CN110372857B - 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法 - Google Patents

一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法 Download PDF

Info

Publication number
CN110372857B
CN110372857B CN201910686276.2A CN201910686276A CN110372857B CN 110372857 B CN110372857 B CN 110372857B CN 201910686276 A CN201910686276 A CN 201910686276A CN 110372857 B CN110372857 B CN 110372857B
Authority
CN
China
Prior art keywords
fluorine
ammonium salt
quaternary ammonium
tri
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910686276.2A
Other languages
English (en)
Other versions
CN110372857A (zh
Inventor
陈栋阳
周振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910686276.2A priority Critical patent/CN110372857B/zh
Publication of CN110372857A publication Critical patent/CN110372857A/zh
Application granted granted Critical
Publication of CN110372857B publication Critical patent/CN110372857B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4043(I) or (II) containing oxygen other than as phenol or carbonyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

本发明涉及了一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法。本发明先将4,4’‑((2,3,5,6‑四(3,5‑二甲基苯氧基)‑1,4‑亚苯基)双(氧基))二酚单体、双酚A和十氟联苯在室温下进行缩聚反应制得含氟聚芳醚化合物,然后用N‑溴代丁二酰亚胺对其进行溴化,再用含双季铵盐的叔胺化合物进行反应,制得含三季铵盐侧链的含氟聚芳醚化合物,最后通过溶液浇铸法制得含三季铵盐侧链的含氟聚芳醚阴离子交换膜。该阴离子交换膜具氧化稳定性高、离子传导率高、钒离子透过率低、机械性能好等优点,可作为优异的全钒液流电池隔膜。

