R1234yf构成的混合制冷剂的组成如下表示。即,以R32、CO2、R125、R134a和R1234yf的总和为基准、将R32的质量%设为a、CO2的质量%设为b、R125的质量%设为c1、R134a的质量%设为c2、R125和R134a的合计质量%设为c、R1234yf的质量%设为x、c1/(c1+c2)设为r的情况下,根据以R32为(100-x)质量%的点、CO2为(100-x)质量%的点、及R125和R134a的合计为(100-x)质量%的点为顶点的三成分组成图中的坐标(a,b,c)来特定该混合制冷剂的组成。
以下,说明x=41质量%、r=0.25时的WCF不可燃极限和ASHRAE不可燃极限的特定方法。
为了利用三成分组成图特定不可燃极限,首先需要求出可燃性制冷剂(R32、1234yf)与不可燃性制冷剂(CO2、R134a、R125)的2元混合制冷剂的不可燃极限。以下示出该2元混合制冷剂的不可燃极限的求法。
[1]可燃性制冷剂(R32,1234yf)与不可燃性制冷剂(CO2、R134a、R125)的2元混合制冷剂的不可燃极限
2元混合制冷剂的不可燃极限根据基于ASTM E681-2009的燃烧试验的测定装置(图2F)和测定方法求出。
具体而言,为了能够目视和录像拍摄燃烧的状态而使用内容积12升的球形玻璃烧瓶,玻璃烧瓶因燃烧而产生过大的压力时,气体会从上部的盖子被释放。关于点火方法,通过由保持在距离底部为1/3高度的电极的放电来产生。试验条件如下。
<试验条件>
试验容器:
Figure BDA0003577350500002331
球形(内容积:12升)
试验温度:60℃±3℃
压力:101.3kPa±0.7kPa
水分:每1g干燥空气为0.0088g±0.0005g
2元制冷剂组合物/空气混合比:每1vol.%±0.2vol.%
2元制冷剂组合物混合:±0.1质量%
点火方法:交流放电、电压15kV、电流30mA、氖变压器
电极间隔:6.4mm(1/4英寸)
闪火花:0.4秒±0.05秒
判定基准:
·以着火点为中心,火焰蔓延大于90度时=燃烧(传播)
·以着火点为中心,火焰蔓延为90度以下时=无火焰传播(不可燃)
对于表232中记载的可燃性制冷剂和不可燃性制冷剂的组合,分别进行了试验。将不可燃性制冷剂阶段性地添加到可燃性制冷剂中,在各阶段进行燃烧试验。
其结果,在可燃性制冷剂R32与不可燃性制冷剂R134a的混合制冷剂中,从R32=43.0质量%、R134a=57.0质量%开始无法确认到火焰传播,将该组成作为不可燃极限。另外,在可燃性制冷剂R32与不可燃性制冷剂R125中,从R32=63.0质量%、R125=37.0质量%开始无法确认到火焰传播,在可燃性制冷剂R32与不可燃性制冷剂CO2中,从R32=43.5质量%、CO2=56.5质量%开始无法确认到火焰传播,在可燃性制冷剂1234yf与不可燃性制冷剂R134a中,从1234yf=62.0质量%、R134a=38.0质量%开始无法确认到火焰传播,在可燃性制冷剂1234yf与不可燃性制冷剂R125中,从1234yf=79.0质量%、R125=21.0质量%开始无法确认到火焰传播,在可燃性制冷剂1234yf与不可燃性制冷剂CO2中,从1234yf=63.0质量%、CO2=37.0质量%开始无法确认到火焰传播,将这些组成作为不可燃极限。结果归纳在表232中。
【表232】
项目 可燃性制冷剂 不可燃性制冷剂
2元混合制冷剂组合 R32 R134a
不可燃极限(重量%) 43.0 57.0
2元混合制冷剂组合 R32 R125
不可燃极限(重量%) 63.0 37.0
2元混合制冷剂组合 R32 CO<sub>2</sub>
不可燃极限(重量%) 43.5 56.5
2元混合制冷剂组合 1234yf R134a
不可燃极限(重量%) 62.0 38.0
2元混合制冷剂组合 1234yf R125
不可燃极限(重量%) 79.0 21.0
2元混合制冷剂组合 1234yf CO<sub>2</sub>
不可燃极限(重量%) 63.0 37.0
接着,基于[1]中求出的2元混合制冷剂的不可燃极限,如下求出x=41质量%、r=0.25时的不可燃极限。
1)x=41质量%、r=0.25、c=0质量%的情况下点A(a,b,0)
设a+b=59质量%,按照下述顺序调查混合组成是否为不可燃极限组成。
(1)R32换算可燃制冷剂浓度=R32浓度+R1234yf浓度×((21/79)×(63/37)+(38/62)×(43/57))/2
(2)R32换算不可燃制冷剂浓度=R125浓度×(63/37)+R134a浓度×(43/57)+CO2浓度×(43.5/56.5)
此处,将R32换算不可燃制冷剂组成-R32换算可燃制冷剂组成的值为正且示出最小值的值作为计算上的不可燃极限组成。计算结果示于表233,点A(15.0,44.0,0)为计算上的不可燃极限组成。
【表233】
Figure BDA0003577350500002351
2)x=41质量%、r=0.25、b=30质量%的情况下点(a,30,c)
设a+c=29质量%,按照与上述同样的步骤求出该条件下的不可燃极限组成,将其结果示于表234。
【表234】
Figure BDA0003577350500002352
3)x=41质量%、r=0.25、b=15质量%的情况下点(a,15,c)
设a+c=44质量%,按照与上述同样的步骤求出该条件下的不可燃极限组成,将其结果示于表235。
【表235】
Figure BDA0003577350500002361
4)x=41质量%、r=0.25、b=0质量%的情况下点Br=0.25(a,0,c)
设a+c=59质量%,按照与上述同样的步骤求出该条件下的不可燃极限组成,将其结果示于表236。
【表236】
Figure BDA0003577350500002362
将调查上述计算上的不可燃极限组成的结果示于图2J的三成分组成图中。将这些点连结而成的线为图2J的ABr=0.25
[2]基于燃烧试验来验证由上述[1]中得到的2元混合制冷剂的不可燃极限求出的WCF不可燃临界点
对于表233所示的组成、
可燃极限组成-1-1)(R32/CO2/R125/R134a)=(15.1/43.9/0.0/0.0)、
不可燃极限组成-1-2)(R32/CO2/R125/R134a)=(15.0/44.0/0.0/0.0)、
表235所示的组成、
可燃极限组成-2-1)(R32/CO2/R125/R134a)=(18.3/15.0/6.4/19.3)、
不可燃极限组成-2-2)(R32/CO2/R125/R134a)=(18.2/15.0/6.5/19.3),
根据[1]所示的ASTM E681进行了燃烧试验,结果组成-1-1)、组成-2-1)确认到火焰传播,组成1-1-2)、组成-2-2)未确认到火焰传播。因此,可以说由2元混合制冷剂的不可燃极限求出的混合制冷剂的不可燃极限表示实际的不可燃极限。
以上,将由2元混合制冷剂的不可燃极限求出的混合制冷剂的不可燃极限组成作为WCF不可燃临界点。另外,如图2J所示,WCF不可燃临界点在线段ABr=0.25上,因此将由点A、点Br=0.25这2点求出的线段ABr=0.25作为WCF不可燃极限线。
另一方面,关于为ASHRAE不可燃(WCF不可燃以及WCFF不可燃),基于混合制冷剂的最易燃的组成(WCF)、以及WCF组成,进行储藏/输送时的泄漏试验、从装置的泄漏试验、泄漏和再填充试验,最差条件的最易燃的组成(WCFF)为不可燃。以下,WCFF浓度根据NIST标准参考数据库Refleak版本4.0(下文中有时记为“Refleak”)进行各种条件下的泄漏模拟而求出。另外,关于所求出的WCFF组成为不可燃极限,通过由WCF不可燃极限所示的2元混合制冷剂的不可燃极限求出混合制冷剂的不可燃极限的方法来确认。
以下说明x=41质量%、r=0.25时的ASHRAE不可燃极限的求法。
5)x=41质量%、r=0.25、a=0质量%的情况下点Br=0.25(0.0,b,c(c1+c2))
根据Refleak进行了储藏/输送时的泄漏试验、从装置的泄漏试验、泄漏·再填充试验,结果储藏/输送时的泄漏条件是最易燃的条件,并且,-40℃下的泄漏是最易燃的条件。因此,对于ASHRAE不可燃极限,通过Refleak的泄漏模拟在储藏/输送时、-40℃下进行泄漏试验,按照下述顺序求出。表237示出成为泄漏模拟中的可燃/不可燃的极限的代表值。初始组成为(0.0,39.5,19.5(4.9+14.6))时,在输送和储藏条件下,-40℃、52%放出时变为大气压,此时液体侧的浓度为x=67.0质量%(0.0,2.5,30.5(6.1+24.4)),在上述不可燃判定中在大气压条件下为不可燃的极限。另一方面,初始组成为(0.0,39.6,19.4(4.9+14.5))时,在-40℃、52%放出时变为大气压,此时液体侧浓度为x=67.1%(0.0,2.6,30.3(6.1+24.2)),在上述不可燃判定中为可燃。因此,初始组成将(0.0,39.5,19.5(4.9+14.6))作为WCF组成的情况下,WCF组成、WCFF组成均判断为计算上不可燃,因此(0.0,39.5,19.5(4.9+14.6))为ASHRAE不可燃极限组成。
【表237】
Figure BDA0003577350500002381
6)x=41质量%、r=0.25、a质量%且GWP=750时的点Pr=0.25(a,b,c(c1+c2))
在X=41.0质量%、r=0.25的条件下,如图2J所示,在a+b+c=100-x=59质量%所表示的三成分组成图中GWP=750的点在点Cr=0.25(31.6,0.0,27.4(6.9+20.5))和点Dr=0.25(0.0,20.6,38.4(9.6+28.8))连结而成的直线Cr=0.25Dr=0.25上,该直线由c1=-0.085a+9.6所表示。对于GWP=750且为ASHRAE不可燃极限的Pr=0.25(a,-0.085c1+9.6,c),在该条件下设定初始组成,根据Refleak在储藏/输送的条件下进行-40℃模拟,由此如表238所示求出ASHRAE不可燃极限组成。
【表238】
Figure BDA0003577350500002382
7)x=41质量%、r=0.25、a=10.0质量%时的点(a,b,c(c1+c2))
将与上述同样调查的结果示于表239。
【表239】
Figure BDA0003577350500002391
8)x=41质量%、r=0.25、a=5.8质量%时的点(a,b,c(c1+c2))
将与上述同样调查的结果示于表240。
【表240】
Figure BDA0003577350500002392
[2]基于燃烧试验的验证由上述得到的2元混合制冷剂的不可燃极限求出的ASHRAE不可燃临界点
对于下述组成,根据[1]所示的ASTM E681进行了燃烧试验,结果组成-3-1)、组成-4-1)、以及组成5-1)未确认到火焰传播,组成-3-2)、组成-4-2)以及组成-5-2)确认到了火焰传播。因此,可以说表237、238、239的计算所示的ASHRAE不可燃极限表示实际的不可燃极限。
组成3-1)
x=R1234yf=41.0质量%、(R32/CO2/R125/R134a)=(0.0/39.5/4.9/14.6)的-40℃、52%放出时的液体侧组成、x=67.0%、(R32/CO2/R125/R134a)=(0.0/2.5/6.1/24.4)
组成3-2)
x=R1234yf=41.0质量%、(R32/CO2/R125/R134a)=(0.0/39.6/4.9/14.5)的-40℃、52%放出时的液体侧组成、x=67.1%、(R32/CO2/R125/R134a)=(0.0/2.6/6.1/24.2)
组成4-1)
x=R1234yf=41.0质量%、(R32/CO2/R125/R134a)=(12.8/12.2/8.5/25.5)的-40℃、38%放出时的气体侧组成、x=40.1%、(R32/CO2/R125/R134a)=(21.8/5.1/12.4/20.6)
组成4-2)
x=R1234yf=41.0质量%、(R32/CO2/R125/R134a)=(12.9/12.1/8.5/25.5)的-40℃、38%放出时的气体侧组成、x=41.1%、(R32/CO2/R125/R134a)=(21.4/3.8/12.4/21.3)
组成5-1)
x=R1234yf=41.0质量%、(R32/CO2/R125/R134a)=(5.8/30.0/5.8/17.4)的-40℃、50%放出时的液体侧组成、x=61.2%、(R32/CO2/R125/R134a)=(4.1/1.1/6.4/27.2)
组成5-2)
x=R1234yf=41.0质量%、(R32/CO2/R125/R134a)=(5.8/30.1/5.8/17.3)的-40℃、50%放出时的液体侧组成、x=61.4%、(R32/CO2/R125/R134a)=(4.1/1.1/6.4/27.0)
图2J中示出由表237、238、239、240所示的ASHRAE不可燃临界点、点Fr=0.25和点Pr=0.25连结而成的直线Fr=0.25Pr=0.25。如图2J所示,ASHRAE不可燃临界点相较于直线Fr= 0.25Pr=0.25靠近可燃制冷剂R32侧,还考虑到安全率,此处将求出点Fr=0.25、点Pr=0.25而得到的直线Fr=0.25Pr=0.25作为ASHRAE不可燃极限线。
以上,由2元混合制冷剂的不可燃极限求出的WCF不可燃极限线、基于由根据Refleak的泄漏模拟求出的WCFF组成由2元混合制冷剂的不可燃极限求出的ASHRAE不可燃极限线与实际各自的不可燃极限线一致,因此,此后利用上述方法求出各自的不可燃极限,将线段ABr作为WCF不可燃极限线,将线段FrPr作为ASHRAE不可燃极限线。
表241至表244示出由2元混合制冷剂的不可燃极限求出的混合制冷剂的WCF不可燃临界点,表245至表248中示出由泄漏模拟和2元混合制冷剂的不可燃极限求出的ASHRAE不可燃临界点。
【表241】
Figure BDA0003577350500002411
【表242】
Figure BDA0003577350500002412
【表243】
Figure BDA0003577350500002413
【表244】
Figure BDA0003577350500002421
【表245】
Figure BDA0003577350500002422
【表246】
Figure BDA0003577350500002431
【表247】
Figure BDA0003577350500002441
Figure BDA0003577350500002442
【表248】
Figure BDA0003577350500002451
Figure BDA0003577350500002452
实施例1~222和比较例1~206
含有R410A、R32、R125、R1234yf、R134a和CO2的混合物的组合物的GWP基于IPCC(Intergovernmental panel on Climate Change,政府间气候变化专门委员会)第4次报告书的值进行评价。另外,含有R410A以及R32、R125、R1234yf、R134a和CO2的混合物的组合物的制冷能力使用美国国家科学与技术研究院(NIST)参考流体热力学和传输特性数据库(Refprop 9.0),在下述条件下实施混合制冷剂的制冷循环理论计算来求出。
Figure BDA0003577350500002461
另外,将基于这些结果计算出的GWP、COP和制冷能力示于表249~280。需要说明的是,关于COP和制冷能力,示出相对于R410A的比例。
性能系数(COP)通过下式求出。
COP=(制冷能力或制暖能力)/耗电量
【表249】
41%R1234yf,r=0.25
Figure BDA0003577350500002471
41%R1234yf,r=0.375
Figure BDA0003577350500002472
41%R1234yf,r=0.5
Figure BDA0003577350500002473
41%R1234yf,r=0.75
Figure BDA0003577350500002481
41%R1234yf,r=1.0
Figure BDA0003577350500002482
【表250】
43.8%R1234yf,r=0.25
Figure BDA0003577350500002491
43.8%R1234yf,r=0.375
Figure BDA0003577350500002492
43.8%R1234yf,r=0.5
Figure BDA0003577350500002493
43.8%R1234yf,r=0.75
Figure BDA0003577350500002501
43.8%R1234yf,r=1.0
Figure BDA0003577350500002502
【表251】
46.5%R1234yf,r=0.25
Figure BDA0003577350500002511
46.5%R1234yf,r=0.375
Figure BDA0003577350500002512
46.5%R1234yf,r=0.5
Figure BDA0003577350500002513
46.5%R1234yf,r=0.75
Figure BDA0003577350500002521
46.5%R1234yf,r=1.0
Figure BDA0003577350500002522
【表252】
46.5%R1234yf,r=0.31
Figure BDA0003577350500002531
46.5%R1234yf,r=0.37
Figure BDA0003577350500002532
【表253】
50%R1234yf,r=0.25
Figure BDA0003577350500002541
50%R1234yf,r=0.375
Figure BDA0003577350500002542
【表254】
50%R1234yf,r=0.5
Figure BDA0003577350500002551
50%R1234yf,r=0.75
Figure BDA0003577350500002552
50%R1234yf,r=1.0
Figure BDA0003577350500002553
50%R1234yf,r=0.31
Figure BDA0003577350500002561
50%R1234yf,r=0.37
Figure BDA0003577350500002562
【表255】
41%R1234yf,r=0.25
项目 单位 实施例49 实施例50 实施例51 实施例52 实施例53 比较例102 实施例54 实施例55
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 42.0 32.0 21.0 19.0 17.0 12.0 40.0 30.0
R125 质量% 2.5 5.0 7.8 8.3 8.8 10.0 2.5 5.0
R134a 质量% 7.5 15.0 23.2 24.7 26.2 30.0 7.5 15.0
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 244 439 654 693 732 828 258 452
COP比 %(相对于R410A) 89.5 94.0 97.8 98.4 99.0 100.4 90.2 94.4
制冷能力比 %(相对于R410A) 149.0 127.2 101.4 96.5 91.7 79.7 145.9 123.9
冷凝滑移 21.3 23.2 22.8 22.3 21.5 18.8 21.0 22.6
41%R1234yf,r=0.25
项目 单位 实施例56 实施例57 比较例103 实施例58 实施例59 实施例60 比较例104 实施例61
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 15.0
CO<sub>2</sub> 质量% 17.0 15.0 10.0 38.0 28.0 14.0 8.0 34.0
R125 质量% 8.3 8.8 10.0 2.5 5.0 8.5 10.0 2.5
R134a 质量% 24.7 26.2 30.0 7.5 15.0 25.5 30.0 7.5
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 706 745 841 271 466 738 855 298
COP比 %(相对于R410A) 98.8 99.4 101.0 90.8 94.9 99.6 101.6 92.0
制冷能力比 %(相对于R410A) 93.3 88.5 76.7 142.8 120.6 87.7 73.7 136.6
冷凝滑移 20.9 20.0 16.7 20.6 21.9 18.9 14.6 19.8
41%R1234yf,r=0.25
项目 单位 实施例62 实施例63 比较例105 比较例106 比较例107 比较例108
R32 质量% 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 24.0 14.0 4.0 24.0 14.0 4.0
R125 质量% 5.0 7.5 10.0 2.5 5.0 7.5
R134a 质量% 15.0 22.5 30.0 7.5 15.0 22.5
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 493 687 882 365 560 755
COP比 %(相对于R410A) 95.9 99.2 103.0 94.9 98.4 102.4
制冷能力比 %(相对于R410A) 114.1 90.8 68.2 120.8 98.1 76.1
冷凝滑移 20.2 17.7 9.9 16.9 14.9 8.8
41%R1234yf,r=0.375
项目 单位 实施例64 实施例65 实施例66 实施例67 实施例68 比较例109 实施例69 实施例70
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 42.0 32.0 25.0 23.0 21.0 12.0 40.0 30.0
R125 质量% 3.8 7.5 10.1 10.9 11.6 15.0 3.8 7.5
R134a 质量% 6.2 12.5 16.9 18.1 19.4 25.0 6.2 12.5
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 271 490 644 689 733 932 284 504
COP比 %(相对于R410A) 89.3 93.6 96.1 96.7 97.3 100.0 89.9 94.1
制冷能力比 %(相对于R410A) 149.4 128.1 112.0 107.4 102.6 81.2 146.4 124.8
冷凝滑移 21.0 22.7 22.7 22.5 22.1 18.2 20.7 22.0
41%R1234yf,r=0.375
项目 单位 实施例71 实施例72 实施例73 比较例110 实施例74 实施例75 实施例76 实施例77
R32 质量% 9.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0
CO<sub>2</sub> 质量% 23.0 21.0 19.0 10.0 38.0 28.0 20.0 18.0
R125 质量% 10.1 10.9 11.6 15.0 3.8 7.5 10.5 11.3
R134a 质量% 16.9 18.1 19.4 25.0 6.2 12.5 17.5 18.7
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 658 703 746 945 298 517 694 739
COP比 %(相对于R410A) 96.5 97.1 97.7 100.5 90.6 94.5 97.2 97.9
制冷能力比 %(相对于R410A) 108.7 104.0 99.3 78.2 143.3 121.5 103.1 98.4
冷凝滑移 21.7 21.4 20.9 16.2 20.3 21.3 20.5 19.9
41%R1234yf,r=0.375
项目 单位 比较例111 实施例78 实施例79 比较例112 比较例113 比较例114 比较例115 比较例116
R32 质量% 11.0 15.0 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 8.0 34.0 24.0 14.0 4.0 24.0 14.0 4.0
R125 质量% 15.0 3.8 7.5 11.3 15.0 3.8 7.5 11.3
R134a 质量% 25.0 6.2 12.5 18.7 25.0 6.2 12.5 18.7
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 958 325 544 766 985 392 612 833
COP比 %(相对于R410A) 101.1 91.8 95.5 98.8 102.6 94.7 98.2 102.0
制冷能力比 %(相对于R410A) 75.3 137.1 115.0 92.1 69.8 121.3 99.1 77.4
冷凝滑移 14.1 19.5 19.7 17.1 9.6 16.6 14.5 8.5
【表256】
41%R1234yf,r=0.5
项目 单位 实施例80 实施例81 实施例82 实施例83 实施例84 比较例117 实施例85 实施例86
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 42.0 32.0 29.0 27.0 25.0 12.0 40.0 30.0
R125 质量% 5.0 10.0 11.5 12.5 13.5 20.0 5.0 10.0
R134a 质量% 5.0 10.0 11.5 12.5 13.5 20.0 5.0 10.0
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 296 542 616 665 715 1035 309 556
COP比 %(相对于R410A) 89.1 93.1 94.2 94.9 95.6 99.5 89.7 93.7
制冷能力比 %(相对于R410A) 149.8 128.9 122.2 117.7 113.2 82.8 146.8 125.6
冷凝滑移 20.7 22.2 22.3 22.2 22.1 17.5 20.4 21.5
41%R1234yf,r=0.5
项目 单位 实施例87 实施例88 比较例118 实施例89 实施例90 实施例91 实施例92 比较例119
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 11.0
CO<sub>2</sub> 质量% 25.0 23.0 10.0 38.0 28.0 23.0 21.0 8.0
R125 质量% 12.5 13.5 20.0 5.0 10.0 12.5 13.5 20.0
R134a 质量% 12.5 13.5 20.0 5.0 10.0 12.5 13.5 20.0
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 679 728 1048 323 569 692 742 1062
COP比 %(相对于R410A) 95.4 96.0 100.0 90.4 94.2 95.9 96.5 100.7
制冷能力比 %(相对于R410A) 114.4 109.8 79.8 143.7 122.3 111.1 106.6 76.9
冷凝滑移 21.3 21.1 15.6 20.0 20.8 20.4 20.1 13.6
41%R1234yf,r=0.5
项目 单位 实施例93 实施例94 实施例95 比较例120 比较例121 比较例122 比较例123 比较例124
R32 质量% 13.0 15.0 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 20.0 34.0 24.0 14.0 4.0 24.0 14.0 4.0
R125 质量% 13.0 5.0 10.0 15.0 20.0 5.0 10.0 15.0
R134a 质量% 13.0 5.0 10.0 15.0 20.0 5.0 10.0 15.0
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 730 350 596 843 1089 417 664 910
COP比 %(相对于R410A) 96.7 91.6 95.2 98.4 102.1 94.6 97.9 101.6
制冷能力比 %(相对于R410A) 105.6 137.5 115.8 93.4 71.4 121.7 100.0 78.7
冷凝滑移 19.2 19.2 19.2 16.5 9.2 16.4 14.1 8.1
41%R1234yf,r=0.75
项目 单位 实施例96 实施例97 实施例98 比较例125 实施例99 实施例100 比较例126 实施例101
R32 质量% 7.0 7.0 7.0 7.0 9.0 9.0 9.0 11.0
CO<sub>2</sub> 质量% 42.0 31.0 29.0 12.0 40.0 28.0 10.0 38.0
R125 质量% 7.5 15.8 17.3 30.0 7.5 16.5 30.0 7.5
R134a 质量% 2.5 5.2 5.7 10.0 2.5 5.5 10.0 2.5
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 348 677 736 1242 361 719 1255 375
COP比 %(相对于R410A) 88.6 92.6 93.3 98.4 89.3 93.5 98.9 89.9
制冷能力比 %(相对于R410A) 150.6 128.4 124.1 86.1 147.6 123.0 83.1 144.5
冷凝滑移 20.1 21.1 21.0 16.2 19.8 20.4 14.4 19.4
41%R1234yf,r=0.75
项目 单位 实施例102 比较例127 实施例103 实施例104 比较例128 比较例129 比较例130 比较例131
R32 质量% 11.0 11.0 15.0 15.0 15.0 15.0 25.0 25.0
CO<sub>2</sub> 质量% 28.0 8.0 34.0 24.0 14.0 4.0 24.0 14.0
R125 质量% 15.0 30.0 7.5 15.0 22.5 30.0 7.5 15.0
R134a 质量% 5.0 10.0 2.5 5.0 7.5 10.0 2.5 5.0
R1234yf 质量% 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
GWP - 673 1269 401 700 998 1296 469 767
COP比 %(相对于R410A) 93.4 99.6 91.2 94.5 97.5 101.0 94.2 97.3
制冷能力比 %(相对于R410A) 124.0 80.2 138.4 117.6 96.0 74.6 122.7 101.9
冷凝滑移 19.8 12.5 18.7 18.2 15.4 8.5 15.8 13.3
41%R1234yf,r=0.75
项目 单位 比较例132
R32 质量% 25.0
CO<sub>2</sub> 质量% 4.0
R125 质量% 22.5
R134a 质量% 7.5
R1234yf 质量% 41.0
GWP - 1065
COP比 %(相对于R410A) 100.8
制冷能力比 %(相对于R410A) 81.4
冷凝滑移 7.5
【表257】
43%R1234yf,r=0.25
项目 单位 实施例105 实施例106 实施例107 实施例108 实施例109 比较例133 实施例110 实施例111
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 40.0 30.0 19.0 17.0 15.0 10.0 38.0 28.0
R125 质量% 2.5 5.0 7.8 8.3 8.8 10.0 2.5 5.0
R134a 质量% 7.5 15.0 23.2 24.7 26.2 30.0 7.5 15.0
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 244 439 654 693 732 828 258 452
COP比 %(相对于R410A) 90.6 94.8 98.4 99.0 99.6 101.1 91.2 95.3
制冷能力比 %(相对于R410A) 144.7 122.6 96.5 91.6 86.8 74.9 141.6 119.3
冷凝滑移 22.1 23.6 22.4 21.7 20.7 17.3 21.7 22.8
43%R1234yf,r=0.25
项目 单位 实施例112 实施例113 比较例134 实施例114 实施例115 实施例116 比较例135 比较例136
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 15.0
CO<sub>2</sub> 质量% 15.0 13.0 8.0 36.0 26.0 12.0 6.0 32.0
R125 质量% 8.3 8.8 10.0 2.5 5.0 8.5 10.0 2.5
R134a 质量% 24.7 26.2 30.0 7.5 15.0 25.5 30.0 7.5
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 706 745 842 271 466 738 855 298
COP比 %(相对于R410A) 99.4 100.0 101.7 91.8 95.7 100.2 102.4 92.9
制冷能力比 %(相对于R410A) 88.4 83.6 72.0 138.5 116.0 82.9 69.2 132.1
冷凝滑移 20.1 19.0 15.0 21.2 22.0 17.8 12.6 20.2
43%R1234yf,r=0.25
项目 单位 实施例117 实施例118 比较例137 比较例138 比较例139 比较例140
R32 质量% 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 22.0 12.0 2.0 22.0 12.0 2.0
R125 质量% 5.0 7.5 10.0 2.5 5.0 7.5
R134a 质量% 15.0 22.5 30.0 7.5 15.0 22.5
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 493 687 882 365 560 755
COP比 %(相对于R410A) 96.6 99.9 104.0 95.6 99.2 103.3
制冷能力比 %(相对于R410A) 109.4 86.1 63.9 116.2 93.6 71.9
冷凝滑移 20.1 16.7 7.5 16.8 14.1 6.9
43%R1234yf,r=0.303
Figure BDA0003577350500002611
Figure BDA0003577350500002621
43%R1234yf,r=0.303
项目 单位 实施例126 实施例127 实施例128 比较例142 实施例129 实施例130 实施例131 比较例143
R32 质量% 9.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0
CO<sub>2</sub> 质量% 19.0 17.0 15.0 8.0 36.0 26.0 14.0 6.0
R125 质量% 8.8 9.4 10.0 12.1 3.0 6.1 9.7 12.1
R134a 质量% 20.2 21.6 23.0 27.9 7.0 13.9 22.3 27.9
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 660 701 742 885 281 489 735 899
COP比 %(相对于R410A) 98.1 98.7 99.3 101.5 91.7 95.6 99.4 102.2
制冷能力比 %(相对于R410A) 98.5 93.7 89.0 72.6 138.6 116.3 88.2 69.8
冷凝滑移 21.4 20.7 19.8 14.8 21.1 21.8 18.7 12.4
43%R1234yf,r=0.303
项目 单位 实施例132 实施例133 实施例134 比较例144 比较例145 比较例146 比较例147
R32 质量% 15.0 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 32.0 22.0 12.0 2.0 22.0 12.0 2.0
R125 质量% 3.0 6.1 9.1 12.1 3.0 6.1 9.1
R134a 质量% 7.0 13.9 20.9 27.9 7.0 13.9 20.9
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 308 515 720 925 376 583 788
COP比 %(相对于R410A) 92.8 96.5 99.8 103.8 95.6 99.0 103.1
制冷能力比 %(相对于R410A) 132.3 109.8 86.6 64.5 116.4 94.0 72.4
冷凝滑移 20.1 19.9 16.5 7.4 16.7 13.9 6.8
【表258】
43%R1234yf,r=0.355
项目 单位 实施例135 实施例136 实施例137 实施例138 实施例139 比较例148 实施例140 实施例141
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 40.0 30.0 23.0 21.0 19.0 10.0 38.0 28.0
R125 质量% 3.6 7.1 9.6 10.3 11.0 14.2 3.6 7.1
R134a 质量% 6.4 12.9 17.4 18.7 20.0 25.8 6.4 12.9
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 267 482 634 677 720 915 280 496
COP比 %(相对于R410A) 90.4 94.5 96.9 97.5 98.1 100.7 91.0 95.0
制冷能力比 %(相对于R410A) 145.1 123.3 107.0 102.3 97.5 76.1 142.0 120.0
冷凝滑移 21.8 23.2 22.8 22.4 21.9 16.8 21.4 22.4
43%R1234yf,r=0.355
项目 单位 实施例142 实施例143 比较例149 实施例144 实施例145 实施例146 实施例147 比较例150
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 11.0
CO<sub>2</sub> 质量% 19.0 17.0 8.0 36.0 26.0 17.0 15.0 6.0
R125 质量% 10.3 11.0 14.2 3.6 7.1 10.3 11.0 14.2
R134a 质量% 18.7 20.0 25.8 6.4 12.9 18.7 20.0 25.8
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 691 734 928 294 509 704 747 942
COP比 %(相对于R410A) 97.9 98.5 101.3 91.6 95.4 98.3 98.9 102.0
制冷能力比 %(相对于R410A) 99.0 94.2 73.2 138.8 116.7 95.7 91.0 70.4
冷凝滑移 21.1 20.5 14.6 21.0 21.6 19.8 19.0 12.3
43%R1234yfr=0.355
项目 单位 实施例148 实施例149 比较例151 比较例152 比较例153 比较例154 比较例155
R32 质量% 15.0 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 32.0 22.0 12.0 2.0 22.0 12.0 2.0
R125 质量% 3.6 7.1 10.7 14.2 3.6 7.1 10.7
R134a 质量% 6.4 12.9 19.3 25.8 6.4 12.9 19.3
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 321 536 754 969 388 604 821
COP比 %(相对于R410A) 92.7 96.3 99.6 103.6 95.5 98.9 103.0
制冷能力比 %(相对于R410A) 132.5 110.1 87.2 65.2 116.6 94.4 73.0
冷凝滑移 20.0 19.7 16.3 7.3 16.6 13.8 6.7
43%R1234yf,r=0.375
项目 单位 实施例150 实施例151 实施例152 实施例153 实施例154 比较例156 实施例155 实施例156
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 40.0 30.0 23.0 21.0 19.0 10.0 38.0 28.0
R125 质量% 3.8 7.5 10.1 10.9 11.6 15.0 3.8 7.5
R134a 质量% 6.2 12.5 16.9 18.1 19.4 25.0 6.2 12.5
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 271 491 644 690 733 932 285 504
COP比 %(相对于R410A) 90.4 94.5 96.8 97.4 98.0 100.6 91.0 94.9
制冷能力比 %(相对于R410A) 145.2 123.4 107.2 102.4 97.7 76.4 142.0 120.1
冷凝滑移 21.8 23.1 22.7 22.3 21.8 16.7 21.4 22.3
43%R1234yf,r=0.375
项目 单位 实施例157 实施例158 实施例159 比较例157 实施例160 实施例161 实施例162 比较例158
R32 质量% 9.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0
CO<sub>2</sub> 质量% 21.0 19.0 17.0 8.0 36.0 26.0 16.0 6.0
R125 质量% 10.1 10.9 11.6 15.0 3.8 7.5 11.3 15.0
R134a 质量% 16.9 18.1 19.4 25.0 6.2 12.5 18.7 25.0
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 658 703 746 945 298 517 739 959
COP比 %(相对于R410A) 97.2 97.8 98.4 101.3 91.6 95.4 98.6 101.9
制冷能力比 %(相对于R410A) 103.9 99.2 94.4 73.5 138.9 116.8 93.6 70.7
冷凝滑移 21.6 21.0 20.4 14.5 20.9 21.5 19.3 12.2
43%R1234yf,r=0.375
项目 单位 实施例163 实施例164 比较例159 比较例160 比较例161 比较例162 比较例163
R32 质量% 15.0 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 32.0 22.0 12.0 2.0 22.0 12.0 2.0
R125 质量% 3.8 7.5 11.3 15.0 3.8 7.5 11.3
R134a 质量% 6.2 12.5 18.7 25.0 6.2 12.5 18.7
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 325 544 766 985 392 612 833
COP比 %(相对于R410A) 92.7 96.3 99.6 103.5 95.5 98.9 102.9
制冷能力比 %(相对于R410A) 132.6 110.3 87.4 65.4 116.7 94.5 73.2
冷凝滑移 19.9 19.7 16.2 7.3 16.5 13.7 6.7
【表259】
43%R1234yf,r=0.5
项目 单位 实施例165 实施例166 实施例167 实施例168 实施例169 比较例164 实施例170 实施例171
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 40.0 30.0 27.0 25.0 23.0 10.0 38.0 28.0
R125 质量% 5.0 10.0 11.5 12.5 13.5 20.0 5.0 10.0
R134a 质量% 5.0 10.0 11.5 12.5 13.5 20.0 5.0 10.0
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 296 542 616 665 715 1035 309 556
COP比 %(相对于R410A) 90.2 94.1 95.1 95.7 96.4 100.2 90.8 94.5
制冷能力比 %(相对于R410A) 145.5 124.2 117.5 112.9 108.3 77.9 142.4 120.9
冷凝滑移 21.5 22.6 22.5 22.4 22.1 16.2 21.1 21.8
43%R1234yf,r=0.5
项目 单位 实施例172 实施例173 比较例165 实施例174 实施例175 实施例176 比较例166 实施例177
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 13.0
CO<sub>2</sub> 质量% 23.0 21.0 8.0 36.0 26.0 20.0 6.0 18.0
R125 质量% 12.5 13.5 20.0 5.0 10.0 13.0 20.0 13.0
R134a 质量% 12.5 13.5 20.0 5.0 10.0 13.0 20.0 13.0
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 679 728 1049 323 569 717 1062 731
COP比 %(相对于R410A) 96.2 96.8 100.8 91.4 95.0 96.9 101.5 97.4
制冷能力比 %(相对于R410A) 109.6 105.0 75.0 139.3 117.6 104.0 72.2 100.8
冷凝滑移 21.4 21.0 14.1 20.7 21.0 20.1 11.8 18.8
43%R1234yfr=0.5
项目 单位 实施例178 实施例179 比较例167 比较例168 比较例169 比较例170 比较例171
R32 质量% 15.0 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 32.0 22.0 12.0 2.0 22.0 12.0 2.0
R125 质量% 5.0 10.0 15.0 20.0 5.0 10.0 15.0
R134a 质量% 5.0 10.0 15.0 20.0 5.0 10.0 15.0
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 350 596 843 1089 417 664 910
COP比 %(相对于R410A) 92.5 96.0 99.2 103.0 95.3 98.6 102.5
制冷能力比 %(相对于R410A) 133.0 111.1 88.6 67.0 117.2 95.4 74.4
冷凝滑移 19.7 19.2 15.7 7.1 16.3 13.3 6.5
43%R1234yf,r=0.75
项目 单位 实施例180 实施例181 实施例182 比较例172 实施例183 实施例184 比较例173 实施例185
R32 质量% 7.0 7.0 7.0 7.0 9.0 9.0 9.0 15.0
CO<sub>2</sub> 质量% 40.0 29.0 27.0 10.0 38.0 26.0 8.0 32.0
R125 质量% 7.5 15.8 17.3 30.0 7.5 16.5 30.0 7.5
R134a 质量% 2.5 5.2 5.7 10.0 2.5 5.5 10.0 2.5
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 348 677 736 1242 361 719 1256 402
COP比 %(相对于R410A) 89.7 93.6 94.2 99.1 90.3 94.4 99.7 92.1
制冷能力比 %(相对于R410A) 146.3 123.7 119.3 81.1 143.2 118.2 78.2 133.9
冷凝滑移 20.9 21.5 21.4 15.1 20.5 20.6 13.1 19.1
43%R1234yf,r=0.75
项目 单位 实施例186 比较例174 比较例175 比较例176 比较例177 实施例187
R32 质量% 15.0 15.0 15.0 25.0 25.0 25.0
CO<sub>2</sub> 质量% 22.0 12.0 2.0 22.0 12.0 2.0
R125 质量% 15.0 22.5 30.0 7.5 15.0 22.5
R134a 质量% 5.0 7.5 10.0 2.5 5.0 7.5
R1234yf 质量% 43.0 43.0 43.0 43.0 43.0 43.0
GWP - 700 998 1296 469 767 1065
COP比 %(相对于R410A) 95.3 98.3 101.9 95.0 98.1 101.7
制冷能力比 %(相对于R410A) 112.9 91.2 70.1 118.1 97.3 77.0
冷凝滑移 18.2 14.6 6.7 15.8 12.6 6.0
【表260】
45%R1234yf,r=0.25
项目 单位 实施例188 实施例189 实施例190 实施例191 实施例192 比较例178 实施例193 实施例194
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 38.0 28.0 17.0 15.0 13.0 8.0 36.0 26.0
R125 质量% 2.5 5.0 7.8 8.3 8.8 10.0 2.5 5.0
R134a 质量% 7.5 15.0 23.2 24.7 26.2 30.0 7.5 15.0
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 244 439 654 693 732 828 258 452
COP比 %(相对于R410A) 91.7 95.7 99.1 99.6 100.2 101.8 92.2 96.1
制冷能力比 %(相对于R410A) 140.4 117.9 91.5 86.7 81.9 70.1 137.2 114.5
冷凝滑移 22.8 23.9 21.8 20.8 19.6 15.4 22.3 23.0
45%R1234yf,r=0.25
项目 单位 实施例195 实施例196 比较例179 实施例197 实施例198 实施例199 比较例180 比较例181
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 15.0
CO<sub>2</sub> 质量% 13.0 11.0 6.0 34.0 24.0 10.0 4.0 30.0
R125 质量% 8.3 8.8 10.0 2.5 5.0 8.5 10.0 2.5
R134a 质量% 24.7 26.2 30.0 7.5 15.0 25.5 30.0 7.5
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 706 745 842 271 466 738 855 298
COP比 %(相对于R410A) 100.1 100.7 102.5 92.7 96.5 100.9 103.2 93.8
制冷能力比 %(相对于R410A) 83.5 78.8 67.3 134.0 111.2 78.2 64.7 127.6
冷凝滑移 19.0 17.7 12.8 21.8 22.0 16.4 10.2 20.6
45%R1234yf,r=0.25
项目 单位 比较例182 实施例200 比较例183 比较例184
R32 质量% 15.0 15.0 25.0 25.0
CO<sub>2</sub> 质量% 20.0 10.0 20.0 10.0
R125 质量% 5.0 7.5 2.5 5.0
R134a 质量% 15.0 22.5 7.5 15.0
R1234yf 质量% 45.0 45.0 45.0 45.0
GWP - 493 687 366 560
COP比 %(相对于R410A) 97.3 100.6 96.3 99.9
制冷能力比 %(相对于R410A) 104.6 81.4 111.6 89.1
冷凝滑移 19.9 15.4 16.6 13.1
45%R1234yf,r=0.375
项目 单位 实施例201 实施例202 实施例203 实施例204 实施例205 比较例185 实施例206 实施例207
R32 质量% 7.0 7.0 7.0 7.0 7.0 7.0 9.0 9.0
CO<sub>2</sub> 质量% 38.0 28.0 21.0 19.0 17.0 8.0 36.0 26.0
R125 质量% 3.8 7.5 10.1 10.9 11.6 15.0 3.8 7.5
R134a 质量% 6.2 12.5 16.9 18.1 19.4 25.0 6.2 12.5
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 271 491 644 690 733 932 285 504
COP比 %(相对于R410A) 91.4 95.3 97.5 98.1 98.7 101.4 92.0 95.7
制冷能力比 %(相对于R410A) 140.8 118.7 102.2 97.5 92.7 71.6 137.6 115.3
冷凝滑移 22.5 23.4 22.5 21.9 21.2 15.0 22.0 22.5
45%R1234yf,r=0.375
项目 单位 实施例208 实施例209 比较例186 实施例210 实施例211 实施例212 比较例187 比较例188
R32 质量% 9.0 9.0 9.0 11.0 11.0 11.0 11.0 15.0
CO<sub>2</sub> 质量% 17.0 15.0 6.0 34.0 24.0 14.0 4.0 30.0
R125 质量% 10.9 11.6 15.0 3.8 7.5 11.3 15.0 3.8
R134a 质量% 18.1 19.4 25.0 6.2 12.5 18.7 25.0 6.2
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 703 746 945 298 518 739 959 325
COP比 %(相对于R410A) 98.5 99.1 102.0 92.5 96.1 99.2 102.8 93.6
制冷能力比 %(相对于R410A) 94.2 89.5 68.8 134.4 112.0 88.7 66.1 128.0
冷凝滑移 20.5 19.6 12.5 21.5 21.5 18.5 10.0 20.3
45%R1234yf,r=0.375
项目 单位 实施例213 比较例189 比较例190 比较例191
R32 质量% 15.0 15.0 25.0 25.0
CO<sub>2</sub> 质量% 20.0 10.0 20.0 10.0
R125 质量% 7.5 11.3 3.8 7.5
R134a 质量% 12.5 18.7 6.2 12.5
R1234yf 质量% 45.0 45.0 45.0 45.0
GWP - 545 766 392 612
COP比 %(相对于R410A) 97.0 100.3 96.2 99.6
制冷能力比 %(相对于R410A) 105.5 82.7 112.1 90.0
冷凝滑移 19.4 15.0 16.3 12.8
【表261】
45%R1234yf,r=0.5
项目 单位 实施例214 实施例215 实施例216 实施例217 比较例192 实施例218 实施例219 实施例220
R32 质量% 7.0 7.0 7.0 7.0 7.0 9.0 9.0 9.0
CO<sub>2</sub> 质量% 38.0 28.0 23.0 21.0 8.0 36.0 26.0 21.0
R125 质量% 5.0 10.0 12.5 13.5 20.0 5.0 10.0 12.5
R134a 质量% 5.0 10.0 12.5 13.5 20.0 5.0 10.0 12.5
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 296 542 666 715 1035 309 556 679
COP比 %(相对于R410A) 91.2 94.9 96.5 97.1 100.9 91.8 95.4 96.9
制冷能力比 %(相对于R410A) 141.2 119.5 108.0 103.3 73.1 138.0 116.1 104.7
冷凝滑移 22.2 22.9 22.4 21.9 14.5 21.7 22.0 21.2
45%R1234yf,r=0.5
项目 单位 实施例221 比较例193 实施例222 实施例223 实施例224 比较例194 比较例195 实施例225
R32 质量% 9.0 9.0 11.0 11.0 11.0 11.0 15.0 15.0
CO<sub>2</sub> 质量% 19.0 6.0 34.0 24.0 18.0 4.0 30.0 20.0
R125 质量% 13.5 20.0 5.0 10.0 13.0 20.0 5.0 10.0
R134a 质量% 13.5 20.0 5.0 10.0 13.0 20.0 5.0 10.0
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 728 1049 323 569 717 1062 350 596
