CN114634650A - 一种碱性聚合物电解质膜及其制备和应用 - Google Patents

一种碱性聚合物电解质膜及其制备和应用 Download PDF

Info

Publication number
CN114634650A
CN114634650A CN202011479143.7A CN202011479143A CN114634650A CN 114634650 A CN114634650 A CN 114634650A CN 202011479143 A CN202011479143 A CN 202011479143A CN 114634650 A CN114634650 A CN 114634650A
Authority
CN
China
Prior art keywords
solution
monomer
polymer
equal
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011479143.7A
Other languages
English (en)
Inventor
王素力
李晋源
孙公权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202011479143.7A priority Critical patent/CN114634650A/zh
Publication of CN114634650A publication Critical patent/CN114634650A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3326Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkane-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种碱性聚合物电解质膜及其制备和应用,其利用聚合物分子链可设计性,在主链中不含有吸电子基团,而且同时包含疏水段和亲水段,建立微观相分离结构,官能团局限于亲水段,水分子将官能团阳离子溶剂化,同时,在侧链引入的季铵离子周边不存在吸电子基,减缓官能团的化学降解,保证碱性膜的离子传输能力。本发明得到的聚合物制备工艺简单,可应用于碱性聚合物电解质膜燃料电池、碱性聚合物电解质膜水电解、电渗析、锌空气电池等电化学器件。

Description

一种碱性聚合物电解质膜及其制备和应用
技术领域
本发明属于碱性聚合物电解质膜领域,特别涉及一种高化学稳定性碱性聚合物电解质膜及其制备方法。
背景技术
碱性聚合物电解质膜可应用于燃料电池、水电解等电化学器件,碱性膜的性能与稳定性是器件实现应用的前提之一。目前,碱性聚合物电解质膜的耐碱化学稳定性依然不足。其中,官能团由于荷正电,易受氢氧根离子进攻,发生双分子亲核取代反应或Hofmann消除反应,使电解质膜失去导离子能力。文献中通过对其官能团进行化学结构设计来实现碱性聚合物电解质膜耐碱稳定性的提升,如在最常用的苄基三甲铵离子中引入长烷基链,使中心氮原子正电性减弱,但此类官能团的耐碱稳定性依然有限;再如采用哌啶离子作为官能团,但哌啶离子在碱性条件下可发生开环反应,造成膜电导率下降。
发明内容
针对上述问题,本发明的目的在于提供一种高化学稳定性碱性聚合物电解质膜的制备。
所述的具有高耐碱性的碱性聚合物电解质膜,其分子结构由主链结构和侧基结构组成,其特征在于:所述的主链结构包括含哌啶阳离子的亲水段和含芳基的疏水段,侧基位于哌啶阳离子氮原子上,侧基结构包含季铵阳离子官能团,且在阳离子官能团之间通过长链烷基相连。将季铵盐阳离子通过长侧链接枝于哌啶结构上,一方面可以增加哌啶阳离子的位阻效应,降低哌啶阳离子受OH-离子攻击的可能性,另一方面,这种通过长侧链将季铵盐阳离子接枝于哌啶的结构,能够避免季铵盐阳离子直接与苄基连接,大幅降低了高温碱性环境下ɑ-C的亲核取代反应造成的阳离子脱离主链,膜失去导离子能力的威胁。然而,多官能团结构又会造成碱性聚合物电解质膜的亲水性增强,溶胀严重,机械性能大幅衰减,本发明中从分子结构设计角度出发,在主链引入疏水结构,通过设计亲水官能团与疏水主链的结构并调变二者之间的比例,制备出兼具高电导率与良好机械性能的碱性聚合物电解质膜。
所述的主链结构选自结构通式I或II中的一种且i=0-7,m1=100-14000的整数,m2=150-10000的整数,n=50-8000的整数,其中m2与n的比例为9:1-1:4;
Figure BDA0002836895050000021
R为官能团,选自下列结构式中的任何一种且2≤j≤10,2≤j1≤10,2≤j2≤10,R1、R2、R3为-CH3或-CH2(CH2)aCH3,其中2≤a≤8:
Figure BDA0002836895050000031
X1、X2选自下列结构中的一种或两种:
Figure BDA0002836895050000032
Y选自下列结构式中的任何一种:
Figure BDA0002836895050000041
所述高化学稳定性碱性聚合物电解质膜的制备方法,其特征在于:通过缩聚反应在疏水的含芳基主链中引入含哌啶阳离子的亲水段,之后在哌啶阳离子氮原子上引入侧基,该侧基结构包含季铵阳离子官能团,且在阳离子官能团之间具有长链烷基。
所述高化学稳定性碱性聚合物电解质膜的制备方法,包括以下步骤:
(1)含哌啶基团主链聚合物的制备
在圆底烧瓶中按一定物质的量之比加入酮单体I、酮单体II、芳基单体、二氯甲烷、酸催化剂,之后在一定条件下反应,得到粘稠的溶液。将溶液倒入有机溶剂中使聚合物析出,过滤后用四氢呋喃溶解,再用有机溶剂析出,水或碱溶液在一定条件下洗涤聚合物,过滤后在一定条件下干燥,得到含哌啶基团主链聚合物。
(2)含哌啶基团主链聚合物的官能团化
在单口烧瓶中加入溶剂和上述步骤(1)得到的含哌啶基团主链聚合物,搅拌,得到一定固含量的悬浊液,加入一定物质的量的官能团化单体,在一定条件下反应,之后在有机溶剂中沉淀,过滤后用去离子水洗涤沉淀3-5次,在一定条件下干燥,得到目标聚合物。
(3)膜制备
膜的制备采用溶剂挥发法与热压法两种方法。
溶剂挥发法制备过程:取上述步骤(2)中反应结束后的反应液作为铸膜液,过滤后均匀刮涂在基底材料上,置于鼓风干燥箱中,采用阶梯升温方法,进行溶剂蒸发与膜的干燥,直至反应液中的溶剂完全蒸发,得到一薄膜。
热压法制备过程:将上下同时有基底材料的上述步骤(2)制备的干燥后目标聚合物放置于两个钢板中间,放于压力温度可控的装置上,进行阶段升温热压;或者将步骤(1)制备的含哌啶基团主链聚合物放置于基底材料之间,置于钢板间,放置于压力温度可控的装置上,进行阶段升温热压,将热压后薄膜放置于步骤(2)中官能团化单体溶液中,在一定条件下处理后,用去离子水充分洗涤;
(4)膜内阴离子置换
将上述步骤(3)得到的薄膜置于一定浓度的盐溶液中,在一定条件下处理,之后将膜置于一定浓度的碱溶液中,浸泡12-96h,得到目标碱性聚合物电解质膜。
上述化学稳定性碱性聚合物电解质膜的制备方法:
步骤(1)中所述酮单体I为N-甲基-4-哌啶酮,酮单体II为三氟苯乙酮、三氟丙酮、全氟苯乙酮、全氟丙酮、五氟苯甲醛中的一种;所述芳基单体为联苯、三联苯、芴、苯醚、二苯氧基二苯甲酮中的一种或两种。所述酮单体I与酮单体II的物质的量比例为9:1-1:4,优选4:1-3:7;所述酮单体I、酮单体II总物质的量与芳基单体物质的量比例为0.8:1-2.0:1;
步骤(1)中所述酮单体II的加入方式为首次加入所需酮单体II总物质的量的40%,然后加入酸催化剂后30min加入总物质的量的50%,待继续反应2h后加入总物质的量的10%。采用这种加入方式主要是由于酮单体I与芳基单体的反应活性较酮单体II低,为了避免酮单体II活性较高带来聚合快,其他两种单体聚合慢造成不能得到目标产物或者聚合度低的问题,采用分步加入酮单体II的方式可以很好地缓解此类问题的出现;
步骤(1)所述二氯甲烷的体积为使得芳基单体浓度为1.0-2.0mol/L的任意值;所述酸催化剂包括三氟甲磺酸、三氟乙酸、三氯化铝、氯化铁、四氯化锡、氯化锌、1,4-二氯甲氧基丁烷中的一种或两种以上,酸催化剂加入温度为0℃或以下至溶剂凝固点以上,且控制滴加速度在0.1-1mL/min,避免酸快速催化造成聚合物分子量低或者出现过多的副产物;所述酸催化剂的物质的量大于等于酮单体I、酮单体II总物质的量(酸催化的物质的量与酮单体I与酮单体II的总物质的量之比为1-9:1);
步骤(1)所述反应温度为0-100℃,优选0-60℃,所述反应时间为4-96h,优选6-72h;机械搅拌或磁力搅拌;
所述用于析出聚合物的溶剂为乙醇、乙酸乙酯、丙酮、甲醇、水、质量浓度为0.1-1g/ml NaOH的水溶液、质量浓度为0.05-1g/ml KOH的水溶液、质量浓度为0.01-0.5g/mlKOH的乙醇溶液、质量浓度为0.01-0.5g/ml NaOH的乙醇溶液中的一种或多种;所述洗涤聚合物使用的碱溶液为K2CO3溶液、KHCO3溶液、Na2CO3溶液、NaHCO3溶液、KOH溶液、NaOH溶液中的一种或多种,浓度为0.01M–5M;所述洗涤条件为30-100℃,时间为2-48h,且重复洗涤1次以上;所述聚合物的干燥条件为常压-真空、室温-120℃,干燥时间为4-48h。
步骤(2)所述溶剂为DMSO、DMF、DMAc、NMP中的任意一种或二种以上;所述含哌啶基团主链聚合物在溶剂中的质量浓度为0.02-0.2g/ml;
步骤(2)所述官能团化单体为下述化合物中的任何一种且4≤j≤10,4≤j1≤10,4≤j2≤10,R1、R2、R3为-CH3或-CH2(CH2)aCH3,其中2≤a≤8,M为-Cl、-Br、-I中的任意一种:
Figure BDA0002836895050000071
步骤(2)所述官能团化单体的物质的量为所加入的含哌啶主链聚合物中哌啶基团物质的量的0.9-3.0倍;所述反应条件为室温-100℃,反应时间为0.5-144h;
步骤(2)所述沉淀所用的有机溶剂为乙酸乙酯、异丙醇、乙醚、氯仿中的一种或多种;
步骤(2)所述聚合物的干燥条件为常压-真空、室温-120℃,干燥时间为4-48h。
步骤(3)所述的基底材料为聚酰亚胺薄膜、PTFE薄膜、PBI薄膜、Kapton中的一种;
步骤(3)所述溶液挥发法制备膜中的阶梯升温操作为于30-50℃保持0.5-5h,60-90℃保持0.5-5h,100-130℃保持1-15h;
步骤(3)所述热压法制备膜的操作中阶梯升温,压力控制在20Pounds-400Pounds/cm2,阶梯升温操作于80℃保持0.1-5h,100-120℃保持0.05-1h,120-200℃保持0.05-0.5h;
步骤(3)所述热压法制备膜过程官能团化单体溶液中所用溶剂为水、乙醇、甲醇、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的一种或两种以上;
步骤(3)所述热压法制备的膜在官能团化单体溶液中的浓度为0.1-4mol/L,且分1-6次进行,浓度逐渐增大;
步骤(3)所述热压法制备的膜在官能团化单体溶液中的处理条件为室温-160℃,优选室温-100℃,处理时间0.2-48h;
步骤(4)所述盐溶液的浓度为0.01-5M,所述盐溶液为NaCl溶液、KCl溶液、NaBr溶液、KBr溶液、NaI溶液、KI溶液中的一种或多种,所述处理条件为室温-100℃,时间1-100h且重复1-5次;所述碱溶液的浓度为0.1M–3M,所述碱溶液为NaOH溶液或KOH溶液中的一种或两种。
本发明利用聚合物分子链可设计性,在主链中不含有吸电子基,而同时包含疏水段和亲水段,聚合物形成微相分离,官能团局限于亲水段,水分子将氢氧根离子溶剂化,进而减缓官能团的降解;同时,在侧链引入的季铵离子周边不存在吸电子基,因此电解质膜在稳定哌啶阳离子的同时提高侧链上阳离子的化学稳定性,实现高化学稳定性碱性聚合物电解质膜的制备。本发明得到的聚合物膜制备工艺简单,且官能化方法易实现,可应用于碱性聚合物电解质膜燃料电池、碱性聚合物电解质膜水电解、电渗析、锌空气电池等电化学器件。
附图说明
图1为实施例1中制备得到的碱性聚合物电解质膜的结构式。
图2为实施例2中制备得到的碱性聚合物电解质膜的结构式。
图3为实施例3中制备得到的碱性聚合物电解质膜的结构式。
图4为对比例1中碱性聚合物电解质膜聚合物的制备过程。
具体实施方式
实施例1
(1)含哌啶基团主链聚合物PAP-BP-80的制备
在100ml圆底烧瓶中加入二氯甲烷(25ml)、N-甲基-4-哌啶酮(3.31g,0.0293mol)、2,2,2-三氟苯乙酮(0.508g,0.0029mol)、联苯(5.6338g,0.0366mol),机械搅拌溶解。在0℃下逐滴加入三氟乙酸(2ml,约0.0269mol)、三氟甲磺酸(25ml,约0.2825mol),酸滴加速度控制在0.5mL/min,30min后第二次加入2,2,2-三氟苯乙酮(0.635g,0.0037mol)之后在0℃下反应2h后第三次加入2,2,2-三氟苯乙酮(0.127g,0.0007mol),然后继续在0℃条件下反应24得到粘稠的溶液。将溶液倒入NaOH/乙醇溶液(质量浓度为0.2g/ml,用量为500ml)中使聚合物析出,分离固体,再用四氢呋喃(用量为500-ml)溶解,在乙醇(用量为500ml)中析出,过滤后用2M NaHCO3溶液在80℃下洗涤聚合物4h并重复两次,过滤后在60℃下真空干燥,得到含哌啶基团主链聚合物命名为PAP-BP-80。
(2)含哌啶基团主链聚合物PAP-BP-80的官能团化
在单口烧瓶中加入DMSO(12.5ml)和上述步骤(1)得到的含哌啶基团主链聚合物PAP-BP-80(0.5g,1.91mmol,哌啶基团为1.53mmol),搅拌,得到悬浊液(固含量0.04g/ml),加入官能团化单体溴化(4-溴丁基)三甲铵(0.505g,1.84mmol),在80℃下反应3.5h,得反应液,之后在乙酸乙酯中沉淀,过滤后用去离子水洗涤沉淀3次,在60℃下真空干燥,得到目标聚合物PAP-BP-80-4,聚合物分子量为250,000。
(3)膜制备
膜的制备采用溶剂挥发法,过程为:取上述步骤(2)中反应结束后的反应液作为铸膜液,过滤后均匀刮涂在聚酰亚胺基底材料上,置于鼓风干燥箱中,采用阶梯升温方法,于40℃保持1h,60℃保持3h,120℃保持6h,进行溶剂蒸发与膜的干燥,直至反应液中的溶剂完全蒸发,得到一薄膜。
(4)膜内阴离子置换
将上述步骤(3)得到的薄膜置于3M NaCl溶液中,在70℃下处理20h且重复3次,之后将膜置于在2M KOH溶液中,浸泡36h,得到目标碱性聚合物电解质膜PAP-BP-80-4,在25℃条件下膜的电导率为39mScm-1,并将其置于80℃ 1M KOH溶液中浸泡3000h,膜的电导率衰减不到1%,且离子交换容量衰减不到0.09%。
应用过程:
称取一定质量的70%Pt/C催化剂,加入一定量去离子水润湿,然后加入占总含量20wt.%的PAP-BP-80-4离聚物/DMAc溶液,加入乙醇进行稀释,超声分散形成均匀的催化剂浆液。于50℃真空热台上,将催化剂浆液喷涂到上述制备的聚合物电解质膜PAP-BP-80-4上,得到CCM结构电极,电极中Pt担量为0.5mg cm-2。将此电极置于扩散层之间,热压组装成MEAs。将MEAs与石墨流场、金属端板以及密封件一起按顺序组装,得到碱性聚合物电解质膜燃料电池单池(H2/O2型),得到最高功率密度为0.3Wcm-2
实施例2
采用与实施例1相同的反应条件,与实施例1不同之处在于,改变N-甲基-4-哌啶酮与2,2,2-三氟苯乙酮的物质的量比按60%:40%的比例进行投料(它们物质的量之和不变)制备得到含哌啶基团主链聚合物PAP-BP-60,官能团化后得到目标OH型碱性聚合物电解质膜PAP-BP-60-4,在25℃条件下膜的电导率为30mS cm-1
实施例3
采用与实施例1相同的反应条件与反应物质,得到含哌啶基团主链聚合物PAP-BP-80。与实施例1不同之处在于,采用溴化(6-溴丁基)三甲铵进行官能团化制备得到目标聚合物PAP-BP-80-6。采用溶剂挥发法制备膜后,置换成OH型后的膜的电导率为31mS cm-1
对比例1
一种采用聚芳醚砜主链、含哌啶离子的侧链的碱性聚合物电解质膜(制备方法如图4所示),其制备流程较为复杂,且在1M NaOH溶液、60℃下浸泡336h后,电导率下降12%,说明此种主链含砜基、醚键等吸电子基的电解质膜的耐碱性较差,很容易碎。
对比例2
采用聚(苯乙烯-乙烯-丁烯)嵌段共聚物作为主链(苯环含量35%),在其苯环通过亚甲基直接接枝甲基哌啶阳离子官能团,其氢氧型碱性聚合物电解质膜在25℃下的电导率为25mScm-1,将其置于80℃ 1M KOH溶液中处理120h,电导率便衰减至16mScm-1(衰减36%)。
对比例3
采用聚(苯乙烯-乙烯-丁烯)嵌段共聚物作为主链(苯环含量35%),在其苯环通过亚甲基直接接枝三甲胺后得到阳离子官能团,其氢氧型碱性聚合物电解质膜在25℃下的电导率为32mScm-1,将其置于80℃ 1M KOH溶液中处理120h,电导率便衰减至17mScm-1(衰减近47%)。
对比例4
采用与实施例1相同的反应条件,相同的反应物的量,与实施例1不同之处在于,采用2,2,2-三氟苯乙酮一次性加入方式进行,得到的聚合物的分子量为50,000。
对比例5
采用与实施例1相同的反应条件,与实施例1不同之处在于,反应中不加入2,2,2-三氟苯乙酮,制备得到的膜在水中有涨破危险,而且很容易溶于乙醇中。

Claims (9)

1.一种碱性聚合物电解质膜,其特征在于:
所述的具有高耐碱性的碱性聚合物电解质膜,其为有机高分子聚合物膜,有机高分子聚合物结构为通式I或II中的一种或二种以上,且其中i=0-7的整数,m1=100-14000的整数,m2=150-10000的整数,n=50-8000的整数,其中m2与n的比例为9:1-1:4;
Figure FDA0002836895040000011
R为官能团,选自下列结构式中的任何一种或二种,且2≤j≤10,2≤j1≤10,2≤j2≤10,R1、R2、R3分别独立地为-CH3或-CH2(CH2)aCH3,其中2≤a≤8:
Figure FDA0002836895040000012
X1、X2分别选自下列结构中的一种或两种以上:
Figure FDA0002836895040000021
Y选自下列结构式中的任何一种或二种以上:
Figure FDA0002836895040000022
2.一种权利要求1所述碱性聚合物电解质膜的制备方法,其特征在于:
包括以下步骤:
(1)含哌啶基团主链聚合物的制备
于反应器中加入酮单体I、酮单体II及芳基单体、二氯甲烷、滴加酸催化剂后,反应得到粘稠的溶液;
将溶液倒入有机溶剂中使聚合物析出,过滤后用四氢呋喃溶解,再用有机溶剂析出,水或碱溶液洗涤聚合物,过滤后干燥,得到含哌啶基团主链聚合物;
步骤(1)中所述酮单体I为N-甲基-4-哌啶酮,酮单体II为三氟苯乙酮、三氟丙酮、全氟苯乙酮、全氟丙酮、五氟苯甲醛中的一种或两种以上;所述芳基单体为联苯、三联苯、芴、苯醚、二苯氧基二苯甲酮中的一种或两种以上;所述酮单体I与酮单体II的物质的量比例为9:1-1:4,优选4:1-3:7;所述酮单体I、酮单体II总物质的量与芳基单体物质的量比例为0.8:1-2.0:1;
步骤(1)中所述酮单体II的加入方式为首次加入所需酮单体II总物质的量的20-40%,然后加入酸催化剂后20-40min加入总物质的量的40-50%,待继续反应1-3h后加入剩余的酮单体II;
所述酸催化剂包括三氟甲磺酸、三氟乙酸、三氯化铝、氯化铁、四氯化锡、氯化锌、1,4-二氯甲氧基丁烷中的一种或两种以上,酸催化剂加入温度为0℃以下至溶剂凝固点以上;所述酸滴加速度控制在0.1-5mL/min(优选0.1-1mL/min);所述酸催化剂的物质的量大于等于酮单体I、酮单体II总物质的量(酸催化的物质的量与酮单体I与酮单体II的总物质的量之比为1:1-9:1);
步骤(1)所述反应温度为0-100℃,优选0-60℃,所述反应时间为4-96h,优选6-72h;
(2)含哌啶基团主链聚合物的官能团化和膜制备
A、在容器中加入溶剂和上述步骤(1)得到的含哌啶基团主链聚合物,搅拌,得到悬浊液,加入官能团化单体,反应,得反应液;
采用溶剂挥发法制膜,过程为:取上述反应液作为铸膜液,过滤后均匀刮涂在基底材料上,进行溶剂蒸发与膜的干燥,直至反应液中的溶剂完全蒸发,得到薄膜;
或B、在容器中加入溶剂和上述步骤(1)得到的含哌啶基团主链聚合物,搅拌,得到悬浊液,加入官能团化单体,反应,得反应液;之后在有机溶剂中沉淀,过滤后用去离子水洗涤沉淀3-5次,干燥,得到目标聚合物;
热压法制膜,过程为:过程:将上述制备的干燥后目标聚合物置于二层基底材料之间,热压;
或C、将步骤(1)制备的含哌啶基团主链聚合物放置于二层基底材料之间,热压,将热压后薄膜放置于官能团化单体溶液中,反应后,用去离子水充分洗涤;
(3)膜内阴离子置换
将上述步骤(2)得到的薄膜置于盐溶液中处理,之后将膜置于碱溶液中浸泡12-96h,得到目标碱性聚合物电解质膜。
3.根据权利要求2所述的制备方法,其特征在于:
步骤(1)中,所述二氯甲烷的体积为使得芳基单体浓度为1.0-2.0mol/L的任意值;
所述用于析出聚合物的溶剂为乙醇、乙酸乙酯、丙酮、甲醇、水、质量浓度为0.1-1g/mlNaOH的水溶液、质量浓度为0.05-1g/ml KOH的水溶液、质量浓度为0.01-0.5g/ml KOH的乙醇溶液、质量浓度为0.01-0.5g/ml NaOH的乙醇溶液中的一种或多种;所述洗涤聚合物使用的碱溶液为K2CO3溶液、KHCO3溶液、Na2CO3溶液、NaHCO3溶液、KOH溶液、NaOH溶液中的一种或多种,浓度为0.01M–5M;所述洗涤条件为30-100℃,时间为2-48h,且重复洗涤1次以上;所述聚合物的干燥条件为常压-真空、室温-120℃,干燥时间为4-48h。
4.根据权利要求2所述的制备方法,其特征在于:步骤(2)A中,所述溶剂为DMSO、DMF、DMAc、NMP中的任意一种或二种以上;所述含哌啶基团主链聚合物在溶剂中的质量浓度为0.02-0.2g/ml;
步骤(2)所述官能团化单体为下述化合物中的任何一种且4≤j≤10,4≤j1≤10,4≤j2≤10,R1、R2、R3分别各自为-CH3或-CH2(CH2)aCH3,其中2≤a≤8,M为-Cl、-Br、-I中的任意一种:
Figure FDA0002836895040000051
步骤(2)所述官能团化单体的物质的量为所加入的含哌啶主链聚合物中哌啶基团物质的量的0.9-3.0倍;所述反应条件为室温-100℃,反应时间为0.5-144h。
5.根据权利要求2所述的制备方法,其特征在于:
步骤(2)B中,所述溶剂为DMSO、DMF、DMAc、NMP中的任意一种或二种以上;所述含哌啶基团主链聚合物在溶剂中的固含量为0.02-0.2g/ml;
步骤(2)所述官能团化单体为下述化合物中的任何一种且4≤j≤10,4≤j1≤10,4≤j2≤10,R1、R2、R3分别各自为-CH3或-CH2(CH2)aCH3,其中2≤a≤8,M为-Cl、-Br、-I中的任意一种:
Figure FDA0002836895040000061
步骤(2)所述官能团化单体的物质的量为所加入的含哌啶主链聚合物中哌啶基团物质的量的0.9-3.0倍;所述反应条件为室温-100℃,反应时间为0.5-144h;
步骤(2)所述沉淀所用的有机溶剂为乙酸乙酯、异丙醇、乙醚、氯仿中的一种或多种;
步骤(2)所述聚合物的干燥条件为常压-真空、室温-120℃,干燥时间为4-48h。
6.根据权利要求2所述的制备方法,其特征在于:
步骤(2)C中,所用溶剂为水、乙醇、甲醇、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的一种或两种以上;步骤(2)所述官能团化单体为下述化合物中的任何一种且4≤j≤10,4≤j1≤10,4≤j2≤10,R1、R2、R3分别各自为-CH3或-CH2(CH2)aCH3,其中2≤a≤8,M为-Cl、-Br、-I中的任意一种:
Figure FDA0002836895040000071
步骤(2)所述热压法制备的膜在官能团化单体溶液中的浓度为0.1-4mol/L,且于官能团化单体溶液中反应进行1-6次。
7.根据权利要求2、4、5或6所述的制备方法,其特征在于:
步骤(2)所述的基底材料为聚酰亚胺薄膜、PTFE薄膜、PBI薄膜、Kapton中的一种或二种以上;
步骤(2)A所述溶液挥发法制备膜中溶剂蒸发采用阶梯升温操作,阶梯升温操作为于30-50℃保持0.5-5h,60-90℃保持0.5-5h,100-130℃保持1-15h;
步骤(2)B或C所述热压法制备膜的操作中热压采用阶梯升温操作,压力控制在20Pounds-400 Pounds/cm2,阶梯升温操作为于80-85℃保持0.1-5h,100-120℃保持0.05-1h,120-200℃保持0.05-0.5h;
步骤(3)C所述热压法制备的膜在官能团化单体溶液中的处理条件为室温-160℃,优选室温-100℃,处理时间0.2-48h。
8.根据权利要求2所述的制备方法,其特征在于:
步骤(3)所述盐溶液的浓度为0.01-5M,所述盐溶液为NaCl溶液、KCl溶液、NaBr溶液、KBr溶液、NaI溶液、KI溶液中的一种或多种,所述处理条件为室温-100℃,时间1-100h且重复1-5次;所述碱溶液的浓度为0.1M–3M,所述碱溶液为NaOH溶液或KOH溶液中的一种或两种。
9.一种权利要求1所述碱性聚合物电解质膜在碱性聚合物燃料电池或碱性聚合物水电解或二氧化碳电还原的应用。
CN202011479143.7A 2020-12-15 2020-12-15 一种碱性聚合物电解质膜及其制备和应用 Pending CN114634650A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011479143.7A CN114634650A (zh) 2020-12-15 2020-12-15 一种碱性聚合物电解质膜及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011479143.7A CN114634650A (zh) 2020-12-15 2020-12-15 一种碱性聚合物电解质膜及其制备和应用

Publications (1)

Publication Number Publication Date
CN114634650A true CN114634650A (zh) 2022-06-17

Family

ID=81944375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011479143.7A Pending CN114634650A (zh) 2020-12-15 2020-12-15 一种碱性聚合物电解质膜及其制备和应用

Country Status (1)

Country Link
CN (1) CN114634650A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109231A (zh) * 2022-06-29 2022-09-27 中国科学院长春应用化学研究所 一种含膦自具微孔聚合物及其制备方法、以及膜电极及高温质子交换膜燃料电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910576A (zh) * 2017-11-03 2018-04-13 武汉大学 一类高化学稳定性的阴离子聚合物膜的制备方法
CN109070022A (zh) * 2016-03-28 2018-12-21 特拉华大学 用作氢氧化物交换膜和离聚物的聚(芳基哌啶鎓)聚合物
CN110690486A (zh) * 2019-11-07 2020-01-14 大连理工大学 一种基于柔性长侧链多阳离子结构的交联型碱性阴离子膜的制备方法
CN111954571A (zh) * 2017-09-28 2020-11-17 特拉华大学 用作阴离子交换隔膜和离聚物的包括具有稳定阳离子侧基的那些的聚(芳基哌啶鎓)聚合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070022A (zh) * 2016-03-28 2018-12-21 特拉华大学 用作氢氧化物交换膜和离聚物的聚(芳基哌啶鎓)聚合物
CN111954571A (zh) * 2017-09-28 2020-11-17 特拉华大学 用作阴离子交换隔膜和离聚物的包括具有稳定阳离子侧基的那些的聚(芳基哌啶鎓)聚合物
CN107910576A (zh) * 2017-11-03 2018-04-13 武汉大学 一类高化学稳定性的阴离子聚合物膜的制备方法
CN110690486A (zh) * 2019-11-07 2020-01-14 大连理工大学 一种基于柔性长侧链多阳离子结构的交联型碱性阴离子膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
THANH HUONG PHAM: "Poly(arylene alkylene)s with pendant N-spirocylic quaternary ammonium cations for anion exchange membranes", 《ROYAL SOCIETY OF CHEMISTRY》 *
YABIN JIA: "Paitially fluorinated,multication cross-linked poly(arylene piperidinium) membranes with improced conductivity and reduced swelling for fuel cell application", 《ORIGINAL PAPER》 *
张兴英: "《高分子化学》", 31 January 2012 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109231A (zh) * 2022-06-29 2022-09-27 中国科学院长春应用化学研究所 一种含膦自具微孔聚合物及其制备方法、以及膜电极及高温质子交换膜燃料电池
CN115109231B (zh) * 2022-06-29 2023-08-29 中国科学院长春应用化学研究所 一种含膦自具微孔聚合物及其制备方法、以及膜电极及高温质子交换膜燃料电池

Similar Documents

Publication Publication Date Title
CN110862516B (zh) 一种含Cardo结构靛红芳烃共聚物、制备方法及应用
US5985477A (en) Polymer electrolyte for fuel cell
CN101575417B (zh) 质子传导聚合物电解质和燃料电池
CN113956445B (zh) 一种含有支化结构的阳离子聚合物及其制备方法和应用
CN110903449A (zh) 一种靛红芳烃共聚物、制备方法及应用
CN110690486A (zh) 一种基于柔性长侧链多阳离子结构的交联型碱性阴离子膜的制备方法
CN114524919B (zh) 一种聚芳基型阴离子交换膜及制备方法
CN110372857B (zh) 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法
CN114230831B (zh) 一种高氧化稳定性和高离子传导率的交联型阴离子交换膜的制备方法
CN108164724B (zh) 芳香族二元酚交联聚芳醚型阴离子交换膜及其制备方法
CN113621131A (zh) 一种聚电解质材料、其制备方法与聚电解质膜
CN114133555A (zh) 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN112940226A (zh) 一种聚电解质材料、其制备方法和碱性聚电解质膜
CN114634650A (zh) 一种碱性聚合物电解质膜及其制备和应用
CN109119662A (zh) 一种长支链双梳状聚芳基吲哚阴离子交换膜及其制备方法
CN108359095A (zh) 一种季铵化聚芳醚酮砜化合物及其制备方法
CN113307966B (zh) 含四甲基哌啶氧化物季铵盐的共聚物及其制备方法和应用
CN114989437B (zh) 聚合物及其制备方法以及阴离子交换膜
CN114835935B (zh) 一种肟基辅助无醚氧键型聚合物阴离子交换膜及其制备方法
CN114824396B (zh) 含梳形侧链的嵌段型芴基阴离子交换膜及其制备方法
KR102036872B1 (ko) 폴리에테르에테르케톤 기반의 복합막, 이의 제조방법 및 이를 포함하는 연료전지용 음이온 교환막
CN114335637B (zh) 一种含超支化结构的交联型阴离子交换膜及其制备方法
CN115819734A (zh) 一类含两性离子侧链结构的阴离子交换聚合物及其应用
US20070218335A1 (en) Polymer having oxocarbon group, and use thereof
CN108752587B (zh) 一种基于联萘酚的磺化聚芳醚酮砜化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220617

RJ01 Rejection of invention patent application after publication