Description

一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备 方法
技术领域
本发明涉及一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法,属于离子交换膜材料领域。
背景技术
为应对可再生能源应用的快速增长,开发低成本和高效率的大规模储能系统至关重要,以消除可再生能源的间歇性。全钒液流电池(VRFB)作为最具前景的大型储能系统之一,近年来备受关注。隔膜是VRFB的关键组分之一,它不仅影响整个循环性能,还决定了系统的经济可行性。该隔膜分离正半电池和负半电池,并防止钒离子的交叉混合,同时提供所需的离子导电性。理想的膜应具有良好的离子交换能力,高离子传导率,低吸水率、低溶胀率、低面积电阻和低钒离子渗透率,以及良好的化学稳定性和低廉的成本。
低离子传导率和低热稳定性是限制常规季铵盐功能化阴离子交换膜在VRFB中应用的两个关键参数。这两个参数与聚合物主链和功能性离子交换基团有关。目前常用于阴离子交换膜的聚合物主链包括聚(芳基醚)、聚(亚苯基)、聚(苯基砜)等。国内外的研究团队在液流电池用阴离子交换膜的开发中进行了一些工作,并取得一定成果(CN201811083817.4,CN201810410636.1,CN201711439463.8)。然而,现阶段的阴离子交换膜研究成果尚且不能满足全钒液流电池的应用需求,很大程度上阻碍了全钒液流电池的发展。因此,开发一种廉价的,具有良好的离子传导率、机械性能和化学稳定性的离子交换膜对于全钒液流电池的发展具有重要意义。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜。该阴离子交换膜具氧化稳定性高、离子传导率高、钒离子透过率低、机械性能好等优点,可作为优异的全钒液流电池隔膜,在全钒液流电池领域具有重要的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜,其结构式为:
Figure 506536DEST_PATH_IMAGE001
式中-R为-CH3
Figure DEST_PATH_IMAGE002
,X-为任意阴离子;n为1~400;m为10~400。
本发明的另一目的在于提供一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜,其制备包括步骤:
(1)在极性非质子溶剂中,加入4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚、十氟联苯、双酚A 、CsF 和CaH2,在惰性气体的保护下,室温反应8~36h,然后倒入去离子水中析出沉淀,去离子水的体积为极性非质子溶剂的体积的10~100倍;过滤收集沉淀并放入真空烘箱60℃干燥12~48h后,得到含氟聚芳醚化合物。反应投料按摩尔比计为:4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚:双酚A:十氟联苯:CsF:CaH2=k:1-k:1:3~6:0.01~1,其中0<k<1;
上述4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚参考文献(Journal of Power Sources, 2018, 387, 33-42)合成,其化学结构如下所示:
Figure 22837DEST_PATH_IMAGE003
(2)将步骤(1)中得到的含氟聚芳醚化合物溶解于1,2-二氯乙烷中制成1~10 wt%的溶液,加入N-溴代丁二酰亚胺作为溴化剂,过氧化苯甲酰作为催化剂进行反应,反应结束后将溶液缓慢倒入甲醇中析出沉淀,甲醇的体积为极性非质子溶剂的体积的10~100倍;过滤收集沉淀并放入真空烘箱60℃干燥12~48h,得到含有溴甲基的含氟聚芳醚化合物;其中N-溴代丁二酰亚胺与过氧化苯甲酰的用量分别为含氟聚芳醚化合物所含苯甲基摩尔量的0.5~2倍和0.02~1倍;
(3)参考文献(ACS Applied Materials & Interfaces 2018, 10, 18327−18337)合成含双季铵盐的叔胺化合物,然后将其与N-甲基吡咯烷酮混合,逐滴加入去离子水直到固体全部溶解,制得含双季铵盐的叔胺化合物溶液。含双季铵盐的叔胺化合物量为步骤(1)中得到的含氟聚芳醚化合物中所含苯甲基摩尔量的1~5倍;N-甲基吡咯烷酮的体积与双季铵盐的叔胺化合物的质量之比为5~20:1;
上述的含双季铵盐的叔胺化合物的化学结构如下所示:
Figure DEST_PATH_IMAGE004
(4)将步骤(2)中所得到的溴化含氟聚芳醚化合物溶解于极性非质子溶剂中制成1~10 wt%的溶液,缓慢加入步骤(3)中制备的含双季铵盐的叔胺化合物溶液,在-20~120℃反应2~40h,然后倒入表面皿中,置于40~120℃鼓风烘箱中干燥6~12h,再于20~120℃真空烘箱中干燥10~40h,制得含三季铵盐侧链的含氟聚芳醚化合物;
(5)将步骤(4)中所得到的三季铵盐侧链的含氟聚芳醚化合物溶解于极性非质子溶剂中制成1~10 wt%的溶液,然后浇铸到水平放置的玻璃板上,于60~100℃烘箱中干燥10~100h,即制得含三季铵盐侧链的含氟聚芳醚阴离子交换膜。
为了更好的实现本发明,以上所述步骤中的极性非质子溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、1,3-二甲基-2-咪唑啉酮中的任意一种。
步骤(1)中极性非质子溶剂的体积与十氟联苯的质量之比为5~50:1。
步骤(5)中所制得的含三季铵盐侧链的含氟聚芳醚阴离子交换膜厚度为30~120微米。
本发明所得到的阴离子交换膜可用作为全钒液流电池的隔膜材料。
与现有技术相比,本发明具有如下效果:
(1)采用的原料为常见的化工原料,价格低廉,容易获得;
(2)本发明所选用的含氟聚芳醚骨架具有良好的疏水性以及优异的物理化学稳定性。
(3)通过将含双季铵盐的叔胺化合物引入到溴化含氟聚芳醚化合物上,形成分布在局部链段的大离子簇,有利于提高离子传导率;
(4)由所制得的三季铵盐侧链的含氟聚芳醚化合物浇铸成膜,在低的离子交换容量的条件下具有较高的硫酸根离子传导率、优异的机械强度,较低的钒离子透过率和较好的氧化稳定性。
附图说明
图1为实施例1中含氟聚芳醚化合物FPAE-10%的核磁氢谱;
图2为实施例1中含氟聚芳醚化合物FPAE-10%的红外光谱;
图3为实施例3中溴化含氟聚芳醚化合物Br-FPAE-10%的核磁氢谱;
图4为实施例3中溴化含氟聚芳醚化合物Br-FPAE-10%的红外光谱;
图5为实施例5中含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-10%的核磁氢谱;
图6为实施例5中含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-10%的红外光谱。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但本发明不仅限于此。
实施例1 含氟聚芳醚化合物FPAE-10%的制备
将4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚单体0.1549g(0.2mmol),双酚A 0.4109g(1.8mmol),十氟联苯 0.6682g(2mmol),CsF 1.8228g(12mmol),CaH2 0.0842g(2mmol) 和5mL N-甲基吡咯烷酮加入到15 mL三口烧瓶中,在氩气的保护下室温反应24小时,反应结束后,将产物倒入300ml去离子水中析出沉淀,过滤收集沉淀后重新溶解在15ml二氯甲烷里,然后倒入300ml甲醇中析出沉淀,过滤收集沉淀,在真空烘箱60 ℃烘干24小时,即得到含氟聚芳醚化合物FPAE-10%。产率:94%。该化合物的核磁共振氢谱的数据为:1H NMR (600 MHz, Chloroform-d) δ 7.24 (d, Hz, 5H), 6.98 (d,Hz, 5H), 6.87 (d, 1H), 6.75 (d, 1H), 6.58 (s, 1H), 6.35 (s, 1H), 2.19 (d,4H), 1.70 (s, 6H).红外数据为:FT-IR (cm-1) υ 3641, 3385, 3039, 2970, 2573,1648, 1601, 1490, , 1292, 1208, 1174, 1141, 1103, 1070, 1049, 981, 874, 830,724, 682, 553。
实施例2 含氟聚芳醚化合物FPAE-5%的制备
实验步骤与实施例1相同,不同的是4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚单体和双酚A的投料量。本实施例中,双酚单体的投料量为0.1162g(0.15 mmol);双酚A的投料量为0.6506g(2.85 mmol)。反应得到的含氟聚芳醚化合物FPAE-5%。产率98%。
实施例3 溴化含氟聚芳醚化合物Br-FPAE-10%的制备
将1.00 g(1.7 mmol)实施例1中的含氟聚芳醚化合物FPAE-10%,0.377 g (2.1mmol) N-溴代丁二酰亚胺,0.03 g (0.11 mmol) 过氧化二苯甲酰和28 mL 1,2-二氯乙烷加入三口烧瓶中,在氩气的保护下在85℃反应8小时,然后将产物倒入300ml去离子水中析出沉淀,过滤收集沉淀后重新溶解在二氯甲烷里,然后倒入300ml甲醇中析出沉淀,过滤收集沉淀,在60 ℃真空烘干24小时,即得到溴化含氟聚芳醚化合物Br-FPAE-10%。产率:97%。该化合物的核磁共振氢谱的数据为:1H NMR (600 MHz, Chloroform-d) δ 7.24 (d,22H), 7.10 (d, 1H), 6.98 (d, 21H), 6.93 – 6.88 (m, 2H), 6.75 (d, 1H), 6.74(s, 2H), 6.70 (d, 1H), 6.59 – 6.54 (m, 1H), 6.43 (d, 3H), 4.51 (d, 1H), 2.29(d, 11H), 2.26 (s, 2H), 1.36 (s, 1H), 1.31 – 1.24 (m, 14H).红外数据为:FT-IR(cm-1) υ 3354, 2969, 1649, 1601, 1550,, 1487, 1301, 1208, 1174, 1147, 1103,1070, 1013, 1002, 980, 857, 830, 724, 552。
实施例4 溴化含氟聚芳醚化合物Br-FPAE-5%的制备
实验步骤与实施例3相同,不同的是反应原料为实施例2中的FPAE-5%,其投料量为0.55g(1 mmol),反应得到溴化含氟聚芳醚化合物Br-FPAE-5%。产率:97%。
实施例5 含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-10%的制备
将0.5 g(0.78mmol)实施例3中的溴化聚芳醚化合物FPAE-10%和10 mL N-甲基吡咯烷酮加入玻璃瓶中,将制得的含双季铵盐的叔胺化合物溶液逐滴加入到玻璃瓶中,将玻璃瓶密封,在室温下搅拌24小时。然后将产物倒入表面皿中,放在80 ℃下烘干,即得到含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-10%。产率97%。该化合物的核磁共振氢谱的数据为:1H NMR (600 MHz, DMSO-d6) δ 7.24 (s, 2H), 7.12 (s, 10H), 6.89 (s, 5H),3.08 – 3.04 (m, 3H), 2.24 – 2.15 (m, 1H), 1.63 (s, 8H), 1.23 (s, 3H).红外数据为:FT-IR (cm-1) υ 3407, 2969, 1648, 1602, 1487, 1408, 1364, 1300, 1208, 1174,1103, 1070, 1013, 1002, 980, 830, 724, 552。
实施例6 含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-5%的制备
实验步骤与实施例5相同,不同的是反应原料为实施例4中的Br-FPAE-5%,其投料量为0.58g(1 mmol),反应得到含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-5%。产率:97%。
实施例7 基于上述三季铵盐侧链的含氟聚芳醚化合物制备阴离子交换膜
取0.5 g上述含三季铵盐侧链的含氟聚芳醚化合物QA-FPAE-10%和QA-FPAE-5%,分别溶解于10 mLN ,N-二甲基乙酰胺中,然后浇铸于水平放置的平板玻璃上,在恒温烘箱中80 ℃干燥12小时,然后在真空烘箱中80 ℃干燥24小时,即在玻璃板形成膜状产物。将膜从玻璃板上揭下来,然后浸泡在去离子水中,制得目标阴离子交换膜。采用滴定法测离子交换容量,交流阻抗法测阴离子传导率,浸泡1.5M (VO2)2SO4+ 2M H2SO4溶液30天测氧化稳定性。
实施例8 含三季铵盐侧链的含氟聚芳醚阴离子交换膜的性能测试
经表征,含三季铵盐侧链的含氟聚芳醚阴离子交换膜的性能如下表所示:
Figure DEST_PATH_IMAGE005
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜的制备方法,其特征在于,所述含三季铵盐侧链的含氟聚芳醚阴离子交换膜由含三季铵盐侧链的含氟聚芳醚化合物组成,所述含三季铵盐侧链的含氟聚芳醚化合物的化学结构式为:
Figure DEST_PATH_IMAGE001
式中-R为
Figure DEST_PATH_IMAGE003
,X-为任意阴离子;n为1~400;m为10~400;
所述含三季铵盐侧链的含氟聚芳醚阴离子交换膜的制备方法具体包括以下步骤:
(1)在极性非质子溶剂中,加入 4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚、十氟联苯、双酚A、CsF 和CaH2,在惰性气体的保护下,室温反应8~36 h,然后倒入去离子水中析出沉淀,去离子水的体积为极性非质子溶剂的体积的10~100倍;过滤收集沉淀并放入真空烘箱60℃干燥12~48h后,得到含氟聚芳醚化合物;
(2)将步骤(1)中得到的含氟聚芳醚化合物溶解于1 ,2-二氯乙烷中制成1~10 wt%的溶液,加入N-溴代丁二酰亚胺作为溴化剂,过氧化苯甲酰作为催化剂进行溴化反应,反应结束后将溶液缓慢倒入甲醇中析出沉淀,甲醇的体积为极性非质子溶剂的体积的10~100倍;过滤收集沉淀并放入真空烘箱60℃干燥12~48h,得到溴化含氟聚芳醚化合物;
(3)将含双季铵盐的叔胺化合物与N-甲基吡咯烷酮混合,逐滴加入去离子水直到固体全部溶解,制得含双季铵盐的叔胺化合物溶液;含双季铵盐的叔胺化合物摩尔量为步骤(1)中得到的含氟聚芳醚化合物中所含苯甲基摩尔量的1~5倍;N-甲基吡咯烷酮的体积与双季铵盐的叔胺化合物的质量之比为5~20:1;
(4)将步骤(2)中所得到的溴化含氟聚芳醚化合物溶解于极性非质子溶剂中制成1~10wt%的溶液,缓慢加入步骤(3)中制备的含双季铵盐的叔胺化合物溶液,在-20~120℃反应2~40h,然后倒入表面皿中,置于40~120℃鼓风烘箱中干燥6~12h,再于20~120℃真空烘箱中干燥10~40h,制得含三季铵盐侧链的含氟聚芳醚化合物;
(5)将步骤(4)中所得到的含三季铵盐侧链的含氟聚芳醚化合物溶解于极性非质子溶剂中制成1~10 wt%的溶液,然后浇铸到水平放置的玻璃板上,于60~100℃烘箱中干燥10~100h,即制得含三季铵盐侧链的含氟聚芳醚阴离子交换膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述4,4’-((2,3,5,6-四(3,5-二甲基苯氧基)-1,4-亚苯基)双(氧基))二酚、双酚A、十氟联苯、CsF、CaH2的摩尔比为k:1-k:1:3~6:0.01~1,其中0<k<1;极性非质子溶剂的体积与十氟联苯的质量之比为5~50:1。
3.根据权利要求1所述的制备方法,其特征在于,所述极性非质子溶剂为N ,N-二甲基乙酰胺、N ,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜、1,3-二甲基-2-咪唑啉酮中的任意一种。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述N-溴代丁二酰亚胺与过氧化苯甲酰的用量分别为含氟聚芳醚化合物所含苯甲基摩尔量的0.5~2倍和0.02~1倍。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中含双季铵盐的叔胺化合物的化学结构为:
Figure 512570DEST_PATH_IMAGE004
6.根据权利要求1所述的制备方法,其特征在于,所制得的阴离子交换膜厚度为30~120微米。
CN201910686276.2A 2019-07-29 2019-07-29 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法 Expired - Fee Related CN110372857B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910686276.2A CN110372857B (zh) 2019-07-29 2019-07-29 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910686276.2A CN110372857B (zh) 2019-07-29 2019-07-29 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110372857A CN110372857A (zh) 2019-10-25
CN110372857B true CN110372857B (zh) 2021-07-13

Family

ID=68256535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910686276.2A Expired - Fee Related CN110372857B (zh) 2019-07-29 2019-07-29 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110372857B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851932B (zh) * 2021-01-14 2022-03-29 大连理工大学 一种基于软模版法制备的多阳离子侧链型阴离子交换膜及其制备方法
CN114230831B (zh) * 2022-01-13 2023-06-09 福州大学 一种高氧化稳定性和高离子传导率的交联型阴离子交换膜的制备方法
CN114989468B (zh) * 2022-05-26 2023-02-14 大连理工大学 一种基于螺环扭曲结构主链聚芳醚离子交换膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516526A (zh) * 2011-12-01 2012-06-27 中山大学 一种含季铵盐侧基和芴基的聚芳醚化合物及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516526A (zh) * 2011-12-01 2012-06-27 中山大学 一种含季铵盐侧基和芴基的聚芳醚化合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain;Lin CX,etal;《Applied Materials and interfaces》;20180508;第10卷;第18327-18337页 *
Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes;Hu Y F, et al;《Journal of Power Sources》;20180326;第387卷;第33-42页 *
Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells;Yang Q,et al;《Journal of Membrane Science》;20180510;第560卷;第77-86页 *

Also Published As

Publication number Publication date
CN110372857A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
CN110862516B (zh) 一种含Cardo结构靛红芳烃共聚物、制备方法及应用
CN110372857B (zh) 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法
CN104829814B (zh) 一种含季铵化哌啶基团的聚合物、制备方法及阴离子交换膜、制备方法
CN110372902B (zh) 一种侧链双季铵盐离子型含氟聚芴醚阴离子交换膜
CN107573501B (zh) 一种可交联含氟磺化聚芳醚化合物及其制备方法
CN108530660B (zh) 一种局部密集季铵化聚芴醚酮化合物及其制备方法
CN105694077A (zh) 一种含吡啶骨架的阴离子交换膜及其制备方法与应用
CN114133555A (zh) 一种交联型含氟聚芴醚阴离子交换膜的制备方法
CN115010907A (zh) 一种含有亲水和疏水双侧链的聚芳基哌啶型阴离子交换膜及其制备方法
CN114702635A (zh) 席夫碱冠醚聚合物制备方法及其在阴离子交换膜中的应用
CN111662446A (zh) 一种低面电阻率和高氧化稳定性的含氟聚芳醚基阴离子交换膜及其制备方法
CN114230831B (zh) 一种高氧化稳定性和高离子传导率的交联型阴离子交换膜的制备方法
CN110437438B (zh) 一种用于全钒液流电池的密集磺化含氟聚芳醚质子交换膜及其制备方法
WO2006047158A2 (en) Novel compositions of monomers, oligomers and polymers and methods for making the same
CN111871222A (zh) 一种基于柱[5]芳烃的季铵盐功能化含氟聚芴醚阴离子交换膜的制备方法
CN109119662A (zh) 一种长支链双梳状聚芳基吲哚阴离子交换膜及其制备方法
CN108359095A (zh) 一种季铵化聚芳醚酮砜化合物及其制备方法
US11312818B2 (en) Polyphenylene compound
JP2004263153A (ja) スルホン酸基を有するアミン硬化型エポキシ樹脂電解質および製造法
US20110224398A1 (en) Polymer having oxocarbon group, and use thereof
CN109232936B (zh) 一种全钒液流电池用阴离子交换膜及其制备方法
CN113307966B (zh) 含四甲基哌啶氧化物季铵盐的共聚物及其制备方法和应用
CN114634650A (zh) 一种碱性聚合物电解质膜及其制备和应用
KR101613260B1 (ko) 술포네이트계 단량체, 이의 제조방법, 상기 단량체의 중합체, 상기 중합체를 포함하는 고분자 전해질막, 및 이를채용한 연료전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210713