COP比 %(相对于R410A) 97.5 101.6 92.3 95.8 97.6 102.3 93.4 96.7
制冷能力比 %(相对于R410A) 100.1 70.3 134.8 112.9 99.1 67.6 128.4 106.4
冷凝滑移 20.7 12.2 21.2 21.1 19.7 9.7 20.0 19.0
45%R1234yf,r=0.5
项目 单位 比较例196 比较例197 比较例198
R32 质量% 15.0 25.0 25.0
CO<sub>2</sub> 质量% 10.0 20.0 10.0
R125 质量% 15.0 5.0 10.0
R134a 质量% 15.0 5.0 10.0
R1234yf 质量% 45.0 45.0 45.0
GWP - 843 417 664
COP比 %(相对于R410A) 99.9 96.0 99.4
制冷能力比 %(相对于R410A) 83.9 112.6 90.9
冷凝滑移 14.6 16.1 12.4
45%R1234yf,r=0.75
项目 单位 实施例226 实施例227 比较例199 比较例200 实施例228 实施例229 实施例230 实施例231
R32 质量% 7.0 7.0 7.0 7.0 9.0 9.0 15.0 15.0
CO<sub>2</sub> 质量% 38.0 26.0 18.0 8.0 36.0 23.0 30.0 20.0
R125 质量% 7.5 16.5 22.5 30.0 7.5 17.3 7.5 15.0
R134a 质量% 2.5 5.5 7.5 10.0 2.5 5.7 2.5 5.0
R1234yf 质量% 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0
GWP - 348 705 944 1242 361 750 402 700
COP比 %(相对于R410A) 90.8 94.8 97.0 99.9 91.4 95.5 93.0 96.1
制冷能力比 %(相对于R410A) 142.0 116.7 98.7 76.2 138.8 111.2 129.3 108.1
冷凝滑移 21.7 21.7 19.8 13.6 21.2 20.6 19.5 18.1
45%R1234yf,r=0.75
项目 单位 比较例201 比较例202 比较例203
R32 质量% 15.0 25.0 25.0
CO<sub>2</sub> 质量% 10.0 20.0 10.0
R125 质量% 22.5 7.5 15.0
R134a 质量% 7.5 2.5 5.0
R1234yf 质量% 45.0 45.0 45.0
GWP - 998 469 767
COP比 %(相对于R410A) 99.1 95.7 98.8
制冷能力比 %(相对于R410A) 86.4 113.5 92.7
冷凝滑移 13.6 15.6 11.8
设x=R1234yf时的点A、点Br、点Cr、点Dr、点Or、点Fr、点Pr近似曲线的求法
点A
基于如上所述明确的点A的4种组成,如下通过最小二乘法作为R1234yf的比例(x)的函数求出点A的坐标的近似式。即,可知点A的坐标(a,b,c)=(-0.6902x+43.307,100-a-x,0.0)。
【表262】
点A
Figure BDA0003577350500002711
点Br
另外,基于如上所述明确的点Br的组成,如下通过最小二乘法和计算作为r、和R1234yf的比例(x)的函数求出点Br的坐标的近似式。
【表263】
Figure BDA0003577350500002721
【表264】
Figure BDA0003577350500002731
【表265】
Figure BDA0003577350500002741
点Cr=0.25~1.0和Dr=0.25~1.0近似曲线的求法
另外,基于如上所述明确的点Cr、点Dr的组成,如下通过最小二乘法和计算作为r、和R1234yf的比例(x)的函数求出点Cr、点Dr坐标的近似式。
【表266】
Figure BDA0003577350500002751
【表267】
Figure BDA0003577350500002752
【表268】
Figure BDA0003577350500002761
【表269】
Figure BDA0003577350500002762
【表270】
Figure BDA0003577350500002771
【表271】
Figure BDA0003577350500002772
点Or近似曲线的求法
作为线段ABr与线段CrDr的交点的Or的各点在实施例和比较例中示出,基于Or的组成,如下通过最小二乘法和计算作为r、和R1234yf的比例(x)的函数求出点Or坐标的近似式。
【表272】
Figure BDA0003577350500002781
【表273】
Figure BDA0003577350500002791
【表274】
Figure BDA0003577350500002801
点Fr、Pr近似曲线的求法
点Fr和点Pr的各点在实施例和比较例中示出,基于各组成,如下通过最小二乘法和计算作为r、和R1234yf的比例(x)的函数求出点Fr、点Pr坐标的近似式。
【表275】
Figure BDA0003577350500002811
【表276】
Figure BDA0003577350500002812
【表277】
Figure BDA0003577350500002821
【表278】
Figure BDA0003577350500002831
【表279】
Figure BDA0003577350500002841
【表280】
Figure BDA0003577350500002851
(2)制冷机油
作为第2组的技术的制冷机油与制冷剂组合物共存而进行制冷循环,从而可以提高制冷循环装置内的润滑性,也可以发挥有效的循环性能。
作为制冷机油,可以举出例如含氧系合成油(酯系制冷机油、醚系制冷机油等)、烃系制冷机油等。其中,从与制冷剂或制冷剂组合物的相容性的观点出发,优选酯系制冷机油、醚系制冷机油。作为制冷机油,可以单独使用1种,也可以组合2种以上使用。
从抑制润滑性和压缩机的密闭性的降低、在低温条件下充分确保与制冷剂的相容性、抑制压缩机的润滑不良、使蒸发器的热交换效率良好的至少任一观点出发,制冷机油优选40℃时的运动粘度为1mm2/s以上750mm2/s以下,更优选为1mm2/s以上400mm2/s以下。需要说明的是,作为制冷机油在100℃时的运动粘度,例如可以为1mm2/s以上100mm2/s以下,更优选为1mm2/s以上50mm2/s以下。
制冷机油的苯胺点优选为-100℃以上0℃以下。此处,“苯胺点”是例如表示烃系溶剂等的溶解性的数值,其表示将试样(此处为制冷机油)与等容积的苯胺混合并冷却时变得相互不溶解而开始浑浊时的温度(JISK2256中规定)。需要说明的是,这些值是制冷剂不溶解状态下的制冷机油自身的值。通过使用这样的苯胺点的制冷机油,例如,即使在构成树脂制功能部件的各轴承及电动机的绝缘材料在与制冷机油接触的位置使用的情况下,也能够提高制冷机油相对于这些树脂制功能部件的适应性。具体而言,若苯胺点过低,则制冷机油容易浸透至轴承、绝缘材料,轴承等容易溶胀。另一方面,若苯胺点过高,则制冷机油难以浸透轴承、绝缘材料,轴承等容易收缩。因此,通过使用苯胺点为上述的规定范围(-100℃以上0℃以下)的制冷机油,能够防止轴承、绝缘材料的溶胀/收缩变形。此处,当各轴承溶胀变形时,无法将滑动部处的间隙(间隔)维持在期望的长度。其结果,有可能导致滑动阻力的增大。当各轴承收缩变形时,轴承的硬度变高,有可能因压缩机的振动而导致轴承破损。也就是说,当各轴承收缩变形时,有可能导致滑动部的刚性下降。另外,若电动机的绝缘材料(绝缘包覆材料、绝缘膜等)溶胀变形,则该绝缘材料的绝缘性降低。若绝缘材料收缩变形,则与上述的轴承的情况同样,绝缘材料有可能破损,在该情况下,绝缘性也会降低。与此相对,如上所述,通过使用苯胺点在规定范围内的制冷机油,能够抑制轴承、绝缘材料的溶胀/收缩变形,因此能够避免这样的不良情况。
制冷机油与制冷剂组合物混合而作为制冷机用工作流体使用。制冷机油相对于制冷机用工作流体总量的混配比例优选为5质量%以上且60质量%以下,更优选为10质量%以上且50质量%以下。
(2-1)含氧系合成油
作为含氧系合成油的酯系制冷机油和醚系制冷机油主要具有碳原子和氧原子而构成。在酯系制冷机油、醚系制冷机油中,若该碳原子与氧原子的比率(碳/氧摩尔比)过小,则吸湿性变高;若该比率过大,则与制冷剂的相容性降低,因此该比率优选以摩尔比计为2以上且7.5以下。
(2-1-1)酯系制冷机油
作为酯系制冷机油,从化学稳定性的观点出发,可以举出二元酸与一元醇的二元酸酯油、多元醇与脂肪酸的多元醇酯油、或多元醇与多元酸与一元醇(或脂肪酸)的复合酯油、多元醇碳酸酯油等作为基础油成分。
(二元酸酯油)
作为二元酸酯油,优选为草酸、丙二酸、琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、邻苯二甲酸、间苯二甲酸、对苯二甲酸等二元酸,特别是碳原子数为5~10的二元酸(戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸等)与具有直链或支链烷基的碳原子数为1~15的一元醇(甲醇、乙醇、丙醇、丁醇、戊醇、己醇、庚醇、辛醇、壬醇、癸醇、十一烷醇、十二烷醇、十三烷醇、十四烷醇、十五烷醇等)的酯。作为该二元酸酯油,具体可以举出戊二酸双十三烷基酯、己二酸二(2-乙基己基)酯、己二酸二异癸酯、己二酸双十三烷基酯、癸二酸二(3-乙基己基)酯等。
(多元醇酯油)
多元醇酯油是由多元醇和脂肪酸(羧酸)合成的酯,碳/氧摩尔比为2以上7.5以下,优选为3.2以上5.8以下。
作为构成多元醇酯油的多元醇,可以举出二醇(乙二醇、1,3-丙二醇、丙二醇、1,4-丁二醇、1,2-丁二醇、2-甲基-1,3-丙二醇、1,5-戊二醇、新戊二醇、1,6-己二醇、2-乙基-2-甲基-1,3-丙二醇、1,7-庚二醇、2-甲基-2-丙基-1,3-丙二醇、2,2-二乙基-1,3-丙二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、1,11-十一烷二醇、1,12-十二烷二醇等)、具有3~20个羟基的多元醇(三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷、二-(三羟甲基丙烷)、三-(三羟甲基丙烷)、季戊四醇、二-(季戊四醇)、三-(季戊四醇)、甘油、聚甘油(甘油的二聚体~三聚体)、1,3,5-戊三醇、山梨醇、脱水山梨醇、山梨醇甘油缩合物、核糖醇、阿拉伯糖醇、木糖醇、甘露糖醇等多元醇、木糖、阿拉伯糖、核糖、鼠李糖、葡萄糖、果糖、半乳糖、甘露糖、山梨糖、纤维二糖、麦芽糖、异麦芽糖、海藻糖、蔗糖、棉子糖、龙胆三糖、松三糖等糖类以及它们的部分醚化物等),作为构成酯的多元醇,可以为上述的1种,也可以包含2种以上。
作为构成多元醇酯的脂肪酸,没有特别限制,通常使用碳原子数为1~24的脂肪酸。优选直链的脂肪酸、具有支链的脂肪酸。作为直链的脂肪酸,可以举出乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、十二烷酸、十三烷酸、十四烷酸、十五烷酸、十六烷酸、十七烷酸、十八烷酸、十九烷酸、二十烷酸、油酸、亚油酸、亚麻酸等,与羧基键合的烃基既可以全部为饱和烃,也可以具有不饱和烃。进而,作为具有支链的脂肪酸,可以举出2-甲基丙酸、2-甲基丁酸、3-甲基丁酸、2,2-二甲基丙酸、2-甲基戊酸、3-甲基戊酸、4-甲基戊酸、2,2-二甲基丁酸、2,3-二甲基丁酸、3,3-二甲基丁酸、2-甲基己酸、3-甲基己酸、4-甲基己酸、5-甲基己酸、2,2-二甲基戊酸、2,3-二甲基戊酸、2,4-二甲基戊酸、3,3-二甲基戊酸、3,4-二甲基戊酸、4,4-二甲基戊酸、2-乙基戊酸、3-乙基戊酸、2,2,3-三甲基丁酸、2,3,3-三甲基丁酸、2-乙基-2-甲基丁酸、2-乙基-3-甲基丁酸、2-甲基庚酸、3-甲基庚酸、4-甲基庚酸、5-甲基庚酸、6-甲基庚酸、2-乙基己酸、3-乙基己酸、4-乙基己酸、2,2-二甲基己酸、2,3-二甲基己酸、2,4-二甲基己酸、2,5-二甲基己酸、3,3-二甲基己酸、3,4-二甲基己酸、3,5-二甲基己酸、4,4-二甲基己酸、4,5-二甲基己酸、5,5-二甲基己酸、2-丙基戊酸、2-甲基辛酸、3-甲基辛酸、4-甲基辛酸、5-甲基辛酸、6-甲基辛酸、7-甲基辛酸、2,2-二甲基庚酸、2,3-二甲基庚酸、2,4-二甲基庚酸、2,5-二甲基庚酸、2,6-二甲基庚酸、3,3-二甲基庚酸、3,4-二甲基庚酸、3,5-二甲基庚酸、3,6-二甲基庚酸、4,4-二甲基庚酸、4,5-二甲基庚酸、4,6-二甲基庚酸、5,5-二甲基庚酸、5,6-二甲基庚酸、6,6-二甲基庚酸、2-甲基-2-乙基己酸、2-甲基-3-乙基己酸、2-甲基-4-乙基己酸、3-甲基-2-乙基己酸、3-甲基-3-乙基己酸、3-甲基-4-乙基己酸、4-甲基-2-乙基己酸、4-甲基-3-乙基己酸、4-甲基-4-乙基己酸、5-甲基-2-乙基己酸、5-甲基-3-乙基己酸、5-甲基-4-乙基己酸、2-乙基庚酸、3-甲基辛酸、3,5,5-三甲基己酸、2-乙基-2,3,3-三甲基丁酸、2,2,4,4-四甲基戊酸、2,2,3,3-四甲基戊酸、2,2,3,4-四甲基戊酸、2,2-二异丙基丙酸等。脂肪酸可以是选自它们中的1种或2种以上的脂肪酸的酯。
构成酯的多元醇可以为1种,也可以为2种以上的混合物。另外,构成酯的脂肪酸既可以是单一成分,也可以是2种以上的脂肪酸的酯。脂肪酸既可以分别为1种,也可以为2种以上的混合物。另外,多元醇酯油也可以具有游离羟基。
作为具体的多元醇酯油,更优选为新戊二醇、三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷、二-(三羟甲基丙烷)、三-(三羟甲基丙烷)、季戊四醇、二-(季戊四醇)、三-(季戊四醇)等受阻醇的酯,进一步优选为新戊二醇、三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷及季戊四醇、二-(季戊四醇)的酯,优选为新戊二醇、三羟甲基丙烷、季戊四醇、二-(季戊四醇)等与碳原子数为2~20的脂肪酸的酯。
在构成这样的多元醇脂肪酸酯的脂肪酸中,脂肪酸可以仅为具有直链烷基的脂肪酸,也可以选自具有支链结构的脂肪酸。另外,也可以为直链脂肪酸和支链脂肪酸的混合酯。进一步,构成酯的脂肪酸也可以使用选自上述脂肪酸中的2种以上。
作为具体的例子,在直链脂肪酸和支链脂肪酸的混合酯的情况下,具有直链的碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸的摩尔比为15:85~90:10,优选为15:85~85:15,更优选为20:80~80:20,进一步优选为25:75~75:25,最优选为30:70~70:30。另外,具有直链的碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸的合计在构成多元醇脂肪酸酯的脂肪酸的总量中所占的比例优选为20摩尔%以上。关于脂肪酸组成,优选兼顾与制冷剂的充分的相容性及作为制冷机油所需的粘度。需要说明的是,此处所说的脂肪酸的比例是指以构成制冷机油中所含的多元醇脂肪酸酯的脂肪酸总量为基准的值。
其中,作为这样的制冷机油,优选含有如下的酯(以下称为“多元醇脂肪酸酯(A)”。),即,脂肪酸中的碳原子数为4~6的脂肪酸与碳原子数为7~9的支链脂肪酸的摩尔比为15:85~90:10,碳原子数为4~6的脂肪酸含有2-甲基丙酸,碳原子数为4~6的脂肪酸和碳原子数为7~9的支链脂肪酸的合计在构成上述酯的脂肪酸的总量中所占的比例为20摩尔%以上。
多元醇脂肪酸酯(A)包含:多元醇的所有羟基被酯化的完全酯、多元醇的羟基的一部分未酯化而残留的部分酯、以及完全酯与部分酯的混合物,多元醇脂肪酸酯(A)的羟值优选为10mgKOH/g以下,进而优选为5mgKOH/g以下,最优选为3mgKOH/g以下。
在构成多元醇脂肪酸酯(A)的脂肪酸中,碳原子数为4~6的脂肪酸与具有支链的碳原子数为7~9的脂肪酸的摩尔比为15:85~90:10,优选为15:85~85:15,更优选为20:80~80:20,进一步优选为25:75~75:25,最优选为30:70~70:30。另外,碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸的合计在构成多元醇脂肪酸酯(A)的脂肪酸的总量中所占的比例为20摩尔%以上。在不满足有关脂肪酸组成的上述条件的情况下,在制冷剂组合物中含有二氟甲烷时,难以以高水准兼顾与该二氟甲烷的充分的相容性和作为制冷机油所需的粘度。需要说明的是,脂肪酸的比例是指以构成制冷机油所含有的多元醇脂肪酸酯的脂肪酸总量为基准的值。
作为上述碳原子数为4~6的脂肪酸,具体而言,可以举出例如丁酸、2-甲基丙酸、戊酸、2-甲基丁酸、3-甲基丁酸、2,2-二甲基丙酸、2-甲基戊酸、3-甲基戊酸、4-甲基戊酸、2,2-二甲基丁酸、2,3-二甲基丁酸、3,3-二甲基丁酸、己酸等。其中,优选为2-甲基丙酸这样的在烷基骨架上具有支链的脂肪酸。
作为上述具有支链的碳原子数为7~9的脂肪酸,具体而言,可以举出例如2-甲基己酸、3-甲基己酸、4-甲基己酸、5-甲基己酸、2,2-二甲基戊酸、2,3-二甲基戊酸、2,4-二甲基戊酸、3,3-二甲基戊酸、3,4-二甲基戊酸、4,4-二甲基戊酸、2-乙基戊酸、3-乙基戊酸、1,1,2-三甲基丁酸、1,2,2-三甲基丁酸、1-乙基-1-甲基丁酸、1-乙基-2-甲基丁酸、2-乙基己酸、3-乙基己酸、3,5-二甲基己酸、2,4-二甲基己酸、3,4-二甲基己酸、4,5-二甲基己酸、2,2-二甲基己酸、2-甲基庚酸、3-甲基庚酸、4-甲基庚酸、5-甲基庚酸、6-甲基庚酸、2-丙基庚酸、壬酸、2,2-二甲基庚酸、2-甲基辛酸、2-乙基庚酸、3-甲基辛酸、3,5,5-三甲基己酸、2-乙基-2,3,3-三甲基丁酸、2,2,4,4-四甲基戊酸、2,2,3,3-四甲基戊酸、2,2,3,4-四甲基戊酸、2,2-二异丙基丙酸等。
对于多元醇脂肪酸酯(A)而言,碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸的摩尔比为15:85~90:10,且碳原子数为4~6的脂肪酸只要含有2-甲基丙酸,就可含有碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸以外的脂肪酸作为构成酸成分。
作为上述碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸以外的脂肪酸,具体而言,可以举出:乙酸、丙酸等碳原子数为2~3的脂肪酸;庚酸、辛酸、壬酸等碳原子数为7~9的直链脂肪酸;癸酸、十一烷酸、十二烷酸、十三烷酸、十四烷酸、十五烷酸、十六烷酸、十七烷酸、十八烷酸、十九烷酸、二十烷酸、油酸等碳原子数为10~20的脂肪酸等。
在组合使用上述碳原子数为4~6的脂肪酸、具有支链的碳原子数为7~9的脂肪酸和这些脂肪酸以外的脂肪酸的情况下,优选碳原子数为4~6的脂肪酸和碳原子数为7~9的支链脂肪酸的合计在构成多元醇脂肪酸酯(A)的脂肪酸的总量中所占的比例为20摩尔%以上,更优选为25摩尔%以上,进一步优选为30摩尔%以上。通过该比例为20摩尔%以上,在制冷剂组合物中含有二氟甲烷的情况下与该二氟甲烷的相容性充分。
多元醇脂肪酸酯(A)中,酸构成成分仅由2-甲基丙酸和3,5,5-三甲基己酸构成,则在兼顾确保必要粘度和制冷剂组合物中含有二氟甲烷时与该二氟甲烷的相容性的方面是特别优选的。
上述多元醇脂肪酸酯可以是分子结构不同的酯的2种以上的混合物,在这种情况下,无需每一个分子必须满足上述条件,只要作为构成制冷机油中所含的季戊四醇脂肪酸酯的脂肪酸整体满足上述条件即可。
如上所述,多元醇脂肪酸酯(A)必须以碳原子数为4~6的脂肪酸和具有支链的碳原子数为7~9的脂肪酸作为构成酯的酸成分,并根据需要含有其它脂肪酸作为构成成分。即,多元醇脂肪酸酯(A)既可以仅将2种脂肪酸作为酸构成成分,也可以将3种以上的结构不同的脂肪酸作为酸构成成分,该多元醇脂肪酸酯优选仅含有与羰基碳相邻的碳原子(α位碳原子)并非季碳的脂肪酸作为酸构成成分。在构成多元醇脂肪酸酯的脂肪酸中含有α位碳原子为季碳的脂肪酸的情况下,具有在制冷剂组合物中含有二氟甲烷时在存在该二氟甲烷条件下的润滑性变得不充分的倾向。
另外,作为构成本实施方式的多元醇酯的多元醇,优选使用具有2~6个羟基的多元醇。
作为二元醇(二醇),具体而言,可以举出例如乙二醇、1,3-丙二醇、丙二醇、1,4-丁二醇、1,2-丁二醇、2-甲基-1,3-丙二醇、1,5-戊二醇、新戊二醇、1,6-己二醇、2-乙基-2-甲基-1,3-丙二醇、1,7-庚二醇、2-甲基-2-丙基-1,3-丙二醇、2,2-二乙基-1,3-丙二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、1,11-十一烷二醇、1,12-十二烷二醇等。另外,作为三元以上的醇,具体而言,可以举出例如三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷、二-(三羟甲基丙烷)、三-(三羟甲基丙烷)、季戊四醇、二-(季戊四醇)、三-(季戊四醇)、甘油、聚甘油(甘油的二聚体~三聚体)、1,3,5-戊三醇、山梨醇、脱水山梨醇、山梨醇甘油缩合物、核糖醇、阿拉伯糖醇、木糖醇、甘露糖醇等多元醇、木糖、阿拉伯糖、核糖、鼠李糖、葡萄糖、果糖、半乳糖、甘露糖、山梨糖、纤维二糖等糖类以及它们的部分醚化物等。这些之中,由于水解稳定性优异,因此更优选为新戊二醇、三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷、二-(三羟甲基丙烷)、三-(三羟甲基丙烷)、季戊四醇、二-(季戊四醇)、三-(季戊四醇)等受阻醇的酯,进一步优选为新戊二醇、三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷及季戊四醇、二-(季戊四醇)的酯,进一步优选为新戊二醇、三羟甲基丙烷、季戊四醇、二-(季戊四醇);由于与制冷剂的相容性及水解稳定性特别优异,因此最优选为季戊四醇、二-(季戊四醇)或季戊四醇与二-(季戊四醇)的混合酯。
作为构成上述多元醇脂肪酸酯(A)的酸构成成分的优选例,可以举出以下的例子。
(i)选自丁酸、2-甲基丙酸、戊酸、2-甲基丁酸、3-甲基丁酸、2,2-二甲基丙酸、2-甲基戊酸、3-甲基戊酸、4-甲基戊酸、2,2-二甲基丁酸、2,3-二甲基丁酸、3,3-二甲基丁酸和己酸的1种~13种与选自2-甲基己酸、3-甲基己酸、4-甲基己酸、5-甲基己酸、2,2-二甲基戊酸、2,3-二甲基戊酸、2,4-二甲基戊酸、3,3-二甲基戊酸、3,4-二甲基戊酸、4,4-二甲基戊酸、2-乙基戊酸、3-乙基戊酸和2-乙基-3-甲基戊酸的1种~13种的组合;
(ii)选自丁酸、2-甲基丙酸、戊酸、2-甲基丁酸、3-甲基丁酸、2,2-二甲基丙酸、2-甲基戊酸、3-甲基戊酸、4-甲基戊酸、2,2-二甲基丁酸、2,3-二甲基丁酸、3,3-二甲基丁酸和己酸的1种~13种与选自2-甲基庚酸、3-甲基庚酸、4-甲基庚酸、5-甲基庚酸、6-甲基庚酸、2,2-二甲基己酸、3,3-二甲基己酸、4,4-二甲基己酸、5,5-二甲基己酸、2,3-二甲基己酸、2,4-二甲基己酸、2,5-二甲基己酸、3,4-二甲基己酸、3,5-二甲基己酸、4,5-二甲基己酸、2,2,3-二甲基戊酸、2,3,3-三甲基戊酸、2,4,4-三甲基戊酸、3,4,4-三甲基戊酸、2-乙基己酸、3-乙基己酸、2-丙基戊酸、2-甲基-2-乙基戊酸、2-甲基-3-乙基戊酸和3-甲基-3-乙基戊酸的1种~25种的组合;
(iii)选自丁酸、2-甲基丙酸、戊酸、2-甲基丁酸、3-甲基丁酸、2,2-二甲基丙酸、2-甲基戊酸、3-甲基戊酸、4-甲基戊酸、2,2-二甲基丁酸、2,3-二甲基丁酸、3,3-二甲基丁酸和己酸的1种~13种与选自2-甲基辛酸、3-甲基辛酸、4-甲基辛酸、5-甲基辛酸、6-甲基辛酸、7-甲基辛酸、8-甲基辛酸、2,2-二甲基庚酸、3,3-二甲基庚酸、4,4-二甲基庚酸、5,5-二甲基庚酸、6,6-二甲基庚酸、2,3-二甲基庚酸、2,4-二甲基庚酸、2,5-二甲基庚酸、2,6-二甲基庚酸、3,4-二甲基庚酸、3,5-二甲基庚酸、3,6-二甲基庚酸、4,5-二甲基庚酸、4,6-二甲基庚酸、2-乙基庚酸、3-乙基庚酸、4-乙基庚酸、5-乙基庚酸、2-丙基己酸、3-丙基己酸、2-丁基戊酸、2,2,3-三甲基己酸、2,2,3-三甲基己酸、2,2,4-三甲基己酸、2,2,5-三甲基己酸、2,3,4-三甲基己酸、2,3,5-三甲基己酸、3,3,4-三甲基己酸、3,3,5-三甲基己酸、3,5,5-三甲基己酸、3,5,5-三甲基己酸、4,4,5-三甲基己酸、4,5,5-三甲基己酸、2,2,3,3-四甲基戊酸、2,2,3,4-四甲基戊酸、2,2,4,4-四甲基戊酸、2,3,4,4-四甲基戊酸、3,3,4,4-四甲基戊酸、2,2-二乙基戊酸、2,3-二乙基戊酸、3,3-二乙基戊酸、2-乙基-2,3,3-三甲基丁酸、3-乙基-2,2,3-三甲基丁酸和2,2-二异丙基丙酸的1种~50种的组合。
作为构成上述多元醇脂肪酸酯的酸构成成分的进一步优选的例子,可以举出以下的例子。
(i)2-甲基丙酸与选自2-甲基己酸、3-甲基己酸、4-甲基己酸、5-甲基己酸、2,2-二甲基戊酸、2,3-二甲基戊酸、2,4-二甲基戊酸、3,3-二甲基戊酸、3,4-二甲基戊酸、4,4-二甲基戊酸、2-乙基戊酸、3-乙基戊酸和2-乙基-3-甲基戊酸的1种~13种的组合;
(ii)2-甲基丙酸与选自2-甲基庚酸、3-甲基庚酸、4-甲基庚酸、5-甲基庚酸、6-甲基庚酸、2,2-二甲基己酸、3,3-二甲基己酸、4,4-二甲基己酸、5,5-二甲基己酸、2,3-二甲基己酸、2,4-二甲基己酸、2,5-二甲基己酸、3,4-二甲基己酸、3,5-二甲基己酸、4,5-二甲基己酸、2,2,3-二甲基戊酸、2,3,3-三甲基戊酸、2,4,4-三甲基戊酸、3,4,4-三甲基戊酸、2-乙基己酸、3-乙基己酸、2-丙基戊酸、2-甲基-2-乙基戊酸、2-甲基-3-乙基戊酸和3-甲基-3-乙基戊酸的1种~25种的组合;
(iii)2-甲基丙酸与选自2-甲基辛酸、3-甲基辛酸、4-甲基辛酸、5-甲基辛酸、6-甲基辛酸、7-甲基辛酸、8-甲基辛酸、2,2-二甲基庚酸、3,3-二甲基庚酸、4,4-二甲基庚酸、5,5-二甲基庚酸、6,6-二甲基庚酸、2,3-二甲基庚酸、2,4-二甲基庚酸、2,5-二甲基庚酸、2,6-二甲基庚酸、3,4-二甲基庚酸、3,5-二甲基庚酸、3,6-二甲基庚酸、4,5-二甲基庚酸、4,6-二甲基庚酸、2-乙基庚酸、3-乙基庚酸、4-乙基庚酸、5-乙基庚酸、2-丙基己酸、3-丙基己酸、2-丁基戊酸、2,2,3-三甲基己酸、2,2,3-三甲基己酸、2,2,4-三甲基己酸、2,2,5-三甲基己酸、2,3,4-三甲基己酸、2,3,5-三甲基己酸、3,3,4-三甲基己酸、3,3,5-三甲基己酸、3,5,5-三甲基己酸、3,5,5-三甲基己酸、4,4,5-三甲基己酸、4,5,5-三甲基己酸、2,2,3,3-四甲基戊酸、2,2,3,4-四甲基戊酸、2,2,4,4-四甲基戊酸、2,3,4,4-四甲基戊酸、3,3,4,4-四甲基戊酸、2,2-二乙基戊酸、2,3-二乙基戊酸、3,3-二乙基戊酸、2-乙基-2,3,3-三甲基丁酸、3-乙基-2,2,3-三甲基丁酸和2,2-二异丙基丙酸的1种~50种的组合。
所述多元醇脂肪酸酯(A)的含量以制冷机油总量为基准计为50质量%以上,优选为60质量%以上,更优选为70质量%以上,进一步优选为75质量%以上。如后所述,本实施方式的制冷机油可以含有多元醇脂肪酸酯(A)以外的润滑油基础油、添加剂,但若多元醇脂肪酸酯(A)小于50质量%,则无法以高水准兼顾必要粘度和相容性。
在本实施方式的制冷机油中,多元醇脂肪酸酯(A)主要被用作基础油。作为本实施方式的制冷机油的基础油,可以单独使用多元醇脂肪酸酯(A)(即多元醇脂肪酸酯(A)的含量为100质量%),但除此之外,还可以以不损害其优异的性能的程度进一步含有多元醇脂肪酸酯(A)以外的基础油。作为多元醇脂肪酸酯(A)以外的基础油,可以举出矿物油、烯烃聚合物、烷基二苯基链烷烃、烷基萘、烷基苯等烃系油;多元醇脂肪酸酯(A)以外的多元醇酯、复合酯、脂环式二羧酸酯等酯、聚乙二醇、聚乙烯基醚、酮、聚苯醚、有机硅、聚硅氧烷、全氟醚等含有氧的合成油(以下根据情况称为“其它含氧合成油”)等。
作为含氧的合成油,上述之中,优选为多元醇脂肪酸酯(A)以外的酯、聚乙二醇、聚乙烯基醚,特别优选为多元醇脂肪酸酯(A)以外的多元醇酯。作为多元醇脂肪酸酯(A)以外的多元醇酯,可以举出新戊二醇、三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷、季戊四醇、二季戊四醇等多元醇与脂肪酸的酯,特别优选为新戊二醇与脂肪酸的酯、季戊四醇与脂肪酸的酯以及二季戊四醇与脂肪酸的酯。
作为新戊二醇酯,优选为新戊二醇与碳原子数为5~9的脂肪酸的酯。作为这样的新戊二醇酯,具体而言,可以举出例如新戊二醇二(3,5,5-三甲基己酸)酯、新戊二醇二(2-乙基己酸)酯、新戊二醇二(2-甲基己酸)酯、新戊二醇二(2-乙基戊酸)酯、新戊二醇与2-甲基己酸·2-乙基戊酸的酯、新戊二醇与3-甲基己酸·5-甲基己酸的酯、新戊二醇与2-甲基己酸·2-乙基己酸的酯、新戊二醇与3,5-二甲基己酸·4,5-二甲基己酸·3,4-二甲基己酸的酯、新戊二醇二戊酸酯、新戊二醇二(2-乙基丁酸)酯、新戊二醇二(2-甲基戊酸)酯、新戊二醇二(2-甲基丁酸)酯、新戊二醇二(3-甲基丁酸)酯等。
作为季戊四醇酯,优选为季戊四醇与碳原子数为5~9的脂肪酸的酯。作为这样的季戊四醇酯,具体而言,可以举出季戊四醇与选自戊酸、2-甲基丁酸、3-甲基丁酸、己酸、2-甲基戊酸、2-乙基丁酸、2-乙基戊酸、2-甲基己酸、3,5,5-三甲基己酸及2-乙基己酸中的1种以上的脂肪酸的酯。
作为二季戊四醇酯,优选为二季戊四醇与碳原子数为5~9的脂肪酸的酯。作为这样的二季戊四醇酯,具体而言,可以举出二季戊四醇与选自戊酸、2-甲基丁酸、3-甲基丁酸、己酸、2-甲基戊酸、2-乙基丁酸、2-乙基戊酸、2-甲基己酸、3,5,5-三甲基己酸及2-乙基己酸中的1种以上的脂肪酸的酯。
在本实施方式的制冷机油含有多元醇脂肪酸酯(A)以外的含氧合成油的情况下,多元醇脂肪酸酯(A)以外的含氧合成油的含量只要不损害本实施方式的制冷机油的优异的润滑性和相容性即可,没有特别限制,在混配多元醇脂肪酸酯(A)以外的多元醇酯的情况下,以制冷机油总量为基准,优选小于50质量%,更优选为45质量%以下,进一步优选为40质量%以下,更进一步优选为35质量%以下,更进一步优选为30质量%以下,最优选为25质量%以下;在混配多元醇酯以外的含氧合成油的情况下,以制冷机油总量为基准,优选小于50质量%,更优选为40质量%以下,进一步优选为30质量%以下。若季戊四醇脂肪酸酯以外的多元醇酯、其它含氧合成油的混配量过多,则无法充分得到上述效果。
需要说明的是,多元醇脂肪酸酯(A)以外的多元醇酯可以是多元醇的羟基的一部分未被酯化而保持羟基而残留的部分酯,也可以是所有的羟基被酯化的完全酯,另外,也可以是部分酯和完全酯的混合物,但优选羟值为10mgKOH/g以下,更优选为5mgKOH/g以下,最优选为3mgKOH/g以下。
本实施方式的制冷机和制冷机用工作流体含有多元醇脂肪酸酯(A)以外的多元醇酯的情况下,作为该多元醇酯,可以含有由1种单一结构的多元醇酯构成的多元醇酯,另外也可以含有结构不同的2种以上的多元醇酯的混合物。
另外,多元醇脂肪酸酯(A)以外的多元醇酯可以是1种脂肪酸与1种多元醇的酯、2种以上的脂肪酸与1种多元醇的酯、1种脂肪酸与2种以上的多元醇的酯、2种以上的脂肪酸与2种以上的多元醇的酯中的任一种。
本实施方式的制冷机油可以仅由多元醇脂肪酸酯(A)构成,另外,也可以由多元醇脂肪酸酯(A)和其它基础油构成,还可以含有后述的各种添加剂。另外,在本实施方式的制冷机用工作流体中,也可以进一步含有各种添加剂。需要说明的是,在以下的说明中,关于添加剂的含量,以制冷机油总量为基准表示,但优选选定制冷机用工作流体中这些成分的含量,使其在以制冷机油总量为基准的情况下处于后述的优选范围内。
为了进一步改善本实施方式的制冷机油和制冷机用工作流体的耐磨耗性、耐负荷性,可以混配选自磷酸酯、酸性磷酸酯、硫代磷酸酯、酸性磷酸酯的胺盐、氯化磷酸酯和亚磷酸酯中的至少一种磷化合物。这些磷化合物为磷酸或亚磷酸与烷醇、聚醚型醇的酯或其衍生物。
具体而言,作为磷酸酯,可以列举例如磷酸三丁酯、磷酸三戊酯、磷酸三己酯、磷酸三庚酯、磷酸三辛酯、磷酸三壬酯、磷酸三癸酯、磷酸三(十一烷基)酯、磷酸三(十二烷基)酯、磷酸三(十三烷基)酯、磷酸三(十四烷基)酯、磷酸三(十五烷基)酯、磷酸三(十六烷基)酯、磷酸三(十七烷基)酯、磷酸三(十八烷基)酯、磷酸三油醇酯、磷酸三苯酯、磷酸三甲苯酯、磷酸三(二甲苯基)酯、磷酸甲苯基二苯酯、磷酸二甲苯基二苯酯。
作为酸性磷酸酯,可以举出单丁基酸式磷酸酯、单戊基酸式磷酸酯、单己基酸式磷酸酯、单庚基酸式磷酸酯、单辛基酸式磷酸酯、单壬基酸式磷酸酯、单癸基酸式磷酸酯、单十一烷基酸式磷酸酯、单十二烷基酸式磷酸酯、单十三烷基酸式磷酸酯、单十四烷基酸式磷酸酯、单十五烷基酸式磷酸酯、单十六烷基酸式磷酸酯、单十七烷基酸式磷酸酯、单十八烷基酸式磷酸酯、单油醇酸式磷酸酯、二丁基酸式磷酸酯、二戊基酸式磷酸酯、二己基酸式磷酸酯、二庚基酸式磷酸酯、二辛基酸式磷酸酯、二壬基酸式磷酸酯、二癸基酸式磷酸酯、二(十一烷基)酸式磷酸酯、二(十二烷基)酸式磷酸酯、二(十三烷基)酸式磷酸酯、二(十四烷基)酸式磷酸酯、二(十五烷基)酸式磷酸酯、二(十六烷基)酸式磷酸酯、二(十七烷基)酸式磷酸酯、二(十八烷基)酸式磷酸酯、二油醇酸式磷酸酯等。
作为硫代磷酸酯,可以举出硫代磷酸三丁酯、硫代磷酸三戊酯、硫代磷酸三己酯、硫代磷酸三庚酯、硫代磷酸三辛酯、硫代磷酸三壬酯、硫代磷酸三癸酯、硫代磷酸三(十一烷基)酯、硫代磷酸三(十二烷基)酯、硫代磷酸三(十三烷基)酯、硫代磷酸三(十四烷基)酯、硫代磷酸三(十五烷基)酯、硫代磷酸三(十六烷基)酯、硫代磷酸三(十七烷基)酯、硫代磷酸三(十八烷基)酯、硫代磷酸三油醇酯、硫代磷酸三苯酯、硫代磷酸三甲苯酯、硫代磷酸三(二甲苯基)酯、硫代磷酸甲苯基二苯酯、硫代磷酸二甲苯基二苯酯等。
作为酸性磷酸酯的胺盐,可以举出酸性磷酸酯与碳原子数为1~24、优选5~18的1~3级的直链或支链烷基的胺的胺盐。
作为构成酸性磷酸酯的胺盐的胺,可以举出与下述胺的盐:直链或支链的甲胺、乙胺、丙胺、丁胺、戊胺、己胺、庚胺、辛胺、壬胺、癸胺、十一烷基胺、十二烷基胺、十三烷基胺、十四烷基胺、十五烷基胺、十六烷基胺、十七烷基胺、十八烷基胺、油胺、二十四烷基胺、二甲胺、二乙胺、二丙胺、二丁胺、二戊胺、二己胺、二庚胺、二辛胺、二壬胺、二癸胺、二(十一烷基)胺、二(十二烷基)胺、二(十三烷基)胺、二(十四烷基)胺、二(十五烷基)胺、二(十六烷基)胺、二(十七烷基)胺、二(十八烷基)胺、二油胺、二(二十四烷基)胺、三甲胺、三乙胺、三丙胺、三丁胺、三戊胺、三己胺、三庚胺、三辛胺、三壬胺、三癸胺、三(十一烷基)胺、三(十二烷基)胺、三(十三烷基)胺、三(十四烷基)胺、三(十五烷基)胺、三(十六烷基)胺、三(十七烷基)胺、三(十八烷基)胺、三油胺、三(二十四烷基)胺等胺。胺可以为单独的化合物,也可以是2种以上的化合物的混合物。
作为氯化磷酸酯,可以举出三(二氯丙基)磷酸酯、三(氯乙基)磷酸酯、三(氯苯基)磷酸酯、聚氧化亚烷基二[二(氯烷基)]磷酸酯等。作为亚磷酸酯,可以举出亚磷酸二丁酯、亚磷酸二戊酯、亚磷酸二己酯、亚磷酸二庚酯、亚磷酸二辛酯、亚磷酸二壬酯、亚磷酸二癸酯、亚磷酸二(十一烷基)酯、亚磷酸二(十二烷基)酯、亚磷酸二油烯酯、亚磷酸二苯酯、亚磷酸二甲苯酯、亚磷酸三丁酯、亚磷酸三戊酯、亚磷酸三己酯、亚磷酸三庚酯、亚磷酸三辛酯、亚磷酸三壬酯、亚磷酸三癸酯、亚磷酸三(十一烷基)酯、亚磷酸三(十二烷基)酯、亚磷酸三油烯酯、亚磷酸三苯酯、亚磷酸三甲苯酯等。另外,也可以使用它们的混合物。
本实施方式的制冷机油和制冷机用工作流体含有上述磷化合物的情况下,磷化合物的含量没有特别限制,但以制冷机油总量为基准(以基础油和全部混配添加剂的总量为基准),优选为0.01~5.0质量%,更优选为0.02~3.0质量%。需要说明的是,上述磷化合物可以单独使用1种,也可以合用2种以上。
另外,本实施方式的制冷机油和制冷机用工作流体为了进一步改善其热/化学稳定性,可以添加萜化合物。本发明中所说的“萜化合物”是指异戊二烯聚合而成的化合物及它们的衍生物,优选使用异戊二烯的2~8聚体。作为萜化合物,具体而言,可以举出香叶醇、橙花醇、沉香醇、柠檬醛(含香叶醛)、香茅醇、薄荷醇、柠檬烯、松油醇、香芹酮、紫罗酮、侧柏酮、莰酮(camphre)、莰醇等单萜;法呢烯、法呢醇、橙花叔醇、保幼激素、蛇麻烯、丁子香烯、榄香烯、杜松醇、杜松烯、羟基马桑毒素等倍半萜;香叶基香叶醇、叶绿醇、松香酸、纳他霉素、瑞香毒素、紫杉酚、松香酸等二萜、香叶基法呢烯等二倍半萜;角鲨烯、柠檬苦素、山茶皂甙元、藿烷、羊毛甾醇等三萜、类胡萝卜素等四萜等。
在这些萜化合物中,优选单萜、倍半萜、二萜,更优选倍半萜,特别优选α法呢(3,7,11-三甲基十二碳-1,3,6,10-四烯)和/或β法呢烯(7,11-二甲基-3-亚甲基十二碳-1,6,10-三烯)。在本发明中,萜化合物可以单独使用1种,也可以组合2种以上使用。
本实施方式的制冷机油中的萜化合物的含量没有特别限制,但以制冷机油总量为基准,优选为0.001~10质量%,更优选为0.01~5质量%,进一步优选为0.05~3质量%。若萜化合物的含量小于0.001质量%,则存在热/化学稳定性的提高效果不充分的倾向;另外,若超过10质量%,则存在润滑性不充分的倾向。另外,关于本实施方式的制冷机用工作流体中的萜化合物的含量,优选选定为在以制冷机油总量为基准的情况下成为上述的优选的范围内。
另外,本实施方式的制冷机油和制冷机用工作流体为了进一步改良其热/化学稳定性,可以含有选自苯基缩水甘油醚型环氧化合物、烷基缩水甘油醚型环氧化合物、缩水甘油酯型环氧化合物、烯丙基环氧乙烷化合物、烷基环氧乙烷化合物、脂环式环氧化合物、环氧化脂肪酸单酯和环氧化植物油中的至少一种环氧化合物。
作为苯基缩水甘油醚型环氧化合物,具体而言,可例示出苯基缩水甘油醚或烷基苯基缩水甘油醚。这里所述的烷基苯基缩水甘油醚,可列举具有1~3个碳原子数为1~13的烷基,其中作为优选的例子可例示出具有1个碳原子数4~10的烷基的例子,例如正丁基苯基缩水甘油醚、异丁基苯基缩水甘油醚、仲丁基苯基缩水甘油醚、叔丁基苯基缩水甘油醚、戊基苯基缩水甘油醚、己基苯基缩水甘油醚、庚基苯基缩水甘油醚、辛基苯基缩水甘油醚、壬基苯基缩水甘油醚、癸基苯基缩水甘油醚等。
作为烷基缩水甘油醚型环氧化合物,具体而言,可例示出癸基缩水甘油醚、十一烷基缩水甘油醚、十二烷基缩水甘油醚、十三烷基酯缩水甘油醚、十四烷基缩水甘油醚、2-乙基己基缩水甘油醚、新戊二醇二缩水甘油醚、三羟甲基丙烷三缩水甘油醚、季戊四醇四缩水甘油醚、1,6-己二醇二缩水甘油醚、山梨醇聚缩水甘油醚、聚亚烷基二醇单缩水甘油醚、聚亚烷基二醇二缩水甘油醚等。
作为缩水甘油酯型环氧化合物,具体而言,可列举出苯基缩水甘油酯、烷基缩水甘油酯、链烯基缩水甘油酯等,作为优选的例子,可例示出缩水甘油-2,2-二甲基辛酸酯、缩水甘油苯甲酸酯、缩水甘油丙烯酸酯、缩水甘油甲基丙烯酸酯等。
作为烯丙基环氧乙烷化合物,具体而言,可例示出1,2-环氧基苯乙烯、烷基-1,2-环氧基苯乙烯等。
作为烷基环氧乙烷化合物,具体而言,可例示出1,2-环氧丁烷、1,2-环氧戊烷、1,2-环氧己烷、1,2-环氧庚烷、1,2-环氧辛烷、1,2-环氧壬烷、1,2-环氧癸烷、1,2-环氧十一烷、1,2-环氧十二烷、1,2-环氧十三烷、1,2-环氧十四烷、1,2-环氧十五烷、1,2-环氧十六烷、1,2-环氧十七烷、1,1,2-环氧十八烷、2-环氧十九烷、1,2-环氧二十烷等。
作为脂环式环氧化合物,具体而言,可例示出1,2-环氧环己烷、1,2-环氧环戊烷、3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯、二(3,4-环氧环己基甲基)己二酸酯、外-2,3-环氧降莰烷、二(3,4-环氧-6-甲基环己基甲基)己二酸酯、2-(7-氧杂二环[4.1.0]庚-3-基)-螺(1,3-二恶烷-5,3’-[7]氧杂二环[4.1.0]庚烷、4-(1’-甲基环氧乙基)-1,2-环氧-2-甲基环己烷、4-环氧乙基-1,2-环氧环己烷等。
作为环氧化脂肪酸单酯,具体而言,可例示出被环氧化的碳原子数为12~20的脂肪酸和碳原子数为1~8的醇或苯酚、烷基苯酚的酯等。特别优选使用环氧基硬脂酸的丁酯、己酯、苄酯、环己酯、甲氧基乙酯、辛酯、苯酯和丁苯酯。
作为环氧化植物油,具体而言,可例示出大豆油、亚麻油、棉籽油等植物油的环氧化合物等。
在这些环氧化合物中,优选为苯基缩水甘油醚型环氧化合物、烷基缩水甘油醚型环氧化合物、缩水甘油酯型环氧化合物、和脂环式环氧化合物。
本实施方式的制冷机油和制冷机用工作流体含有上述环氧化合物时,环氧化合物的含量没有特别限制,但以制冷机油总量为基准,优选为0.01~5.0质量%,更优选为0.1~3.0质量%。需要说明的是,上述环氧化合物可以单独使用1种,也可以同时使用2种以上。
需要说明的是,包含多元醇脂肪酸酯(A)的制冷机油在40℃时的运动粘度优选为20~80mm2/s,更优选为25~75mm2/s,最优选为30~70mm2/s。此外,100℃时的运动粘度优选为2~20mm2/s,更优选为3~10mm2/s。在运动粘度为上述下限值以上时,容易确保作为制冷机油所需的粘度;另一方面,在上述上限值以下时,能够充分地获得作为制冷剂组合物包含二氟甲烷时与该二氟甲烷的相容性。
另外,包含多元醇脂肪酸酯(A)的制冷机油的体积电阻率没有特别限制,优选为1.0×1012Ω·cm以上,更优选为1.0×1013Ω·cm以上,最优选为1.0×1014Ω·cm以上。特别是在用于密闭型的制冷机用的情况下,存在需要高电绝缘性的倾向。需要说明的是,体积电阻率是指依据JIS C 2011“电绝缘油试验方法”测定的25℃时的值。
另外,包含多元醇脂肪酸酯(A)的制冷机油的水分含量没有特别限制,以制冷机油总量为基准,优选为200ppm以下,更优选为100ppm以下,最优选为50ppm以下。特别是在用于密闭型的制冷机用的情况下,从制冷机油的热/化学稳定性、对电绝缘性的影响的观点出发,要求水分含量少。
另外,包含多元醇脂肪酸酯(A)的制冷机油的酸值没有特别限制,但为了防止腐蚀制冷机或配管中使用的金属,优选为0.1mgKOH/g以下,更优选为0.05mgKOH/g以下。需要说明的是,在本发明中,酸值是指依据JIS K 2501“石油产品和润滑油-中和值试验方法”测定的酸值。
另外,包含多元醇脂肪酸酯(A)的制冷机油的灰分没有特别限制,为了提高制冷机油的热/化学稳定性、抑制淤渣等的产生,优选为100ppm以下,更优选为50ppm以下。需要说明的是,灰分是指依据JIS K 2272“原油及石油产品的灰分以及硫酸灰分试验方法”测定的灰分的值。
(复合酯油)
复合酯油是指脂肪酸和二元酸与一元醇和多元醇的酯。作为脂肪酸、二元酸、一元醇、多元醇,可以使用与上述同样的物质。
作为脂肪酸,可以举出上述多元醇酯的脂肪酸所示的脂肪酸。
作为二元酸,可以举出草酸、丙二酸、琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、邻苯二甲酸、间苯二甲酸、对苯二甲酸等。
作为多元醇,可以举出上述多元醇酯的多元醇。复合酯是这些脂肪酸、二元酸、多元醇的酯,既可以分别是单一成分,也可以是由多个成分构成的酯。
(多元醇碳酸酯油)
多元醇碳酸酯油是碳酸与多元醇的酯。
作为多元醇,可以举出与上述同样的二醇或多元醇。
另外,作为多元醇碳酸酯油,可以为环状碳酸亚烷基酯的开环聚合物。
(2-1-2)醚系制冷机油
作为醚系制冷机油,可以举出聚乙烯基醚油、聚氧化烯油等。
(聚乙烯基醚油)
作为聚乙烯基醚油,可以举出乙烯基醚单体的聚合物、乙烯基醚单体与具有烯属双键的烃单体的共聚物、具有烯属双键与聚氧化烯链的单体与乙烯基醚单体的共聚物等。
聚乙烯基醚油的碳/氧摩尔比优选为2以上7.5以下,更优选为2.5以上5.8以下。若碳/氧摩尔比低于该范围,则吸湿性变高;若高于该范围,则相容性降低。另外,聚乙烯基醚的重均分子量优选为200以上3000以下,更优选为500以上1500以下。
聚乙烯基醚油的倾点优选为-30℃以下。聚乙烯基醚油在20℃时的表面张力优选为0.02N/m以上0.04N/m以下。聚乙烯基醚油在15℃时的密度优选为0.8g/cm3以上且1.8g/cm3以下。聚乙烯基醚油在温度30℃、相对湿度90%下的饱和水分量为2000ppm以上。
在制冷机油中,可以包含聚乙烯基醚作为主成分。在制冷剂中包含HFO-1234yf的情况下,作为制冷机油的主成分的聚乙烯基醚相对于该HFO-1234yf具有相容性,若制冷机油在40℃时的运动粘度为400mm2/s以下,则HFO-1234yf在制冷机油中以某种程度溶解。另外,在制冷机油的倾点为-30℃以下的情况下,即使制冷剂回路中的制冷剂组合物、制冷机油成为低温的部位也容易确保制冷机油的流动性。另外,在制冷机油的20℃时的表面张力为0.04N/m以下的情况下,从压缩机排出的制冷机油不易成为难以被制冷剂组合物推着流动的大的油滴。因此,从压缩机排出的制冷机油易溶解于HFO-1234yf而与HFO-1234yf一起返回到压缩机。
另外,在制冷机油在40℃时的运动粘度为30mm2/s以上的情况下,抑制运动粘度过低而使油膜强度不充分,容易确保润滑性能。另外,在制冷机油在20℃时的表面张力为0.02N/m以上的情况下,在压缩机内的气体制冷剂中不易成为小的油滴,能够抑制制冷机油从压缩机大量地被排出。因此,容易充分确保压缩机中的制冷机油的贮存量。
另外,在制冷机油的饱和水分量在温度30℃/相对湿度90%下为2000ppm以上的情况下,能够使制冷机油的吸湿性较高。由此,在制冷剂中包含HFO-1234yf的情况下,能够以某种程度利用制冷机油来捕捉HFO-1234yf中的水分。HFO-1234yf具有因所含有的水分的影响而容易变质/劣化的分子结构。因此,通过由制冷机油产生的吸湿效果,能够抑制这种劣化。
进一步,在能够与在制冷剂回路中流动的制冷剂接触的密封部、滑动部配置有规定的树脂制功能部件的情况且该树脂制功能部件由聚四氟乙烯、聚苯硫醚、酚醛树脂、聚酰胺树脂、氯丁二烯橡胶、硅橡胶、氢化丁腈橡胶、含氟橡胶、氯醚橡胶中的任一种构成的情况下,优选的是,考虑与该树脂制功能部件的适应性而将制冷机油的苯胺点设定为该数值范围。通过如此设定苯胺点,例如构成树脂制功能部件的轴承与制冷机油的适应性提高。具体而言,若苯胺点过小,则制冷机油容易浸透轴承等,轴承等容易溶胀。另一方面,若苯胺点过大,则制冷机油难以浸透轴承等,轴承等容易收缩。因此,通过使制冷机油的苯胺点为规定的数值范围,从而能够防止轴承等的溶胀/收缩变形。此处,例如当各轴承等发生溶胀/缩小变形时,无法将滑动部的间隙(间隔)维持在期望的长度。其结果,有可能导致滑动阻力的增大、滑动部的刚性降低。然而,通过如上述那样使制冷机油的苯胺点为规定的数值范围,从而能够抑制轴承等的溶胀/缩小变形,因此能够避免这样的不良情况。
乙烯基醚单体可以单独使用1种,也可以组合2种以上来使用。作为具有烯属双键的烃单体,可以举出乙烯、丙烯、各种丁烯、各种戊烯、各种己烯、各种庚烯、各种辛烯、二异丁烯、三异丁烯、苯乙烯、α-甲基苯乙烯、各种烷基取代苯乙烯等。具有烯属双键的烃单体可以单独使用1种,也可以组合2种以上来使用。
聚乙烯基醚共聚物可以为嵌段共聚物或无规共聚物中的任一种。聚乙烯基醚油可以单独使用1种,也可以组合2种以上来使用。
优选使用的聚乙烯基醚油具有下述通式(1)表示的结构单元。
[化学式1]
Figure BDA0003577350500003021
(式中,R1、R2及R3可以相同也可以不同,分别表示氢原子或碳原子数为1~8的烃基,R4表示碳原子数为1~10的二价烃基或碳原子数为2~20的二价醚键含氧烃基,R5表示碳原子数为1~20的烃基,m表示使上述聚乙烯基醚的m的平均值成为0~10的数,R1~R5的每个结构单元可以相同也可以不同,在一个结构单元中m为2以上的情况下,多个R4O可以相同也可以不同。)
上述通式(1)中的R1、R2及R3中的至少1个为氢原子,特别优选全部为氢原子。通式(1)中的m为0以上10以下,特别优选为0以上5以下,进一步优选为0。通式(1)中的R5表示碳原子数为1~20的烃基,作为该烃基,具体表示甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、各种戊基、各种己基、各种庚基、各种辛基的烷基;环戊基、环己基、各种甲基环己基、各种乙基环己基、各种二甲基环己基等环烷基、苯基、各种甲苯基、各种乙苯基、各种二甲苯基的芳基;苄基、各种苯基乙基、各种甲基苄基的芳烷基。需要说明的是,在烷基、环烷基、苯基、芳基、芳烷基中,优选为烷基、特别是碳原子数为1以上5以下的烷基。需要说明的是,作为上述聚乙烯基醚油,优选的是,以R5的碳原子数为1或2的烷基的聚乙烯基醚油:R5的碳原子数为3或4的烷基的聚乙烯基醚油的比率为40%:60%~100%:0%的方式包含它们。
本实施方式的聚乙烯基醚油可以为通式(1)所示的结构单元相同的均聚物,也可以为由两种以上的结构单元构成的共聚物。共聚物可以为嵌段共聚物或无规共聚物中的任一种。
本实施方式的聚乙烯基醚油可以仅由上述通式(1)表示的结构单元构成,也可以为进一步包含下述通式(2)表示的结构单元的共聚物。在该情况下,共聚物可以为嵌段共聚物或无规共聚物中的任一种。
[化学式2]
Figure BDA0003577350500003031
(式中,R6~R9可以彼此相同也可以不同,分别表示氢原子或碳原子数为1~20的烃基。)
作为乙烯基醚系单体,可以举出下述通式(3)的化合物。
[化学式3]
Figure BDA0003577350500003032
(式中,R1、R2、R3、R4、R5以及m分别表示与通式(1)中的R1、R2、R3、R4、R5以及m相同的定义内容。)
存在有对应于上述聚乙烯基醚系化合物的各种化合物,但可以举出例如乙烯基甲基醚、乙烯基乙基醚、乙烯基正丙基醚、乙烯基异丙基醚、乙烯基正丁基醚、乙烯基异丁基醚、乙烯基仲丁基醚、乙烯基叔丁基醚、乙烯基正戊基醚、乙烯基正己基醚、乙烯基-2-甲氧基乙基醚、乙烯基-2-乙氧基乙基醚、乙烯基-2-甲氧基-1-甲基乙基醚、乙烯基-2-甲氧基-丙基醚、乙烯基-3,6-二氧杂庚基醚、乙烯基-3,6,9-三氧杂癸基醚、乙烯基-1,4-二甲基-3,6-二氧杂庚基醚、乙烯基-1,4,7-三甲基-3,6,9-三氧杂癸基醚、乙烯基-2,6-二氧杂-4-庚基醚、乙烯基-2,6,9-三氧杂-4-癸基醚、1-甲氧基丙烯、1-乙氧基丙烯、1-正丙氧基丙烯、1-异丙氧基丙烯、1-正丁氧基丙烯、1-异丁氧基丙烯、1-仲丁氧基丙烯、1-叔丁氧基丙烯、2-甲氧基丙烯、2-乙氧基丙烯、2-正丙氧基丙烯、2-异丙氧基丙烯、2-正丁氧基丙烯、2-异丁氧基丙烯、2-仲丁氧基丙烯、2-叔丁氧基丙烯、1-甲氧基-1-丁烯、1-乙氧基-1-丁烯、1-正丙氧基-1-丁烯、1-异丙氧基-1-丁烯、1-正丁氧基-1-丁烯、1-异丁氧基-1-丁烯、1-仲丁氧基-1-丁烯、1-叔丁氧基-1-丁烯、2-甲氧基-1-丁烯、2-乙氧基-1-丁烯、2-正丙氧基-1-丁烯、2-异丙氧基-1-丁烯、2-正丁氧基-1-丁烯、2-异丁氧基-1-丁烯、2-仲丁氧基-1-丁烯、2-叔丁氧基-1-丁烯、2-甲氧基-2-丁烯、2-乙氧基-2-丁烯、2-正丙氧基-2-丁烯、2-异丙氧基-2-丁烯、2-正丁氧基-2-丁烯、2-异丁氧基-2-丁烯、2-仲丁氧基-2-丁烯、2-叔丁氧基-2-丁烯等。这些乙烯基醚系单体可以通过公知的方法来制造。
具有上述通式(1)所示的结构单元的聚乙烯基醚系化合物可以通过在本发明例所示的方法和公知的方法将其末端转换为期望的结构。作为转换的基团,可以举出饱和的烃、醚、醇、酮、酰胺、腈等。
作为聚乙烯基醚系化合物,优选具有如下末端结构。
[化学式4]
Figure BDA0003577350500003041
(式中,R11、R21及R31可以彼此相同也可以不同,分别表示氢原子或碳原子数为1~8的烃基,R41表示碳原子数为1~10的二价烃基或碳原子数为2~20的二价醚键含氧烃基,R51表示碳原子数为1~20的烃基,m表示使聚乙烯基醚的m的平均值成为0~10的数,在m为2以上的情况下,多个R41O可以相同也可以不同。)
[化学式5]
Figure BDA0003577350500003051
(式中,R61、R71、R81及R91既可以彼此相同也可以不同,分别表示氢原子或碳原子数为1~20的烃基。)
[化学式6]
Figure BDA0003577350500003052
(式中,R12、R22及R32可以彼此相同也可以不同,分别表示氢原子或碳原子数为1~8的烃基,R42表示碳原子数为1~10的二价烃基或碳原子数为2~20的二价醚键含氧烃基,R52表示碳原子数为1~20的烃基,m表示使聚乙烯基醚的m的平均值成为0~10的数,在m为2以上的情况下,多个R42O可以相同也可以不同。)
[化学式7]
Figure BDA0003577350500003053
(式中,R62、R72、R82及R92可以彼此相同也可以不同,分别表示氢原子或碳原子数为1~20的烃基。)
[化学式8]
Figure BDA0003577350500003061
(式中,R13、R23及R33可以彼此相同也可以不同,分别表示氢原子或碳原子数为1~8的烃基。)
本实施方式中的聚乙烯基醚油可以通过使上述单体进行自由基聚合、阳离子聚合、辐射聚合等来制造。在聚合反应结束后,根据需要实施通常的分离/纯化方法,从而得到具有目标通式(1)所示的结构单元的聚乙烯基醚系化合物。
(聚氧化烯油)
作为聚氧化烯油,可以举出利用以水或含羟基化合物作为引发剂使碳原子数为2~4的环氧烷(环氧乙烷、环氧丙烷等)聚合的方法等而得到的聚氧化烯化合物。另外,也可以使聚氧化烯化合物的羟基醚化或酯化。聚氧化烯油中的氧化烯单元可以在1分子中相同,也可以包含2种以上的氧化烯单元。优选在1分子中至少包含氧化丙烯单元。
作为具体的聚氧化烯油,可以举出例如由以下的通式(9)所表示的化合物。
R101-[(OR102)k-OR103]l…(9)
(式中,R101表示氢原子、碳原子数为1~10的烷基、碳原子数为2~10的酰基或具有2个~6个键合部的碳原子数为1~10的脂肪族烃基,R102表示碳原子数为2~4的亚烷基,R103表示氢原子、碳原子数为1~10的烷基或碳原子数为2~10的酰基,1表示1~6的整数,k表示使k×1的平均值成为6~80的数。)
上述通式(9)中,R101、R103中的烷基可以为直链状、支链状、环状中的任一种。作为该烷基的具体例,可以举出甲基、乙基、正丙基、异丙基、各种丁基、各种戊基、各种己基、各种庚基、各种辛基、各种壬基、各种癸基、环戊基、环己基等。若该烷基的碳原子数超过10,则与制冷剂的相容性降低,有时会产生相分离。优选的烷基的碳原子数为1~6。
另外,R101、R103中的该酰基的烷基部分可以为直链状、支链状、环状中的任一种。作为该酰基的烷基部分的具体例,可以同样地举出作为上述烷基的具体例所列举的碳原子数为1~9的各种基团。若该酰基的碳原子数超过10,则与制冷剂的相容性降低,有时会产生相分离。优选的酰基的碳原子数为2~6。
在R101及R103均为烷基或酰基的情况下,R101与R103可以相同,也可以彼此不同。
进一步,在l为2以上的情况下,1分子中的多个R103可以相同,也可以不同。
在R101为具有2个~6个键合部位的碳原子数为1~10的脂肪族烃基的情况下,该脂肪族烃基可以为链状,也可以为环状。作为具有2个键合部位的脂肪族烃基,可以举出例如亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚庚基、亚辛基、亚壬基、亚癸基、亚环戊烯基、亚环己基等。另外,作为具有3个~6个键合部位的脂肪族烃基,可以举出例如从三羟甲基丙烷、甘油、季戊四醇、山梨糖醇;1,2,3-三羟基环己烷;1,3,5-三羟基环己烷等多元醇中去除羟基后的残基。
若该脂肪族烃基的碳原子数超过10,则与制冷剂的相容性降低,有时会产生相分离。优选的碳原子数为2~6。
上述通式(9)中的R102是碳原子数为2~4的亚烷基,作为重复单元的氧化烯基,可以举出氧化乙烯基、氧化丙烯基、氧化丁烯基。1分子中的氧化烯基可以相同,也可以包含2种以上的氧化烯基,但优选在1分子中至少包含氧化丙烯单元,特别优选在氧化烯单元中包含50摩尔%以上的氧化丙烯单元。
上述通式(9)中的l为1~6的整数,可根据R101的键合部位的数量来确定。例如在R101为烷基或酰基的情况下,l为1;R101为具有2、3、4、5及6个结合部位的脂肪族烃基的情况下,l分别为2、3、4、5及6。l优选为1或2。另外,k优选为使k×l的平均值为6~80的数。
在经济性及上述效果的方面考虑,聚氧化烯油的结构优选为下述通式(10)所示的聚氧丙烯二醇二甲醚、以及下述通式(11)所示的聚(氧乙烯/氧丙烯)二醇二甲醚;另外,在经济性等方面考虑,优选为下述通式(12)所示的聚氧丙烯二醇单丁醚、以及下述通式(13)所示的聚氧丙烯二醇单甲醚、下述通式(14)所示的聚(氧乙烯/氧丙烯)二醇单甲醚、下述通式(15)所示的聚(氧乙烯/氧丙烯)二醇单丁醚、下述通式(16)所示的聚氧丙烯二醇二乙酸酯。
CH3O-(C3H6O)h-CH3…(10)
(式中,h表示6~80的数。)
CH3O-(C2H4O)i-(C3H6O)j-CH3…(11)
(式中,i和j分别表示1以上且i和j的合计为6~80的数。)
C4H9O-(C3H6O)h-H…(12)
(式中,h表示6~80的数。)
CH3O-(C3H6O)h-H…(13)
(式中,h表示6~80的数。)
CH3O-(C2H4O)i-(C3H6O)j-H…(14)
(式中,i和j分别表示1以上且i和j的合计为6~80的数。)
C4H9O-(C2H4O)i-(C3H6O)j-H…(15)
(式中,i和j分别表示1以上且i和j的合计为6~80的数。)
CH3COO-(C3H6O)h-COCH3(16)
(式中,h表示6~80的数。)
该聚氧化烯油可以单独使用1种,也可以组合2种以上使用。
(2-2)烃系制冷机油
作为烃系制冷机油,例如可以使用烷基苯。
作为烷基苯,可以使用:利用氟化氢等催化剂以丙烯的聚合物和苯为原料合成的支链烷基苯、以及利用相同的催化剂以正链烷烃和苯为原料合成的直链烷基苯。从调整成适合作为润滑油基础油的粘度的观点出发,烷基的碳原子数优选为1~30,更优选为4~20。另外,为了利用烷基的碳原子数而使粘度为设定范围内,1分子烷基苯所具有的烷基的数量优选为1~4,更优选为1~3。
需要说明的是,烃系制冷机油优选与制冷剂一起在制冷循环系统内循环。制冷机油与制冷剂溶解是最优选的方式,但只要是能够在制冷循环系统内与制冷剂一起循环的制冷机油,则例如即使是溶解性低的制冷机油(例如日本专利第2803451号公报中记载的制冷机油)也能够使用。为了使制冷机油在制冷循环系统内循环,要求制冷机油的运动粘度小。作为烃系制冷机油的运动粘度,在40℃时优选为1mm2/s以上50mm2/s以下,更优选为1mm2/s以上25mm2/s以下。
这些制冷机油可以单独使用1种,也可以组合2种以上使用。
制冷机用工作流体中的烃系制冷机油的含量例如相对于制冷剂组合物100质量份可以为10质量份以上100质量份以下,更优选为20质量份以上50质量份以下。
(2-3)添加剂
制冷机油中可以包含1种或2种以上的添加剂。
作为添加剂,可以举出捕酸剂、极压剂、抗氧化剂、消泡剂、油性剂、铜钝化剂等金属钝化剂、抗磨剂以及增容剂等。
捕酸剂可以使用苯基缩水甘油醚、烷基缩水甘油醚、亚烷基二醇缩水甘油醚、氧化环己烯、α-烯烃氧化物、环氧化大豆油等环氧化合物、碳二亚胺等。需要说明的是,这些之中,从相溶性的观点出发,优选苯基缩水甘油醚、烷基缩水甘油醚、亚烷基二醇缩水甘油醚、氧化环己烯、α-烯烃氧化物。烷基缩水甘油醚的烷基和亚烷基二醇缩水甘油醚的亚烷基可以具有支链。这些碳原子数只要为3以上30以下即可,更优选为4以上24以下,进一步优选为6以上16以下。另外,α-烯烃氧化物只要总碳原子数为4以上50以下即可,更优选为4以上24以下,进一步优选为6以上16以下。捕酸剂可以仅使用1种,也可以合用2种以上。
极压剂例如可以使用含有磷酸酯类的物质。
作为磷酸酯类,可以使用磷酸酯、亚磷酸酯、酸性磷酸酯和酸性亚磷酸酯等,也可以使用包含磷酸酯、亚磷酸酯、酸性磷酸酯和酸性亚磷酸酯的胺盐的物质。
磷酸酯有三芳基磷酸酯、三烷基磷酸酯、三烷基芳基磷酸酯、三芳基烷基磷酸酯、三烯基磷酸酯等。进而,若具体列举出磷酸酯,则有磷酸三苯酯、磷酸三甲苯酯、苄基二苯基磷酸酯、乙基二苯基磷酸酯、磷酸三丁酯、乙基二丁基磷酸酯、甲苯基二苯基磷酸酯、二甲苯基苯基磷酸酯、乙苯基二苯基磷酸酯、二乙苯基苯基磷酸酯、丙苯基二苯基磷酸酯、二丙苯基苯基磷酸酯、三乙苯基磷酸酯、三丙苯基磷酸酯、丁苯基二苯基磷酸酯、二丁苯基苯基磷酸酯、三丁苯基磷酸酯、磷酸三己酯、三(2-乙基己基)磷酸酯、磷酸三癸酯、三月桂基磷酸酯、三肉豆蔻基磷酸酯、三棕榈基磷酸酯、三硬脂基磷酸酯、三油烯基磷酸酯等。
另外,作为亚磷酸酯的具体例,存在有:亚磷酸三乙酯、亚磷酸三丁酯、亚磷酸三苯酯、亚磷酸三甲苯酯、三(壬基苯基)亚磷酸酯、三(2-乙基己基)亚磷酸酯、亚磷酸三癸酯、三月桂基亚磷酸酯、三异辛基亚磷酸酯、二苯基异癸基亚磷酸酯、三硬脂基亚磷酸酯、三油烯基亚磷酸酯等。
另外,作为酸性磷酸酯的具体例,存在有:2-乙基己基酸性磷酸酯、乙基酸性磷酸酯、丁基酸性磷酸酯、油烯基酸性磷酸酯、二十四烷基酸性磷酸酯、异癸基酸性磷酸酯、月桂基酸性磷酸酯、十三烷基酸性磷酸酯、硬脂基酸性磷酸酯、异硬脂基酸性磷酸酯等。
另外,作为酸性亚磷酸酯具体例,存在有:二丁基亚磷酸氢酯、二月桂基亚磷酸氢酯、二油烯基亚磷酸氢酯、二硬脂基亚磷酸氢酯、二苯基亚磷酸氢酯等。在以上的磷酸酯类中,优选油烯基酸性磷酸酯、硬脂基酸性磷酸酯。
另外,作为磷酸酯、亚磷酸酯、酸性磷酸酯或酸性亚磷酸酯的胺盐中所使用的胺中的单取代胺的具体例,存在有:丁胺、戊胺、己胺、环己胺、辛胺、月桂胺、硬脂胺、油胺、苄胺等。另外,作为二取代胺的具体例,存在有:二丁胺、二戊胺、二己胺、二环己胺、二辛胺、二月桂胺、二硬脂胺、二油胺、二苄胺、硬脂基·单乙醇胺、癸基·单乙醇胺、己基·单丙醇胺、苄基·单乙醇胺、苯基·单乙醇胺、甲苯基·单丙醇等。另外,作为三取代胺的具体例,存在有:三丁胺、三戊胺、三己胺、三环己胺、三辛胺、三月桂胺、三硬脂胺、三油胺、三苄胺、二油烯基·单乙醇胺、二月桂基·单丙醇胺、二辛基·单乙醇胺、二己基·单丙醇胺、二丁基·单丙醇胺、油烯基二乙醇胺、硬脂基二丙醇胺、月桂基二乙醇胺、辛基二丙醇胺、丁基二乙醇胺、苄基二乙醇胺、苯基二乙醇胺、甲苯基二丙醇胺、二甲苯基二乙醇胺、三乙醇胺、三丙醇胺等。
另外,作为上述以外的极压剂,可以举出例如:单硫醚类、多硫醚类、亚砜类、砜类、硫代亚磺酸酯系、硫化油脂、硫代碳酸酯类、噻吩类、噻唑类、甲磺酸酯类等有机硫化合物系的极压剂;硫代磷酸三酯类等硫代磷酸酯系的极压剂;高级脂肪酸、羟基芳基脂肪酸类、多元醇酯类、丙烯酸酯类等酯系的极压剂;氯化石蜡等氯化烃类;氯化羧酸衍生物等有机氯系的极压剂;氟化脂肪族羧酸类、氟化乙烯树脂、氟化烷基聚硅氧烷类、氟化石墨等有机氟化系的极压剂;高级醇等醇系的极压剂;环烷酸盐类(环烷酸铅等)、脂肪酸盐类(脂肪酸铅等)、硫代磷酸盐类(二烷基二硫代磷酸锌等)、硫代氨基甲酸盐类、有机钼化合物、有机锡化合物、有机锗化合物、硼酸酯等金属化合物系的极压剂。
抗氧化剂例如可以使用酚系抗氧化剂、胺系抗氧化剂。酚系抗氧化剂有2,6-二叔丁基-4-甲基苯酚(DBPC)、2,6-二叔丁基-4-乙基苯酚、2,2’-亚甲基双(4-甲基-6-叔丁基苯酚)、2,4-二甲基-6-叔丁基苯酚、2,6-二叔丁基苯酚、二叔丁基对甲酚、双酚A等。另外,胺系抗氧化剂有N,N’-二异丙基对苯二胺、N,N’-二仲丁基对苯二胺、苯基-α-萘胺、N,N’-二苯基对苯二胺、N,N-二(2-萘基)对苯二胺等。需要说明的是,抗氧化剂也可以使用捕捉氧的捕氧剂。
作为消泡剂,例如可以使用硅化合物。
作为油性剂,例如可以使用高级醇类、脂肪酸等。
作为铜钝化剂等金属钝化剂,可以使用苯并三唑或其衍生物等。
作为抗磨剂,可以使用二硫代磷酸锌等。
作为增容剂,没有特别限定,可以从通常使用的增容剂中适当选择,可以单独使用1种,也可以使用2种以上。作为增容剂,可以举出例如聚氧化亚烷基二醇醚、酰胺、腈、酮、氯碳、酯、内酯、芳基醚、氟醚和1,1,1-三氟烷烃等。作为增容剂,特别优选为聚氧化亚烷基二醇醚。
需要说明的是,在制冷机油中,根据需要,还可以添加耐负荷添加剂、捕氯剂、清洁分散剂、粘度指数提高剂、耐热性提高剂、稳定剂、防腐剂、耐热性提高剂、倾点下降剂以及防锈剂等。
上述各添加剂的混配量在制冷机油中包含的比例可以为0.01质量%以上5质量%以下,优选为0.05质量%以上3质量%以下。需要说明的是,在制冷剂组合物和制冷机油所混合的制冷机用工作流体中,添加剂的混配比例优选为5质量%以下,更优选为3质量%以下。
需要说明的是,制冷机油的氯浓度优选为50ppm以下,硫浓度优选为50ppm以下。
(3)制冷剂循环装置
以下,对使用了上述的制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D、制冷剂1E、制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D、以及制冷剂2E中的任一种和制冷机油的制冷剂循环装置进行说明。制冷剂循环装置为冷冻用或冷藏用的制冷剂循环装置,通常被称为冷藏展示柜或者冷冻展示柜。作为冷藏展示柜、冷冻展示柜的代表性方式,包括:通过形成气幕使陈列室与外部气体隔离的开放型的展示柜;和利用玻璃门等使陈列室与外部气体隔离的封闭型(进入式(reach-in)展示柜)的展示柜。另外,包括:在展示柜内置有压缩机或冷凝器等制冷循环设备的内置型展示柜;和藉由制冷剂配管与具备压缩机或冷凝器的制冷机连接的单独放置型展示柜。此外,关于所利用的温度带,也有冷冻和冷藏的区分,冷冻包括冰淇淋用、冷冻食品用等,冷藏包括饮用水·酒用、生鲜食品用等。
(3-1)内置型展示柜
图3是作为冷藏展示柜的一例的内置型开放展示柜的纵截面侧视图。
构成开放展示柜的展示柜主体101在正视和俯视图中为矩形的形状。展示柜主体101具有:位于上方的顶板部102;位于下方的机械室103;和位于这些顶板部102与机械室103之间的陈列室104。
陈列室104被顶部104b、底面部104c和背面壁104a所包围。背面壁104a倾斜成从顶部104b向底面部104c逐渐向前突出。在背面壁104a以规定的间隔设有四层搁板105。在各搁板105上放置并陈列有所要销售的食品或饮料等商品。
在陈列室104的背面壁104a设有多个冷却用吹出口106。如后所述,冷风从冷却用吹出口106流至排列在搁板105上的商品。
在顶部104b形成有气幕吹出口108。气幕吹出口108吹出冷风,以阻止空气从展示柜主体101的外部侵入陈列室104。
顶板部102的内部是中空的,形成有用于将冷风引入气幕吹出口108的气幕用管道109。该气幕用管道109的基端部与后述的冷气循环用管道110连通。
在作为机械室103的上表面的底面部104c设有吸入口111。吸入口111吸入:从背面壁104a的冷却用吹出口106吹出的冷风;和从顶部104b的气幕吹出口108吹出的气幕冷风。吸入口111定位在与气幕吹出口108之间没有障碍物的位置。因此,从气幕吹出口108吹出的气幕冷风不会被搁板105干扰而顺利地被吸入到吸入口111,稳定地形成气幕。
在机械室103的内部配置有压缩机121、冷凝器122、膨胀阀123、以及空气用鼓风机125。
在背面壁104a与隔板115之间形成有冷气循环用管道110。在隔板115与展示柜背面部101a之间形成有排气用管道117。
冷气循环用管道110在其下端与吸入口111连通。冷气循环用管道110与背面壁104a的各冷却用吹出口106连通。另外,冷气循环用管道110在其上端与气幕用管道109连通。
在冷气循环用管道110中,在与吸入口111隔开规定间隔的位置处配置有冷气循环用鼓风机113。在冷气循环用管道110中,在冷气循环用鼓风机113的下风侧配置有蒸发器124。蒸发器124与压缩机121、冷凝器122、膨胀阀123、接收器126、干燥机127、以及蓄能器128一起藉由制冷剂管129构成制冷剂循环。干燥机127内含干燥剂,预防膨胀阀123的堵塞。
在机械室103的前面部形成有通气口107。随着用于冷却冷凝器122的空气用鼓风机125的驱动,通气口107将外部的空气引入机械室33内。
机械室103内与排气用管道117连通。排气用管道117的上端部成为开口部117a,向外部开放。因此,从通气口107被引入机械室103的内部的空气在机械室103内流通后,在排气用管道117中上升,从开口部117a排出到外部。
如此构成的开放展示柜中,压缩机121被驱动,空气用鼓风机125和冷气循环用鼓风机113被驱动。制冷剂在压缩机121中被压缩,制冷剂作为高温高压的气体制冷剂被导入冷凝器122。空气用鼓风机125藉由形成于机械室103的前面部的通气口107将空气引入机械室103内,使空气通过冷凝器122。
在冷凝器122中,气体制冷剂与通过空气用鼓风机125被引入机械室33内的空气进行热交换,发生冷凝。热交换后的空气从冷凝器122向压缩机121的周围空间流动,将其冷却。之后,成为高温的空气被引导至排气用管道117并从开口部117a向上方排出。
在冷凝器122中发生液化的液体制冷剂被膨胀阀123减压,并被引导至蒸发器124。在蒸发器124中,制冷剂与由冷气循环用鼓风机113送出的空气发生热交换而蒸发。此时,制冷剂从空气夺去热而蒸发,向压缩机121流动。
在蒸发器124中与制冷剂发生热交换而变为低温的空气(冷气)在冷气循环用管道110中上升,在其中途从各冷却用吹出口106被引向前方。通过了各冷却用吹出口106的冷风向陈列室104流动。换言之,从各冷却用吹出口106对载置于各搁板105上的商品吹出冷风,利用冷风将商品冷却。
到达冷气循环用管道110的上端部的冷风向气幕用管道109流动,从正面侧的气幕吹出口108向下吹出。通过该气幕能够大体阻断外部气体从外部侵入陈列室104。
从气幕吹出口108吹出的冷风和从冷却用吹出口106吹出的冷风均被吸入到吸入口111。起到各种功能的冷风被混合,并吸入到吸入口111。
(3-2)单独放置型展示柜
图4中示出单独放置型的展示柜冷却装置。展示柜冷却装置201对安装在便利店(店铺)的店内202的多台展示柜210a~210j(展示柜210i和展示柜210j参照图5)进行冷却。在店外设有通过制冷剂配管207、208与各展示柜210a~210j连接的制冷机206,由这些展示柜210a~210j和制冷机206构成了展示柜冷却装置201。
展示柜210a~210j为开放展示柜。展示柜210a、210c~210f将冷藏食品(商品)陈列在库内(陈列室)而进行销售。展示柜210a、210c~210f的库内被冷却到适合冷藏食品冷却的较低的冷藏温度带(0℃~+5℃)。展示柜210b将盒饭(商品)陈列在库内(陈列室)而进行销售,库内被冷却到适合盒饭冷却的较高温度的冷藏温度带(+15℃~+20℃)。另外,展示柜210a和210b可以切换成冷藏食品的陈列与盒饭的陈列来使用。展示柜210i和展示柜210j是以冷冻状态(-20℃~-25℃)陈列冷冻食品或冰淇淋的冷冻展示柜。在展示柜210i和展示柜210j中,后述蒸发器271的蒸发温度的目标值例如设定为-30℃~-40℃,并控制压缩机257等。在冷冻用或冷藏用的制冷剂循环装置中,蒸发器271的蒸发温度的目标值从+10℃~-45℃的范围来选择。
展示柜210g、210h具有透明玻璃门,是设置于店铺的壁面的封闭型的展示柜。展示柜210g、210h将上述的冷藏食品(商品)陈列于其库内(陈列室)来进行销售。展示柜210g、210h的库内被冷却到适合冷藏食品冷却的较低的冷藏温度带(0℃~+5℃)。各展示柜210a~210j通过制冷剂配管207、208与制冷机206并联连接。
接着,参照图5,对展示柜冷却装置201中构成制冷剂回路的设备进行说明。
展示柜冷却装置201包含2元制冷剂循环,该2元制冷剂循环由封入有上述制冷剂(制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D、制冷剂1E、制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D以及制冷剂2E中的任一种)的高段侧制冷剂回路250、和封入有二氧化碳制冷剂(CO2制冷剂)的多个低段侧制冷剂回路270构成。高段侧制冷剂回路250主要由能够可变地控制工作频率的压缩机257、散热器258、膨胀阀259、和并列连接的多个蒸发器271构成。低段侧制冷剂回路270主要由压缩机273、散热器274、膨胀阀276、蒸发器277、干燥机281、接收器282和蓄能器283构成。此处,展示柜210i和展示柜210j具备低段侧制冷剂回路270。
高段侧制冷剂回路250的压缩机257、散热器258、以及膨胀阀259、和对散热器258进行空气冷却的风扇251设置于制冷机206中。
各低段侧制冷剂回路270、与其对应的高段侧制冷剂回路250的各蒸发器271、和使与低段侧制冷剂回路270的散热器274进行了热交换的冷气在库内进行循环的冷气循环风扇280分别设置于展示柜210i和展示柜210j中。高段侧制冷剂回路250的各蒸发器271的入口连接到制冷剂配管207,它们的出口连接到制冷剂配管208,并且,与各展示柜210a~210h的低段侧制冷剂回路270的散热器274分别以热交换的方式进行级联连接,它们分别构成了级联热交换器290。这些级联热交换器290与周围绝热,因此,构成该级联热交换器290的低段侧制冷剂回路270的散热器271在温度方面最稳定。
需要说明的是,展示柜210a等冷藏展示柜通过高段侧制冷剂回路250的蒸发器271将库内冷却。因此,设置有使与蒸发器271进行了热交换的冷气在库内循环的冷气循环风扇280a。
(3-3)冷冻用或冷藏用的制冷剂循环装置中使用的制冷剂回路
上述(3-1)中说明的内置型展示柜采用了简单的单级压缩的制冷剂循环。另外,上述(3-2)中说明的单独放置型的展示柜冷却装置201采用了包含2元制冷剂循环的制冷剂回路。在冷冻用或冷藏用的制冷剂循环装置中,也优选代替这些制冷剂回路、或者对这些制冷剂回路追加功能,采用下述各制冷剂回路。
(3-3-1)
如图6所示,也优选对图3所示的上述(3-1)中说明的制冷剂回路追加中间喷射的功能。在该冷冻用或冷藏用的制冷剂循环装置中,追加了中间喷射回路140。中间喷射回路140藉由膨胀阀141将在接收器126与干燥机127之间流动的高压制冷剂的一部分引导至压缩机121内的压缩室的途中。在膨胀阀141处被减压而达到中间压力的制冷剂将压缩机121内的压缩途中的制冷剂冷却,由此使压缩效率提高。特别是,在冷冻用或冷藏用的制冷剂循环装置中,具有压缩比变大的倾向,因此中间喷射的效果大。从中间喷射回路140进入压缩机121内的制冷剂也可以是气体制冷剂,但优选为稍微湿润状态的气液二相的制冷剂。
(3-3-2)
对于图3所示的上述(3-1)中说明的制冷剂回路,如图7所示,为了降低能力的下限值,也优选附加旁路150。在该冷冻用或冷藏用的制冷剂循环装置中,无法降低压缩机121的能力的情况下,进而要求降低冷冻、冷藏的能力时,可以通过开闭旁路150的开闭阀151来满足要求。
(3-3-3)
对于图3所示的上述(3-1)中说明的制冷剂回路,如图8所示,也优选追加吸入喷射的功能。在该冷冻用或冷藏用的制冷剂循环装置中,追加了吸入喷射回路160。吸入喷射回路160藉由膨胀阀161将在干燥机127与膨胀阀123之间流动的高压制冷剂的一部分引导至压缩机121的吸入侧。若在压缩机121的排出制冷剂温度升高时打开膨胀阀161,则在膨胀阀161处被减压而变成低压的制冷剂被压缩机121吸入,能够降低压缩机121的排出制冷剂温度。
(3-3-4)
对于图3所示的上述(3-1)中说明的制冷剂回路,如图9所示,也优选附加中间喷射的功能和过冷却的功能。在该冷冻用或冷藏用的制冷剂循环装置中,追加了中间喷射回路170和节能热交换器175。中间喷射回路170藉由膨胀阀171将在接收器126与干燥机127之间流动的高压制冷剂的一部分引导至压缩机121内的压缩室的途中。节能热交换器175在被膨胀阀171减压而温度降低的中间压制冷剂、在接收器126与干燥机127之间流动的高压制冷剂之间进行热交换,降低高压制冷剂的温度。由此,高压制冷剂变为过冷却状态,下游侧的膨胀阀123的控制性提高。另外,在膨胀阀141处被减压而变为中间压力的制冷剂将压缩机121内的压缩途中的制冷剂冷却,由此使压缩效率提高。
(3-3-5)
在冷冻用或冷藏用的制冷剂循环装置中,代替上述(3-1)或(3-2)中说明的单级压缩的制冷剂回路,也优选采用图10A所示的两级压缩/单级膨胀的制冷剂回路。在该制冷剂回路中,从低段的压缩机321a被排出的制冷剂被吸入高段的压缩机321b中。从高段的压缩机321b中被排出的制冷剂在冷凝器322中放热而液化。从冷凝器322经接收器326、节能热交换器375、干燥机327而流至膨胀阀323的制冷剂被膨胀阀323所减压并流入蒸发器324。在蒸发器324中蒸发的制冷剂经蓄能器328被吸入低段的压缩机321a中。在接收器326与干燥机327之间流动的高压制冷剂的一部分经中间喷射回路170的膨胀阀371和节能热交换器375流到低段的压缩机321a与高段的压缩机321b之间。
由控制膨胀阀371的微型计算机等构成的控制部(未图示)首先由温度传感器Th2与Th3的温度差(Th2-Th3)计算出节能热交换器375的出口过热度。接下来,控制部控制膨胀阀371的开度,以使其出口过热度接近固定的目标过热度。需要说明的是,出口过热度也可以由温度传感器Th2的检测温度与由压力传感器PS2的检测值运算出的饱和温度Tps2的温度差算出。另外,对于控制部来说,若高段的压缩机321b的排出气体制冷剂的温度(温度传感器Th1的检测温度)或过热度(温度传感器Th1的检测温度-由压力传感器PS1的检测值运算出的饱和温度)超过阈值,则控制部将膨胀阀371的控制从基于节能热交换器375的出口过热度的控制切换成降低压缩机321b的排出气体制冷剂的温度的控制。在降低压缩机321b的排出气体制冷剂的温度的控制中,控制膨胀阀371,以使制冷剂为气液二相状态。
控制膨胀阀323的控制部首先由温度传感器Th4与Th5的温度差(温度传感器Th5的检测温度-温度传感器Th4的检测温度)计算出蒸发器324的出口过热度。接下来,控制部控制膨胀阀323的开度,以使该蒸发器324的出口过热度达到固定的目标过热度。需要说明的是,蒸发器324的出口过热度也可以由温度传感器Th5的检测温度与由压力传感器PS3的检测值运算出的饱和温度Tps3的温度差算出。
将图10A所示的两级压缩·单级膨胀的制冷剂回路中的各点a~i的压力和比焓示于图10B。
(3-3-6)
在冷冻用或冷藏用的制冷剂循环装置中,代替上述(3-1)或(3-2)中说明的单级压缩的制冷剂回路,也优选采用图11所示的两级压缩/两级膨胀的制冷剂回路。在该制冷剂回路中,从低段的压缩机421a被排出的制冷剂被吸入高段的压缩机421b中。从高段的压缩机421b被排出的制冷剂在冷凝器422中放热而液化。从冷凝器422流到第1段的膨胀阀423a的制冷剂在膨胀阀423a处被减压而达到中间压力。之后,经接收器426、干燥机427流到第2段的膨胀阀423b的制冷剂被膨胀阀423b减压而变为低压,并流入蒸发器424。在蒸发器424中蒸发的制冷剂经蓄能器428被吸入低段的压缩机421a中。从接收器426的上部空间流到旁路470的中间压力的气体制冷剂流到低段的压缩机421a与高段的压缩机421b之间。
控制第1段的膨胀阀423a的控制部进行膨胀阀423a的开度调整,以使测定高段的压缩机421b的排出气体制冷剂的压力的压力传感器PS11的检测值(高压)在规定范围。在判断压缩机421b的排出气体制冷剂的压力过度上升的情况下,控制部增大膨胀阀423a的开度以降低高压。
控制第2段的膨胀阀423b的控制部首先由温度传感器Th14与Th15的温度差(温度传感器Th15的检测温度-温度传感器Th14的检测温度)计算出蒸发器424的出口过热度。接下来,控制部控制膨胀阀423b的开度,以使该蒸发器424的出口过热度达到固定的目标过热度。
将图11A所示的两级压缩/两级膨胀的制冷剂回路中的各点p~x的压力和比焓示于图11B。
(3-3-7)
也优选采用图12所示的具备热气除霜功能的制冷剂回路来代替上述(3-1)中说明的制冷剂回路。在该冷冻用或冷藏用的制冷剂循环装置的制冷剂回路中,设有四通切换阀529。从压缩机521被排出的制冷剂在冷冻或冷藏运转中经四通切换阀529进入冷凝器522,放热而发生液化。离开冷凝器522的制冷剂经接收器526、干燥机527被膨胀阀523减压,以二相状态进入蒸发器524。在蒸发器中蒸发的制冷剂经四通切换阀529、蓄能器528被吸入压缩机521中。另一方面,在冷冻或冷藏运转中判断蒸发器524结霜的情况下,控制部切换四通切换阀529(参照图12的四通切换阀529的虚线的回路),进行热气除霜运转。在热气除霜运转中,从压缩机521被排出的高温的气体制冷剂(热气)经四通切换阀529进入热交换器524。在冷冻或冷藏运转中作为蒸发器524发挥功能的热交换器524在热气除霜运转中作为冷凝器524发挥功能。由此,附着在热交换器524上的霜融化。
(3-3-8)
如上所述,在冷冻用或冷藏用的制冷剂循环装置中,可以根据要求使用各种制冷剂回路。并且,在各制冷剂回路中,设备的组合也是多样的。
关于压缩机,从旋转压缩机、往复式压缩机、涡旋压缩机、螺杆压缩机等中适当选择。
冷凝器不限于空气冷却的冷凝器,可以选择水冷的冷凝器。
蒸发器也同样可以选择空气冷却或水冷。
除了电子膨胀阀(电动膨胀阀)以外,膨胀阀也可以使用机械式膨胀阀。另外,作为替代膨胀阀的减压单元,也可以使用毛细管。
此外,关于各制冷剂回路的控制,也能够为各种组合。关于压缩机的能力控制,除了上述使用旁路150的能力控制以外,在变频压缩机的情况下,也可以进行转速控制、多台等速压缩机的台数控制等。关于除霜的方法,除了上述热气除霜以外,也可以选择下述等各种方法:通过停止压缩机并旋转风扇来融化蒸发液的霜的方法;使用电加热器的方法;通过洒水来融化霜的方法
(3-3-9)
作为冷冻用或冷藏用的制冷剂循环装置,在上述实施方式中列举了展示柜,但即便是安装于海运集装箱的制冷剂循环装置、或仓库用的制冷剂循环装置,也优选使用上述的制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D、制冷剂1E、制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D以及制冷剂2E中的任一种。
(3-3-10)
在上述冷藏展示柜、冷冻展示柜中,蒸发器的蒸发温度的目标值从+10℃~-45℃的范围选择,采用图5所示的2元制冷剂循环、或图10A、11A所示的进行两级压缩的制冷剂循环的情况下,也可以将蒸发器的蒸发温度的目标值设定为更低的-20℃~-65℃。在搭载于以远洋渔业为目的的渔船上的冷冻用的制冷剂循环装置中,有时也设定如此低的蒸发温度的目标值。
(3-3-11)
在上述展示柜冷却装置201中,将本发明的制冷剂(制冷剂1A、制冷剂1B、制冷剂1C、制冷剂1D、制冷剂1E、制冷剂2A、制冷剂2B、制冷剂2C、制冷剂2D以及制冷剂2E中的任一种)封入高段侧制冷剂回路250中,将二氧化碳制冷剂(CO2制冷剂)封入多个低段侧制冷剂回路270中。但是,制冷剂的组合没有限定。在二元的制冷剂循环中,可以将丙烷等可燃制冷剂封入高段侧制冷剂回路中,将本发明的制冷剂封入低段侧制冷剂回路中。
(4)
以上对各实施方式进行了说明,但应当理解的是,能够在不脱离权利要求书所记载的本发明的主旨和范围的情况下对方式、详细情况进行各种变更。
符号说明
1A、1B、1C、1D、1E:制冷剂
2A、2B、2C、2D、2E:制冷剂
121、257、273:压缩机
321a、321b、421a、421b、521:压缩机
122、322、422、522:冷凝器(散热器)
258、274:散热器
123、259、276、323、423a、423b、523:膨胀阀(减压部)
124、271、277、324、424、524:蒸发器(吸热器)
图2A、图2B的A:根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s、HFC-32的浓度(质量%)为1.0质量%的质量比
图2A、图2B的B:HFC-32的浓度(质量%)为1.0质量%、制冷能力相对于R404A为95%的质量比
图2A、图2B的C:制冷能力相对于R404A为95%、GWP为125的质量比
图2A、图2B的D:GWP为125、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s的质量比
图2A、图2B的E:制冷能力相对于R404A为95%、GWP为100的质量比
图2A、图2B的F:GWP为100、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s的质量比
图2A、图2B的a:表示HFC-32的浓度(质量%)为1.0质量%的质量比的直线图2A、图2B的b:表示制冷能力相对于R404A为95%的质量比的曲线
图2A、图2B的c:表示GWP为125的质量比的直线
图2A、图2B的d:表示根据ANSI/ASHRAE34-2013标准测定的燃烧速度为5cm/s的质量比的曲线
图2A、图2B的e:表示GWP为100的质量比的直线
图2A、图2B的f:表示GWP为200的质量比的直线
图2A、图2B的P:40℃下的压力为1.85MPa、HFC-32的浓度(质量%)为1.0质量%的质量比
图2A、图2B的B:HFC-32的浓度(质量%)为1.0质量%、制冷能力相对于R404A为95%的质量比
图2A、图2B的Q:制冷能力相对于R404A为95%、HFO-1132(E)的浓度(质量%)为1.0质量%的质量比
图2A、图2B的R:HFO-1132(E)的浓度(质量%)为1.0质量%、GWP为200的质量比
图2A、图2B的S:GWP为200、40℃下的压力为1.85MPa的质量比
图2A、图2B的p:表示HFC-32的浓度(质量%)为1.0质量%的质量比的直线
图2A、图2B的q:表示制冷能力相对于R404A为95%的质量比的曲线
图2A、图2B的r:表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的直线
图2A、图2B的s:表示GWP为200的质量比的直线
图2A、图2B的t:表示40℃下的压力为1.85MPa的质量比的曲线
图2A、图2B的u:表示GWP为100的质量比的直线
图2C的A:根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s、HFO-1123的浓度(质量%)为1.0质量%的质量比
图2C的B:HFO-1123的浓度(质量%)为1.0质量%、制冷能力相对于R404A为85%的质量比
图2C的C:制冷能力相对于R404A为85%、HFO-1132(E)的浓度(质量%)为1.0质量%的质量比
图2C的D:HFO-1132(E)的浓度(质量%)为1.0质量%、40℃下的饱和压力为2.25MPa的质量比
图2C的E:40℃下的饱和压力为2.25MPa、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s的质量比
图2C的F:HFO-1132(E)的浓度(质量%)为1.0质量%、40℃下的饱和压力为2.15MPa的质量比
图2C的G:40℃下的饱和压力为2.15MPa、根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s的质量比
图2C的H:HFO-1132(E)的浓度(质量%)为1.0质量%、COP相对于R404A为100%的质量比
图2C的I:COP相对于R404A为100%、40℃下的饱和压力为2.15MPa的质量比
图2C的a:表示HFO-1123的浓度(质量%)为1.0质量%的质量比的直线
图2C的b:表示制冷能力相对于R404A为85%的质量比的曲线
图2C的c:表示HFO-1132(E)的浓度(质量%)为1.0质量%的质量比的直线
图2C的d:表示40℃下的饱和压力为2.25MPa的质量比的曲线
图2C的e:表示根据ANSI/ASHRAE34-2013标准测定的燃烧速度为3.0cm/s的质量比的直线
图2C的f:表示40℃下的饱和压力为2.15MPa的质量比的曲线
图2C的g:表示COP相对于R404A为100%的质量比的曲线
图1T的1:投料线
图1T的2:采样线
图1T的3:温度计
图1T的4:压力计
图1T的5:电极
图1T的6:搅拌叶片(PTFE制)
图2E的1:点火源
图2E的2:样品入口
图2E的3:弹簧
图2E的4:12升玻璃烧瓶
图2E的5:电极
图2E的6:搅拌器
图2E的7:隔离室
现有技术文献
专利文献
专利文献1:国际公开第2015/141678号
专利文献1:日本特开2018-184597号公报。

Claims (5)

1.一种冷冻用或冷藏用的制冷剂循环装置,其具备:
制冷剂回路,该制冷剂回路具有压缩机、散热器、减压部和吸热器;和
制冷剂,该制冷剂被封入所述制冷剂回路中,并至少包含反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(HFC-32)和2,3,3,3-四氟丙烯(HFO-1234yf)。
2.如权利要求1所述的冷冻用或冷藏用的制冷剂循环装置,其中,所述制冷剂含有反式-1,2-二氟乙烯(HFO-1132(E))、二氟甲烷(HFC-32)和2,3,3,3-四氟丙烯(HFO-1234yf),该三成分的总浓度相对于所述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9质量%)和
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2质量%)
这4个点的图形所包围的区域的范围内。
3.如权利要求2所述的冷冻用或冷藏用的制冷剂循环装置,其中,所述制冷剂含有HFO-1132(E)、HFC-32和HFO-1234yf,该三成分的总浓度相对于所述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5质量%)和
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6质量%)
这4个点的图形所包围的区域的范围内。
4.如权利要求1所述的冷冻用或冷藏用的制冷剂循环装置,其中,所述制冷剂含有HFO-1132(E)、HFC-32和HFO-1234yf,该三成分的总浓度相对于所述制冷剂整体为99.5质量%以上,并且,
在以该三成分为各顶点的三角组成图中,该三成分的质量比在通过
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4质量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7质量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2质量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8质量%)和
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3质量%)、
这5个点的图形所包围的区域的范围内。
5.如权利要求2至4中任一项所述的冷冻用或冷藏用的制冷剂循环装置,其中,所述制冷剂仅由HFO-1132(E)、HFC-32和HFO-1234yf构成。
CN202210340066.XA 2018-07-17 2019-07-16 制冷剂循环装置 Active CN114656934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210340066.XA CN114656934B (zh) 2018-07-17 2019-07-16 制冷剂循环装置

Applications Claiming Priority (25)

Application Number Priority Date Filing Date Title
JP2018-134448 2018-07-17
JP2018134448 2018-07-17
JP2018-227398 2018-12-04
JP2018227398 2018-12-04
JP2018-230259 2018-12-07
JP2018230259 2018-12-07
JP2019013979 2019-01-30
JP2019-013974 2019-01-30
JP2019-013979 2019-01-30
JP2019013974 2019-01-30
JP2019018617 2019-02-05
JP2019-018617 2019-02-05
JP2019078133 2019-04-16
JP2019-078133 2019-04-16
JP2019-084708 2019-04-25
JP2019084708 2019-04-25
JP2019112406 2019-06-17
JP2019-112406 2019-06-17
JP2019-115584 2019-06-21
JP2019115584 2019-06-21
JPPCT/JP2019/027031 2019-07-08
PCT/JP2019/027031 WO2020017386A1 (ja) 2018-07-17 2019-07-08 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
CN201980058502.0A CN112654688A (zh) 2018-07-17 2019-07-16 制冷剂循环装置
PCT/JP2019/027989 WO2020017521A1 (ja) 2018-07-17 2019-07-16 冷媒サイクル装置
CN202210340066.XA CN114656934B (zh) 2018-07-17 2019-07-16 制冷剂循环装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980058502.0A Division CN112654688A (zh) 2018-07-17 2019-07-16 制冷剂循环装置

Publications (2)

Publication Number Publication Date
CN114656934A true CN114656934A (zh) 2022-06-24
CN114656934B CN114656934B (zh) 2024-07-05

Family

ID=69163881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210340066.XA Active CN114656934B (zh) 2018-07-17 2019-07-16 制冷剂循环装置

Country Status (5)

Country Link
US (1) US11912922B2 (zh)
EP (1) EP4230707A1 (zh)
JP (5) JP2024009830A (zh)
CN (1) CN114656934B (zh)
WO (1) WO2020017521A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201712813D0 (en) 2017-08-10 2017-09-27 Mexichem Fluor Sa De Cv Compositions
CN112673074A (zh) 2018-07-17 2021-04-16 大金工业株式会社 汽车用制冷循环装置
JP7108212B2 (ja) 2018-07-17 2022-07-28 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
WO2020017521A1 (ja) 2018-07-17 2020-01-23 ダイキン工業株式会社 冷媒サイクル装置
EP4293092A1 (en) 2019-01-30 2023-12-20 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
WO2020158170A1 (ja) 2019-01-30 2020-08-06 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
EP3922922A4 (en) 2019-02-05 2022-12-21 Daikin Industries, Ltd. COMPOSITION CONTAINING A REFRIGERANT, AND REFRIGERATION METHOD, REFRIGERATION DEVICE OPERATING METHOD AND REFRIGERATION DEVICE USING THE SAME COMPOSITION
CN113412398A (zh) 2019-02-06 2021-09-17 大金工业株式会社 含有制冷剂的组合物及使用了该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
JP2022117494A (ja) * 2021-01-29 2022-08-10 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2024106514A1 (ja) * 2022-11-18 2024-05-23 Eneos株式会社 作動流体組成物、冷凍機油及び冷凍機

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547652A (zh) * 2011-05-19 2014-01-29 旭硝子株式会社 工作介质及热循环系统
WO2014080868A1 (ja) * 2012-11-20 2014-05-30 旭硝子株式会社 ランキンサイクル用作動媒体およびランキンサイクルシステム
WO2015125874A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクル用作動媒体
CN105164227A (zh) * 2013-04-30 2015-12-16 旭硝子株式会社 包含三氟乙烯的组合物
JP2015229768A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体およびその製造方法
JP2015229767A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体
JP2016011423A (ja) * 2014-06-06 2016-01-21 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
CN106029821A (zh) * 2014-01-31 2016-10-12 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
CN106133110A (zh) * 2014-03-18 2016-11-16 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
US20160333245A1 (en) * 2014-02-20 2016-11-17 Asahi Glass Company, Limited Composition for heat cycle system, and heat cycle system
US20160355716A1 (en) * 2014-02-24 2016-12-08 Asahi Glass Company, Limited Composition for heat cycle system, and heat cycle system
US20160355719A1 (en) * 2014-02-20 2016-12-08 Asahi Glass Company, Limited Composition for heat cycle system, and heat cycle system
CN106414654A (zh) * 2014-06-06 2017-02-15 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
CN106414682A (zh) * 2014-06-06 2017-02-15 旭硝子株式会社 热循环系统用组合物以及热循环系统
CN106574802A (zh) * 2014-08-12 2017-04-19 旭硝子株式会社 热循环系统
CN107532072A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2309224A (en) 1940-01-11 1943-01-26 Matson C Terry Self-contained air conditioner
JPS615511Y2 (zh) 1980-10-30 1986-02-19
EP0770114B1 (fr) 1994-07-11 1998-11-11 SOLVAY (Société Anonyme) Refrigerants
JP2869038B2 (ja) 1996-06-05 1999-03-10 松下電器産業株式会社 3成分混合冷媒を用いたヒートポンプ装置
US6658882B2 (en) 2001-08-09 2003-12-09 Sanyo Electric Co., Ltd. Integral-type air conditioner
US7279451B2 (en) 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7704404B2 (en) 2003-07-17 2010-04-27 Honeywell International Inc. Refrigerant compositions and use thereof in low temperature refrigeration systems
US20060243945A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
CN101802526B (zh) 2007-09-18 2012-03-21 开利公司 用于空调单元的分隔件和冷凝器罩壳
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
CN104726066A (zh) 2008-11-19 2015-06-24 纳幕尔杜邦公司 四氟丙烯组合物及其使用
EP2367896A1 (en) 2008-12-02 2011-09-28 Mexichem Amanco Holding S.A. de C.V. Heat transfer compositions
GB201002622D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
US8961812B2 (en) 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising Z-1,2-difluoroethylene and uses thereof
US8961811B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising E-1,2-difluoroethylene and uses thereof
WO2011163117A1 (en) 2010-06-22 2011-12-29 Arkema Inc. Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin
JP6377524B2 (ja) 2012-04-27 2018-08-22 Agc株式会社 テトラフルオロプロペンの保存方法およびテトラフルオロプロペンの保存容器
JP6062061B2 (ja) 2012-12-04 2017-01-18 ハネウェル・インターナショナル・インコーポレーテッド 低gwpの熱伝達組成物
KR101462426B1 (ko) 2012-12-07 2014-11-17 한화케미칼 주식회사 탄소나노튜브를 포함하는 고열전도성 블래더용 고무복합체 조성물 및 그 제조방법
FR3000095B1 (fr) 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene et du 1,2-difluoroethylene
WO2014178353A1 (ja) 2013-04-30 2014-11-06 旭硝子株式会社 熱サイクル用作動媒体
WO2014203356A1 (ja) 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
GB2530915C (en) 2013-06-19 2019-10-30 Mitsubishi Electric Corp Air-conditioning apparatus
EP3470489B1 (en) 2013-07-12 2020-10-14 AGC Inc. Working fluid for heat cycle, a process for its preparation, composition for heat cycle system, and heat cycle system
US10101043B2 (en) 2013-07-26 2018-10-16 Energy Design Technology & Solutions, Inc. HVAC system and method of operation
WO2015015881A1 (ja) 2013-07-29 2015-02-05 三菱電機株式会社 ヒートポンプ装置
WO2015054110A1 (en) 2013-10-10 2015-04-16 E. I. Du Pont De Nemours And Company Compositions comprising difluoromethane, pentafluoroethane, tetrafluoroethane and tetrafluoropropene and uses thereof
CN105940079B (zh) 2014-01-31 2020-06-16 Agc株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
CN106029826B (zh) 2014-02-24 2020-01-14 Agc株式会社 热循环系统用组合物以及热循环系统
WO2015136977A1 (ja) 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
JP6105511B2 (ja) 2014-04-10 2017-03-29 三菱電機株式会社 ヒートポンプ装置
JP6417533B2 (ja) 2014-05-12 2018-11-07 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
EP3153561A4 (en) 2014-06-06 2018-01-10 Asahi Glass Company, Limited Composition for heat cycle system and heat cycle system
EP3153560A4 (en) 2014-06-06 2018-01-10 Asahi Glass Company, Limited Working medium for heat cycle, composition for heat cycle system, and heat cycle system
CN107257836B (zh) 2014-11-11 2021-06-08 特灵国际有限公司 制冷剂组合物和使用方法
GB201501598D0 (en) 2015-01-30 2015-03-18 Mexichem Fluor Sa De Cv Compositions
WO2016182030A1 (ja) 2015-05-14 2016-11-17 旭硝子株式会社 流体組成物、冷媒組成物および空気調和機
CN107614651A (zh) 2015-05-25 2018-01-19 旭硝子株式会社 热循环用工作介质以及热循环系统
CN107614652B (zh) 2015-06-01 2023-08-25 Agc株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
JPWO2017122517A1 (ja) 2016-01-12 2018-11-22 Agc株式会社 冷凍サイクル装置及び熱サイクルシステム
JP6788820B2 (ja) 2016-02-18 2020-11-25 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
AU2017225674A1 (en) 2016-02-29 2018-08-30 The Chemours Company Fc, Llc Refrigerant mixtures comprising difluoromethane, pentafluoroethane, tetrafluoroethane, tetrafluoropropene, and carbon dioxide and uses thereof
AU2017264495A1 (en) * 2016-05-11 2018-11-29 Owens Corning Intellectual Capital, Llc Polymeric foam comprising low levels of brominated flame retardant and method of making same
JP6877998B2 (ja) 2016-12-27 2021-05-26 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP6884572B2 (ja) 2016-12-27 2021-06-09 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP6979563B2 (ja) 2017-04-13 2021-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP2018179404A (ja) 2017-04-13 2018-11-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6979565B2 (ja) 2017-04-13 2021-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6979564B2 (ja) 2017-04-13 2021-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP7113185B2 (ja) 2017-04-13 2022-08-05 パナソニックIpマネジメント株式会社 冷凍サイクル装置
EP3614076A4 (en) 2017-04-20 2021-01-06 AGC Inc. THERMODYNAMIC CYCLE SYSTEM
JP6504298B2 (ja) 2017-04-21 2019-04-24 ダイキン工業株式会社 冷媒を含有する組成物及びその応用
GB201712813D0 (en) * 2017-08-10 2017-09-27 Mexichem Fluor Sa De Cv Compositions
JP6899529B2 (ja) 2017-08-10 2021-07-07 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20220389299A1 (en) 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200326103A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle
WO2019123897A1 (ja) 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍サイクル装置
US20200326100A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Warm-water generating apparatus
US20220404070A1 (en) 2017-12-18 2022-12-22 Daikin Industries, Ltd. Air conditioner
WO2019124145A1 (ja) 2017-12-18 2019-06-27 ダイキン工業株式会社 空気調和機
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US20230002659A1 (en) 2017-12-18 2023-01-05 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
BR112020010634A2 (pt) 2017-12-18 2020-11-10 Daikin Industries, Ltd. composição compreendendo refrigerante, uso da mesma, máquina de refrigeração tendo a mesma, e método para operação da dita máquina de refrigeração
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US20200393178A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigeration cycle apparatus
JP6857813B2 (ja) 2018-03-05 2021-04-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6857815B2 (ja) 2018-05-29 2021-04-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
EP4234293A3 (en) 2018-07-17 2023-09-13 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
WO2020017521A1 (ja) 2018-07-17 2020-01-23 ダイキン工業株式会社 冷媒サイクル装置
CN112673075A (zh) 2018-07-17 2021-04-16 大金工业株式会社 制冷循环装置
EP3825382A4 (en) 2018-07-17 2022-06-01 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE
CN115785910A (zh) 2018-10-01 2023-03-14 Agc株式会社 热循环系统用组合物及热循环系统
EP4293092A1 (en) 2019-01-30 2023-12-20 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
EP3988522A4 (en) 2019-06-19 2023-10-25 Daikin Industries, Ltd. METHOD FOR COEXISTENCE OF 1,2-DIFLUORETHYLENE (HFO-1132) AND OXYGEN IN THE GAS PHASE AND STORAGE CONTAINER AND REFRIGERATOR WITH HFO-1132 AND OXYGEN
WO2020256131A1 (ja) 2019-06-19 2020-12-24 ダイキン工業株式会社 ジフルオロエチレン(hfo-1132)を作動流体として含む冷凍機
JP2021001323A (ja) 2019-06-19 2021-01-07 ダイキン工業株式会社 冷凍サイクル用作動媒体及び冷凍サイクルシステム

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547652A (zh) * 2011-05-19 2014-01-29 旭硝子株式会社 工作介质及热循环系统
WO2014080868A1 (ja) * 2012-11-20 2014-05-30 旭硝子株式会社 ランキンサイクル用作動媒体およびランキンサイクルシステム
CN105164227A (zh) * 2013-04-30 2015-12-16 旭硝子株式会社 包含三氟乙烯的组合物
CN106029821A (zh) * 2014-01-31 2016-10-12 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
US20160355719A1 (en) * 2014-02-20 2016-12-08 Asahi Glass Company, Limited Composition for heat cycle system, and heat cycle system
CN106029823A (zh) * 2014-02-20 2016-10-12 旭硝子株式会社 热循环用工作介质
US20160333245A1 (en) * 2014-02-20 2016-11-17 Asahi Glass Company, Limited Composition for heat cycle system, and heat cycle system
WO2015125874A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクル用作動媒体
US20160355716A1 (en) * 2014-02-24 2016-12-08 Asahi Glass Company, Limited Composition for heat cycle system, and heat cycle system
CN106133110A (zh) * 2014-03-18 2016-11-16 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
JP2015229767A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体
JP2016011423A (ja) * 2014-06-06 2016-01-21 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2015229768A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体およびその製造方法
CN106414654A (zh) * 2014-06-06 2017-02-15 旭硝子株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
CN106414682A (zh) * 2014-06-06 2017-02-15 旭硝子株式会社 热循环系统用组合物以及热循环系统
CN106574802A (zh) * 2014-08-12 2017-04-19 旭硝子株式会社 热循环系统
CN107532072A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统

Also Published As

Publication number Publication date
CN114656934B (zh) 2024-07-05
US11912922B2 (en) 2024-02-27
WO2020017521A1 (ja) 2020-01-23
JP2024001080A (ja) 2024-01-09
US20220356386A1 (en) 2022-11-10
JP2024001082A (ja) 2024-01-09
JP2024009830A (ja) 2024-01-23
JP2023182669A (ja) 2023-12-26
EP4230707A1 (en) 2023-08-23
JP2024001081A (ja) 2024-01-09

Similar Documents

Publication Publication Date Title
CN114656934B (zh) 制冷剂循环装置
EP3730569A1 (en) Refrigeration cycle device
US20200347283A1 (en) Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
CN114475162A (zh) 汽车用制冷循环装置
WO2019123897A1 (ja) 冷凍サイクル装置
JP7393667B2 (ja) 自動車用冷凍サイクル装置
JP7506321B2 (ja) 庫内空気調節装置
JP7393668B2 (ja) 冷媒サイクル装置
US20240174905A1 (en) Refrigerant cycle apparatus
US20240218226A1 (en) Refrigeration cycle device for vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant