CN114621278A - 硼酸酯功能化有机硅氧烷化合物及其制备方法和应用 - Google Patents

硼酸酯功能化有机硅氧烷化合物及其制备方法和应用 Download PDF

Info

Publication number
CN114621278A
CN114621278A CN202011443968.3A CN202011443968A CN114621278A CN 114621278 A CN114621278 A CN 114621278A CN 202011443968 A CN202011443968 A CN 202011443968A CN 114621278 A CN114621278 A CN 114621278A
Authority
CN
China
Prior art keywords
borate
compound
lithium
electrolyte
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011443968.3A
Other languages
English (en)
Other versions
CN114621278B (zh
Inventor
张灵志
陈程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202011443968.3A priority Critical patent/CN114621278B/zh
Publication of CN114621278A publication Critical patent/CN114621278A/zh
Application granted granted Critical
Publication of CN114621278B publication Critical patent/CN114621278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0876Reactions involving the formation of bonds to a Si atom of a Si-O-Si sequence other than a bond of the Si-O-Si linkage
    • C07F7/0878Si-C bond
    • C07F7/0879Hydrosilylation reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了化学结构式如式1、2、3所示的硼酸酯功能化有机硅氧烷化合物:
Figure DDA0002823651010000011
其中R1、R2、R3、R4、R5、R6选自相同或者不同的C1–C10烷基、烷氧基,n1为C1–C3烷基,n2为不同链长的硅氧烷,A为(CH2)n3O[(CH2)mO]x(CH2)y,其中n3、m、x和y分别为0‑5的整数。

Description

硼酸酯功能化有机硅氧烷化合物及其制备方法和应用
技术领域:
本发明涉及电化学储能技术领域,具体涉及一种硼酸酯功能化有机硅氧烷化合物及其制备方法和作为锂二次电池电解液添加剂的应用。
背景技术:
锂离子电池因其工作电压高、比容量大、循环寿命长、自放电小、无记忆效应、无污染等特点,被广泛应用在手机、笔记本等便携式设备和混合动力汽车等领域。
随着国家对动力汽车的能量密度和功率密度提出更高的要求,具有高能量密度的正极材料正广泛受到关注,如三元材料、LiNi0.5Mn1.5O4、高压LiCoO2等。但这些材料本身还存在一些固有的缺点,如循环过程中容量衰减快、材料结构稳定性差、高压(高温)循环寿命短、高温储存性能差等。可通过寻求一种新的电解液体系匹配高能量密度正极材料来提高锂二次电池的综合性能。目前商业上普遍使用的电解液主要是由六氟磷酸锂(LiPF6)盐和溶剂碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)等混合溶剂组成,这类碳酸酯电解液极易发生自身氧化分解,副反应产生的HF会加速正极材料中过渡金属离子(Ni、Co、Mn)溶出,导致正极材料表面结构坍塌、电池容量衰减和循环性能变差。电解液添加剂因其具有“用量少,效果显著”的特点,在基本不改变电池体积及成本的基础上能明显改善电池的性能。在锂二次电池的电解液体系中加入功能添加剂,该类添加剂将优先电解液氧化分解,在正极材料表面形成一层稳定致密的界面保护膜,阻断正极材料表面与电解液的直接接触,有效抑制电解液的氧化分解,解决了电解液体系易与正极材料发生副反应而导致锂二次电池性能下降、容量衰减等问题,有效提高锂二次电池的循环寿命和放电容量。
先前有专利报道过硅烷化合物(CN 102074736 A)和硅烷硼酸酯化合物(CN105355968 A)作为锂二次电池电解液添加剂,但该类添加剂不能兼顾保护电解液和电极材料。因此,急需开发新的功能电解液添加剂来提高电池的循环寿命和应用范围,从而获得高能量密度电池。
发明内容:
本发明的目的是提供一种硼酸酯功能化有机硅氧烷化合物及其制备方法和作为锂二次电池电解液添加剂的应用。
本发明是通过以下技术方案予以实现的:
化学结构式如式1、2、3所示的硼酸酯功能化有机硅氧烷化合物:
Figure BDA0002823645990000021
其中R1、R2、R3、R4、R5、R6选自相同或者不同的C1–C10烷基、烷氧基,n1为C1–C3烷基,n2为不同链长的硅氧烷,A为(CH2)n3O[(CH2)mO]x(CH2)y,其中n3、m、x和y分别为0-5的整数。
上述硼酸酯功能化有机硅氧烷化合物的制备方法,该方法包括如下步骤:烷氧硅氢烷与双键有机胺化合物或者双键硼酸酯化合物通过在惰性气体保护下进行硅氢化反应,反应温度为45~130℃,反应时间为4–24h,双键有机胺化合物与烷氧硅氢烷的摩尔比为1:1.0~1.2,双键硼酸酯与烷氧硅氢烷的摩尔比为1:1.0~1.1,制备得到硼酸酯功能化有机硅氧烷化合物;所述的双键有机胺化合物为2–(烯丙氧基)–N,N–二甲基乙胺或者2–(烯丙氧基)乙氧基–N,N二甲基乙胺;双键硼酸酯化合物为乙烯基硼酸频哪醇酯或者丙烯基硼酸邻二叔醇酯;烷氧硅氢烷为1,1,3,3–四甲基二硅氧烷或者1,1,3,3,5,5–六甲基三硅氧烷;硅氢化反应催化剂选自氯铂酸或Karstedt’s催化剂,加入的量为双键取代的聚醚链有机胺化合物或者双键硼酸酯化合物的0.1~1mol。
具体合成路线包括如下三路线:
Figure BDA0002823645990000022
路线1
Figure BDA0002823645990000023
路线2
Figure BDA0002823645990000031
路线3
本发明还提供式1所示的硼酸酯功能化有机硅氧烷化合物在锂二次电池中的应用,所述的硼酸酯功能化有机硅氧烷化合物作为锂二次电池电解液添加剂。
所述的锂二次电池电解液包括锂盐\溶剂和作为电解液添加剂的本发明所述硼酸酯功能化有机硅氧烷化合物。所述的导电锂盐在电解液中的浓度为0.5–1.5mol/L,所述的电解液添加剂的使用量为锂盐和溶剂总质量的0.1%–5%。有机溶剂包括碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯,三者的质量比1:1:1。所述的导电锂盐选自六氟磷酸锂(LiPF6)、二草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiODFB)、高氯酸锂(LiClO4)、双三氟甲磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)中的一种或两种以上。该锂二次电池正极材料可使用LiNixCoyMnzO2(x+y+z=1)体系、LiCoO2
本发明的有益效果如下:本发明硼酸酯功能化有机硅氧烷化合物作为锂二次电池电解液添加剂能优先于碳酸酯电解液分解,在正极材料界面形成一层含杂元素的致密稳定的保护膜。该层保护膜能阻断正极材料表面与电解液的直接接触,有效抑制电解液的氧化分解,提高有机碳酸酯溶剂的稳定性,促进电解液与正、负极材料的兼容性,降低正负极材料的金属溶出;还能有效提高电池的高温循环寿命、放电容量和倍率性能,提高电池的高压应用范围。
附图说明:
图1为本发明实施例1化合物的核磁氢谱和碳谱图;
图2为本发明实施例2化合物的核磁氢谱和碳谱图;
图3为本发明实施例3化合物的核磁氢谱和碳谱图;
图4为本发明实施例4化合物的核磁氢谱和碳谱图;
图5为本发明实施例5化合物的核磁氢谱和碳谱图;
图6为本发明实施例6化合物的核磁氢谱和碳谱图;
图7为本发明实施例7化合物的核磁氢谱和碳谱图;
图8为本发明实施例8化合物的核磁氢谱和碳谱图;
图9为本发明实施例9化合物的核磁氢谱和碳谱图;
图10为本发明实施例10化合物的核磁氢谱和碳谱图;
图11为本发明实施例11化合物的核磁氢谱和碳谱图;
图12为本发明实施例12与对比例1电解液的线性扫描曲线;
图13为本发明实施例12与对比例1电解液的常温循环性能测试;
图14为本发明实施例12与对比例1电解液的Graphite/NCM811电池的常温循坏性能测试;
图15为本发明实施例12与对比例1电解液的Graphite/NCM811电池的高温循坏性能测试;
图16为本发明实施例12与对比例1电解液的Li/NCM811电池的倍率性能测试;
图17为本发明实施例12与对比例1电解液的Li/NCM811电池的阻抗测试;
图18为本发明实施例12与对比例1电解液的LiCoO2/Li电池的dQ/dV曲线;
图19为本发明实施例12与对比例1电解液的Graphite2/Li电池的dQ/dV曲线;
图20为本发明实施实施例12与对比例1电解液的LiCoO2/Graphite电池的常温循环测试;
图21为本发明实施实施例12与对比例1电解液的LiCoO2/Graphite电池的高温循环测试;
图22为本发明实施例12与对比例1电解液的LiCoO2/Graphite电池的高温倍率性能测试;
图23为本发明实施例12与对比例1电解液的LiCoO2/Graphite电池的阻抗测试。
图24为本发明实施例16与对比例1电解液的线性扫描曲线;
图25为本发明实施例17与对比例1电解液的线性扫描曲线;
图26为本发明实施例18与对比例1电解液的线性扫描曲线;
图27为本发明实施例4与对比例1电解液的LiCoO2/Li电池的dQ/dV曲线;
图28为本发明实施例17与对比例1电解液的LiCoO2/Li电池的dQ/dV曲线。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:二硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(TMSPEA)的合成
氩气气氛和室温条件下,往三口烧瓶中加入2–(烯丙氧基)–N,N–二甲基乙胺(62.46g,0.484mol)与0.4g氯铂酸搅拌,在搅拌状态下滴加1,1,3,3–四甲基二硅氧烷(66.20g,0.494mol)。待滴加完毕后,45℃反应24h。通过减压蒸馏可得到二硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(TMSPEA),b.p.:77℃/0.13mmHg。
TMSPEA化学结构式如下:
Figure BDA0002823645990000041
TMSPEA 1H NMR(400MHz,CDCl3)δ4.59–4.57(m,1H),3.41(t,J=5.8Hz,2H),3.29(t,J=7.0Hz,2H),2.39(t,J=5.8Hz,2H),2.16(s,6H),1.55–1.47(m,2H),0.44–0.40(m,2H),0.05–0.046(m,6H),–0.0(s,6H);
TMSPEA 13C NMR(100MHz,CDCl3):δ73.80,68.63,58.79,45.72,23.09,13.85,0.67,-0.26。核磁1H NMR和13C NMR谱图见附图1。
实施例2:硼酸酯和胺基功能化有机硅氧烷化合物(TMBDSA1)的合成
氩气气氛和室温条件下,在三口烧瓶中加入二硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(19.8g,75.2mmol)与0.06g氯铂酸,在搅拌状态下滴加乙烯基硼酸频哪醇酯(11.60g,75.2mmol)。待滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯和胺基功能化有机硅氧烷化合物(TMBDSA1),b.p.:115℃/0.18mmHg。
TMBDSA1化学结构式如下:
Figure BDA0002823645990000051
TMBDSA11H NMR(400MHz,CDCl3):δ3.44(t,J=6.0Hz,2H),3.31(t,J=7.2Hz,2H),2.42(t,J=5.8Hz,2H),2.19(s,6H),1.57–1.49(m,2H),1.17–1.14(m,12H),0.98–0.92(m,3H),0.45–0.41(m,2H),0.28(q,J=7.2Hz,1H),0.01–0.00(m,6H),-0.02(s,6H);
TMBDSA1 13C NMR(100MHz,CDCl3):δ82.36,74.00,68.66,58.81,45.78,24.83,24.60,23.24,14.15,8.32,0.25,0.11,–0.28。核磁1H NMR和13C NMR谱图见附图2。
实施例3:二硅氧烷单取代的2–(烯丙氧基)乙氧基–N,N–二甲基乙胺(TMSPDEA)的合成
氩气气氛和室温条件下,在三口烧瓶中加入2–(烯丙氧基)乙氧基–N,N–二甲基乙胺(63.31g,0.366mol)与0.3g氯铂酸,在搅拌状态下滴加二硅氧烷(50g,0.373mol)。待滴加完毕后,45℃反应24h。通过减压蒸馏可得到二硅氧烷单取代的2–(烯丙氧基)乙氧基–N,N–二甲基乙胺(TMSPDEA),b.p.:108℃/0.23mmHg。
TMSPDEA化学结构式如下:
Figure BDA0002823645990000052
TMSPDEA 1H NMR(400MHz,CDCl3)δ4.68–4.63(m,1H),3.60–3.55(m,6H),3.40(t,J=7Hz,2H),2.49(t,J=5.8Hz,2H),2.24(s,6H),1.63–1.55(m,2H),0.52–0.47(m,2H),0.16–0.13(m,6H),0.06–0.05(m,6H);
TMSPDEA 13C NMR(150.9MHz,CDCl3)δ74.10,70.36,69.97,69.30,58.78,45.82,23.26,13.94,0.84,-0.10。核磁1H NMR和13C NMR谱图见附图3。
实施例4:硼酸酯和胺基功能化有机硅氧烷化合物(TMBDSA2)的合成
氩气气氛和室温条件下,在三口烧瓶中加入中间体二硅氧烷单取代的2–(烯丙氧基)乙氧基–N,N–二甲基乙胺(30g,97.6mmol)与0.08g氯铂酸,在搅拌状态下滴加乙烯基硼酸频哪醇酯化合物(15.05g,97.6mmol)。待滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯和胺基功能化有机硅氧烷化合物(TMBDSA2),b.p.:165℃/0.14mmHg。
TMBDSA2化学结构式如下:
Figure BDA0002823645990000061
TMBDSA2 1H NMR(400MHz,CDCl3):δ3.60–3.56(m,6H),3.40(t,J=7.2Hz,2H),2.50(t,J=5.8Hz,2H),2.25(s,6H),1.65–1.55(m,2H),1.21(s,12H),1.01(d,J=8.0Hz,3H),0.51–0.47(m,2H),0.35(q,J=7.2Hz,1H),0.08–0.01(m,12H);
TMBDSA213C NMR(100MHz,CDCl3):δ82.53,74.27,70.39,69.98,69.32,58.81,45.86,24.96,24.72,23.37,14.21,8.45,0.40,0.20,-0.16。核磁1HNMR和13C NMR谱图见附图4。
实施例5:三硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(HMSPEA)的合成
氩气气氛和室温条件下,在三口烧瓶中加入2–(烯丙氧基)–N,N二甲基乙胺(6.0g,47mmol)与0.04g氯铂酸,在搅拌状态下滴加三硅氧烷(10g,48mmol)滴加。滴加完毕后,45℃反应24h。通过减压蒸馏可得到中间体三硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(HMSPEA),b.p.:80℃/0.24mmHg。
HMSPEA化学结构式如下:
Figure BDA0002823645990000062
HMSPEA 1H NMR(400MHz,CDCl3):δ4.68-4.67(m,1H),3.50(t,J=5.8Hz,2H),3.38(t,J=7.0Hz,2H),2.49(t,J=6.0Hz,2H),2.25(s,6H),1.62–1.58(m,2H),0.53–0.49(m,2H),0.17–0.16(m,6H),0.06-0.05(m,8H),0.02(s,4H);
HMSPEA 13C NMR(100MHz,CDCl3):δ74.05,68.77,58.92,45.88,23.29,14.10,0.93,0.67,0.05。核磁1HNMR和13C NMR谱图见附图5。
实施例6:硼酸酯和胺基功能化有机硅氧烷化合物(HMBTSA)的合成
氩气气氛和室温条件下,在三口烧瓶中加入中间体三硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(4.5g,13.4mmol)与0.02g氯铂酸,在搅拌状态下滴加乙烯基硼酸频哪醇酯(2.06g,13.4mmol)。滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯和胺基功能化有机硅氧烷化合物(HMBTSA),b.p.:141℃/0.14mmHg。
HMBTSA化学结构式如下:
Figure BDA0002823645990000071
HMBTSA 1H NMR(400MHz,CDCl3):δ3.51(t,J=6.0Hz,2H),3.38(t,J=7.2Hz,2H),2.49(t,J=5.8Hz,2H),2.26(s,6H),1.61–1.59(m,2H),1.23–1.20(m,12H),1.04-1.02(d,J=7.2Hz,2H),0.72–0.37(m,4H),0.10–0.00(m,18H);
HMBTSA 13C NMR(100MHz,CDCl3):δ82.42,73.93,68.61,58.77,45.74,24.84,24.68,24.58,23.21,14.03,8.28,1.16,1.14,0.23,-0.02。核磁1HNMR和13C NMR谱图见附图6。
实施例7:三硅氧烷单取代的2–(烯丙氧基)乙氧基–N,N–二甲基乙胺(HMSPDEA)的合成
氩气气氛和室温条件下,在三口烧瓶中加入2–(烯丙氧基)乙氧基–N,N二甲基乙胺(8.14g,47mmol)与0.04g氯铂酸,在搅拌状态下滴加三硅氧烷(10g,48mmol)。滴加完毕后,45℃反应24h。通过减压蒸馏可得到三硅氧烷单取代的2–(烯丙氧基)乙氧基–N,N–二甲基乙胺(HMSPDEA),b.p.:85℃/0.24mmHg。
HMSPDEA化学结构式如下:
Figure BDA0002823645990000072
HMSPDEA 1H NMR(400MHz,CDCl3)δ4.69–4.68(m,1H),3.80–3.79(m,1H),3.59-3.56(m,6H),3.43-3.39(t,J=7.0Hz,1H),2.52-2.49(m,2H),2.25(s,6H),1.64–1.54(m,2H),0.53–0.49(m,2H),0.18–0.16(m,6H),0.10–0.02(m,12H);
HMSPDEA 13C NMR(100MHz,CDCl3)δ74.16,70.39,69.99,69.31,58.79,45.85,45.83,23.30,14.05,0.98,0.94,0.81,0.76,0.68,0.65,0.05。核磁1HNMR和13C NMR谱图见附图7。
实施例8:硼酸酯和胺基功能化有机硅氧烷化合物(HMBTSA2)的合成
氩气气氛和室温条件下,在三口烧瓶中加入中间体三硅氧烷单取代的2–(烯丙氧基)–N,N–二甲基乙胺(3.7g,9.7mmol)与0.01g氯铂酸,随后将乙烯基硼酸频哪醇酯(1.5g,9.7mmol)滴加。滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯和胺基功能化有机硅氧烷化合物(HMBTSA2),b.p.:130℃/0.18mmHg。
HMBTSA2化学结构式如下:
Figure BDA0002823645990000081
HMBTSA2 1H NMR(400MHz,CDCl3):δ3.59–3.57(m,6H),3.40(t,J=7.2Hz,2H),2.52-2.49(m,2H),2.25(s,6H),1.64–1.55(m,2H),1.20–1.19(m,12H),1.03-1.02(dd,J=7.2Hz,3H),0.53–0.35(m,3H),0.11–0.04(m,18H);
HMBTSA2 13C NMR(100MHz,CDCl3):δ82.52,74.19,70.37,69.97,69.24,58.74,45.78,24.94,24.69,23.31,14.08,8.39,1.24,1.07,0.33,0.08。核磁1HNMR和13C NMR谱图见附图8。
实施例9:硼酸酯化有机硅氧烷化合物(TMBEDS)的合成
氩气气氛和室温条件下,在三口烧瓶中加入乙烯基硼酸频哪醇酯(45.0g,0.292mol)与0.2g氯铂酸,随后滴加五甲基二硅氧烷(19.57g,0.146mol)。滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯功能化有机硅氧烷化合物(TMBEDS),b.p.:143℃/0.12mmHg。
TMBEDS化学结构式如下:
Figure BDA0002823645990000082
TMBEDS 1HNMR(400MHz,CDCl3):δ1.23–1.20(m,24H),1.04-1.02(m,5H),0.74-0.34(m,3H),0.09-0.02(m,12H);
TMBEDS 13C NMR(100MHz,CDCl3):δ82.84,82.49,24.96,24.79,24.71,10.83,8.46,0.50,0.49,0.41,-0.16,-0.25,-0.27。核磁1HNMR和13C NMR谱图见附图9。
实施例10:(PMBEDS)硼酸酯化有机硅氧烷化合物的合成
氩气气氛和室温条件下,在三口烧瓶中加入乙烯基硼酸频哪醇酯(12.0g,77.9mmol)与0.06g氯铂酸,随后滴加五甲基二硅氧烷(11.67g,78.6mmol)。滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯功能化有机硅氧烷化合物(PMBEDS),b.p.:75℃/0.19mmHg。
PMBEDS化学结构式如下:
Figure BDA0002823645990000083
PMBEDS 1H NMR(400MHz,CDCl3):δ1.23–1.20(m,12H),1.02-1.00(d,J=8.0Hz,2H),0.74-0.35(m,2H),0.08-0.01(m,15H);
PMBEDS 13C NMR(100MHz,CDCl3):δ82.87,82.50,24.95,24.79,24.72,10.81,8.41,1.95,1.92,0.26,0.15,-0.22。核磁1HNMR和13C NMR谱图见附图10。
实施例11:硼酸酯化有机硅氧烷化合物(PMBPDS)的合成
氩气气氛和室温条件下,在三口烧瓶中加入丙烯基硼酸邻二叔醇酯(13.22g,78.6mmol)与0.06g氯铂酸,随后滴加五甲基二硅氧烷(11.67g,78.6mmol)。滴加完毕后,45℃反应5h。通过减压蒸馏可得到硼酸酯功能化有机硅氧烷化合物(PMBPDS),b.p.:89℃/0.17mmHg。
PMBPDS化学结构式如下:
Figure BDA0002823645990000091
PMBPDS 1H NMR(400MHz,CDCl3):δ1.45–1.41(m,2H),1.22(s,12H),0.81(t,J=7.6Hz,2H),0.56-0.51(m,2H),0.04-0.01(m,15H);
PMBPDS 13C NMR(100MHz,CDCl3):δ82.75,24.80,21.60,17.92,1.94,0.36。核磁1HNMR和13C NMR谱图见附图11。
实施例12:
所需的基础电解液LB301=1M LiPF6EC/DMC/EMC(1:1:1)来自上海枭源能源科技有限公司,电解液中加入0.2%质量分数的实施例2制备的TMBDSA1,搅拌均匀后备用。
对比例1
基础电解液LB301=1M LiPF6EC/DMC/EMC(1:1:1),在此基础电解液中不添加任何其他添加剂。
实施例13:电极制作
将正极材料、导电剂、粘结剂和溶剂以一定比例混合,接着将混合物直接涂覆在铝箔集流体上并干燥制备正极。类似地,将负极材料、导电剂、粘结剂和溶剂以一定比例混合,后将混合物直接涂覆在铜箔集流体上并干燥制备负极。
正极材料为LiNixCoyMnzO2(x+y+z=1)或者LiCoO2;负极材料为石墨、锂金属、硅负极。
乙炔黑为导电剂;粘结剂可选自偏二氟乙烯/六氟丙烯共聚物、偏二氟乙烯(PVDF);溶剂可选自N-甲基吡咯烷酮(NMP)、丙酮。
一般选自具备优异浸润电解液的隔膜,如,聚乙烯、聚丙烯或者两者混合的隔膜。
实施例14:电池组装
在手套箱中组装CR2025扣式电池,将实施例13制作的正极极片作为正电极,负极极片作为负电极,并将实施例12电解液作为电解液,按照负极壳、负极片、电解液、隔膜、电解液、正极片、正极壳的顺序组装。组装完毕后,搁置12h得到三元NCM811纽扣电池。
在手套箱中组装CR2025扣式电池,将上述制作的正极极片作为正电极,负极极片作为负电极,并将实施例12电解液作为电解液,按照负极壳、负极片、电解液、隔膜、电解液、正极片、正极壳的顺序组装。组装完毕后,搁置12h得到钴酸锂纽扣电池。
实施例15:
参考实施例12,不同之处在于用实施例4制备的TMBDSA2代替添加剂TMBDSA1,其余按照与实施例12相同的操作条件制备锂二次电池电解液和组装电池,以及进行电池的电化学性能测试。
实施例16:
参考实施例12,不同之处在于用实施例9制备的TMBEDS代替添加剂TMBDSA1,其余按照与实施例12相同的操作条件制备锂二次电池电解液和组装电池,以及进行电池的电化学性能测试。
实施例17:
参考实施例12,不同之处在于用实施例10制备的PMBEDS代替添加剂TMBDSA1,其余按照与实施例12相同的操作条件制备锂二次电池电解液和组装电池,以及进行电池的电化学性能测试。
实施例18:
参考实施例12,不同之处在于用实施例11制备的PMBPDS代替添加剂TMBDSA1,其余按照与实施例12相同的操作条件制备锂二次电池电解液和组装电池,以及进行电池的电化学性能测试。
图12为本发明实施例12与对比例1电解液的线性扫描测试曲线图,发现添加剂能够优先电解液溶剂有电流变化,说明硼酸酯和胺基功能化有机硅氧烷化合物能够优先电解液溶剂发生氧化分解,并在在正极表面形成稳定致密的保护膜。
如图13、14和15,利用NCM811和石墨分别做正、负极,组装成扣式电池(2025),然后在深圳新威充/放电测试,充放电电压为3-4.3V。以1C的恒定电流对实施例12电池充电,然后以恒流1C放电。发现实施例12的NCM811/石墨全电池首次放电比容量为190.2mAh·g-1(对比例1仅为189.7mAh·g-1),常温循环的循环性能有所提高,容量保持率由82%提高至92%。同样,高温循环性能也明显提高。
图16为本发明实施例12与对比例1电解液电池的倍率性能测试,实施例12电池在10C高倍率下表现出较高容量。
图17为本发明实施例12与对比例1电解液电池的阻抗测试,添加剂能明显降低正极材料表面界面膜的阻抗。
LiCoO2和石墨扣式电池(2025),分别在常温和高温条件下对电池进行充/放电测试,充放电电压范围为3-4.5V。以1C的恒定电流对实施例12和对比例1充放电。
图18和图19分别为本发明实施例12与对比例1电解液半电池的dQ/dV测试,都能表现添加剂具有成膜的特性。
图20和图21为本发明实施例12与对比例1电解液,对电池的1C充放电常温和高温循环性能。如图所示,实施例12电解液在LiCoO2材料体系上也表现出较好的循环性能。
图22为本发明实施例12与对比例1电解液电池的倍率性能测试,实施例12电解液在高温5C的倍率下表现出高容量。
图23为本发明实施例12与对比例1电解液电池的阻抗测试,添加剂明显降低电极界面膜的阻抗。
图24、图25和图26,分别为本发明实施例16与对比例1、实施例17与对比例1、实施例18与对比例1电解液的线性扫描测试,发现添加剂能够优先电解液溶剂有微弱电流变化,说明硼酸酯功能化有机硅氧烷化合物能够优先电解液溶剂发生氧化分解,并在在正极表面形成稳定致密的保护膜,提高电解液的稳定性。
图27和图28分别为本发明实施例4与对比例1、实施例17与对比例1的电解液半电池的dQ/dV测试,表现硼酸酯功能化有机硅氧烷化合物添加剂具有成膜的特性。

Claims (4)

1.化学结构式如式1、2、3所示的硼酸酯功能化有机硅氧烷化合物:
Figure FDA0002823645980000011
其中R1、R2、R3、R4、R5、R6选自相同或者不同的C1–C10烷基、烷氧基,n1为C1–C3烷基,n2为不同链长的硅氧烷,A为(CH2)n3O[(CH2)mO]x(CH2)y,其中n3、m、x和y分别为0-5的整数。
2.权利要求1所述硼酸酯功能化有机硅氧烷化合物的制备方法,其特征在于,该方法包括如下步骤:烷氧硅氢烷与双键有机胺化合物或者双键硼酸酯化合物通过在惰性气体保护下进行硅氢化反应,反应温度为45~130℃,反应时间为4–24h,双键有机胺化合物与烷氧硅氢烷的摩尔比为1:1.0~1.2,双键硼酸酯与烷氧硅氢烷的摩尔比为1:1.0~1.1,制备得到硼酸酯功能化有机硅氧烷化合物;所述的双键有机胺化合物为2–(烯丙氧基)–N,N–二甲基乙胺或者2–(烯丙氧基)乙氧基–N,N二甲基乙胺;双键硼酸酯化合物为乙烯基硼酸频哪醇酯或者丙烯基硼酸邻二叔醇酯;烷氧硅氢烷为1,1,3,3–四甲基二硅氧烷或者1,1,3,3,5,5–六甲基三硅氧烷;硅氢化反应催化剂选自氯铂酸或Karstedt’s催化剂,加入的量为双键取代的聚醚链有机胺化合物或者双键硼酸酯化合物的0.1~1mol。
3.权利要求1中式1所示的硼酸酯功能化有机硅氧烷化合物在锂二次电池中的应用,其特征在于,所述的硼酸酯功能化有机硅氧烷化合物作为锂二次电池电解液添加剂:
Figure FDA0002823645980000012
其中R1、R2、R3、R4、R5、R6选自相同或者不同的C1–C10烷基、烷氧基,n1为C1–C3烷基,n2为不同链长的硅氧烷,A为(CH2)n3O[(CH2)mO]x(CH2)y,其中n3、m、x和y分别为0-5的整数。
4.根据权利要求3所述的应用,其特征在于,所述的锂二次电池电解液包括锂盐\溶剂和作为电解液添加剂的硼酸酯功能化有机硅氧烷化合物;所述的锂盐在电解液中的浓度为0.5–1.5mol/L,所述的电解液添加剂的使用量为锂盐和溶剂总质量的0.1%–5%;有机溶剂包括碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯,三者的质量比1:1:1;所述的导电锂盐选自六氟磷酸锂、二草酸硼酸锂、二氟草酸硼酸锂、高氯酸锂、双三氟甲磺酰亚胺锂、双氟磺酰亚胺锂中的一种或两种以上;锂二次电池正极材料使用LiNixCoyMnzO2体系或LiCoO2,x+y+z=1。
CN202011443968.3A 2020-12-08 2020-12-08 硼酸酯功能化有机硅氧烷化合物及其制备方法和应用 Active CN114621278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011443968.3A CN114621278B (zh) 2020-12-08 2020-12-08 硼酸酯功能化有机硅氧烷化合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011443968.3A CN114621278B (zh) 2020-12-08 2020-12-08 硼酸酯功能化有机硅氧烷化合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114621278A true CN114621278A (zh) 2022-06-14
CN114621278B CN114621278B (zh) 2023-10-31

Family

ID=81895031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011443968.3A Active CN114621278B (zh) 2020-12-08 2020-12-08 硼酸酯功能化有机硅氧烷化合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114621278B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805418A (zh) * 2022-04-14 2022-07-29 深圳市明粤科技有限公司 一种粘结剂、芯片互连材料及其制备方法和半导体器件
CN115340566A (zh) * 2022-10-19 2022-11-15 中国科学院广州能源研究所 胺基功能化多硅氧烷化合物及包含该化合物的锂电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074736A (zh) * 2010-06-07 2011-05-25 中国科学院广州能源研究所 含聚醚链有机硅胺电解质材料及其在锂电池电解液中的应用
CN102746330A (zh) * 2012-07-12 2012-10-24 中国科学院广州能源研究所 有机硅功能化碳酸酯电解质材料,其制备方法及在锂电池电解液中的应用
CN107634261A (zh) * 2017-08-18 2018-01-26 清华大学 一种用于聚合物电池的聚合物电解质及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074736A (zh) * 2010-06-07 2011-05-25 中国科学院广州能源研究所 含聚醚链有机硅胺电解质材料及其在锂电池电解液中的应用
CN102746330A (zh) * 2012-07-12 2012-10-24 中国科学院广州能源研究所 有机硅功能化碳酸酯电解质材料,其制备方法及在锂电池电解液中的应用
CN107634261A (zh) * 2017-08-18 2018-01-26 清华大学 一种用于聚合物电池的聚合物电解质及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGJING WU ET AL.: "Photoinduced Deaminative Borylation of Alkylamines" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805418A (zh) * 2022-04-14 2022-07-29 深圳市明粤科技有限公司 一种粘结剂、芯片互连材料及其制备方法和半导体器件
CN114805418B (zh) * 2022-04-14 2023-12-26 深圳市明粤科技有限公司 一种粘结剂、芯片互连材料及其制备方法和半导体器件
CN115340566A (zh) * 2022-10-19 2022-11-15 中国科学院广州能源研究所 胺基功能化多硅氧烷化合物及包含该化合物的锂电池
CN115340566B (zh) * 2022-10-19 2023-02-28 中国科学院广州能源研究所 胺基功能化多硅氧烷化合物及包含该化合物的锂电池
WO2024012597A1 (zh) * 2022-10-19 2024-01-18 中国科学院广州能源研究所 胺基功能化多硅氧烷化合物及其作为电解液的电化学储能器件

Also Published As

Publication number Publication date
CN114621278B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
TWI511348B (zh) A nonaqueous electrolyte battery electrolyte, and a nonaqueous electrolyte battery using the same
US9085591B2 (en) Organosilicon amine electrolyte materials containing polyether chain and application thereof in electrolytes of lithium-ion batteries
CN107732304B (zh) 一种有机硅电解液和硅基电极材料配合使用的方法
CN110767939B (zh) 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
JP4438956B2 (ja) 非水電解液及びこれを用いた二次電池
JP4625052B2 (ja) シラン化合物、それを採用した有機電解液及びリチウム電池
KR100894140B1 (ko) 비수 전해액 및 이것을 이용한 전지
JP4462414B2 (ja) 非水電解液及びこれを用いた電池
Wang et al. Fluorosilane compounds with oligo (ethylene oxide) substituent as safe electrolyte solvents for high-voltage lithium-ion batteries
CN108630989A (zh) 电解液及锂离子电池
WO2014043981A1 (zh) 卤硅烷功能化碳酸酯电解质材料,其制备方法及在锂离子电池电解液中的应用
KR20160049077A (ko) 실릴 포스파이트계 소재를 함유하는 전해질 및 그를 포함하는 리튬 이차 전지
CN114621278B (zh) 硼酸酯功能化有机硅氧烷化合物及其制备方法和应用
CN117304098A (zh) 一种电解液添加剂及其制备方法、电解液和锂离子电池
CN115340566B (zh) 胺基功能化多硅氧烷化合物及包含该化合物的锂电池
Qin et al. Oligo (ethylene oxide)-functionalized trialkoxysilanes as novel electrolytes for high-voltage lithium-ion batteries
EP4141991A1 (en) Electrolyte solution for secondary battery and secondary battery including the same
CN113964385B (zh) 电解液及其制备方法和用途
EP3890090B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20190062158A (ko) 리튬이온전지용 기능성 전해액 및 이를 포함하는 리튬이온전지
CN116621867B (zh) 氰基功能化有机硅氧烷化合物及其制备和应用
CN113851719B (zh) 适用于基于三元正极材料的锂离子电池的多功能有机硅电解液及其制备和应用
KR102486689B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN118146250A (zh) 多硅氧烷硼酸频哪醇酯化合物及其制备方法以及电解液、锂离子电池和用电装置
EP4303978A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant