CN114621009A - 一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法 - Google Patents

一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114621009A
CN114621009A CN202210259100.0A CN202210259100A CN114621009A CN 114621009 A CN114621009 A CN 114621009A CN 202210259100 A CN202210259100 A CN 202210259100A CN 114621009 A CN114621009 A CN 114621009A
Authority
CN
China
Prior art keywords
preparation
piezoelectric ceramic
temperature
ceramic material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210259100.0A
Other languages
English (en)
Other versions
CN114621009B (zh
Inventor
汪尧进
王佳佳
李玲
张骥
王书豪
李响
丁冠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210259100.0A priority Critical patent/CN114621009B/zh
Publication of CN114621009A publication Critical patent/CN114621009A/zh
Application granted granted Critical
Publication of CN114621009B publication Critical patent/CN114621009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种铌镁酸铅‑钛酸铅基压电陶瓷材料,所述压电陶瓷材料用以下通式表示:(1‑x)(0.68PbMg1/3Nb2/3O3‑0.32PbTiO3)‑x(Bi0.5Na0.5)ZrO3,其中0.00<x≤0.07;所述铌镁酸铅‑钛酸铅基压电陶瓷材料的制备方法包括如下步骤:(1)制备前驱体MgNb2O6;(2)制备基体材料0.68PMN‑0.32PT;(3)制备粉料;(4)制备坯体;(5)制备所述压电陶瓷材料。本发明制备的铌镁酸铅‑钛酸铅‑锆酸铋钠三元系压电陶瓷,压电系数d33可达1040pC/N,室温下的介电常数εr可达6559。

Description

一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法
技术领域
本发明涉及压电陶瓷材料技术领域,尤其是涉及一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法。
背景技术
压电陶瓷作为一种能够实现机械能和电能相互转换的功能材料,表现出优异的介电、铁电、压电和热释电等性能,在医用超声探头、高密度电容器、水声成像系统和微机电系统等方面都有着广泛应用。因此,研发高性能压电陶瓷对于推动高科技产业升级,促进国民经济和国防建设有着重大的战略价值。
铅基弛豫型铁电体的独特性,即结构上的兼容性、复合离子的多样性以及微区成分的不均匀性使其具有比普通铁电体更为优异的电学性能,成为近年来凝聚态物理和材料科学的研究热点。其中铌镁酸铅-钛酸铅(PMN-PT)压电陶瓷因其制备工艺最成熟,综合性能最优异,是目前应用前景最广阔的铅基钙钛矿型弛豫铁电固溶体。随着PT含量的增加,无规则纳米畴密度增加,微畴逐渐合并成铁电宏畴,表现出三方弛豫铁电相向四方铁电相转变,通过组分调控可构建三方-四方准同型相界(MPB)而致使陶瓷表现出优异的压电性能。经过不断地探索研究,PMN-PT陶瓷的综合性能已经无法仅通过优化制备工艺、寻找MPB等简单手段得到进一步提高,且其较低的居里温度和铁电相变温度,低的矫顽场和机械品质因数降低了材料的温度和电场稳定性,这极大限制了其在高性能压电器件中的应用。为满足人类日益增长的生产生活需求,进一步提升压电陶瓷的综合性能对于拓宽其应用的宽度与广度均具有重要意义。异价掺杂形成固溶体是调控铌镁酸铅-钛酸铅压电陶瓷电学性能的有效方法之一。硬性掺杂致使氧空位增多,形成内偏场,抑制铁电畴的翻转,产生“钉扎效应”,但以牺牲材料的压电、介电性能为代价提升机电性能;软掺杂则造成铅空位增多,易于捕获空穴,致使铁电畴更容易翻转,使铁电体变“软”,进而提升材料的压电活性,但其机械品质因数则有所下降。
发明内容
针对现有技术存在的上述问题,本发明提供了一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法。本发明制备的铌镁酸铅-钛酸铅-锆酸铋钠三元系压电陶瓷,压电系数d33可达1040pC/N,室温下的介电常数εr可达6559。
本发明的技术方案如下:
一种铌镁酸铅-钛酸铅基压电陶瓷材料,所述压电陶瓷材料用以下通式表示:
(1-x)(0.68PbMg1/3Nb2/3O3-0.32PbTiO3)-x(Bi0.5Na0.5)ZrO3,其中0.00<x≤0.07;简称(1-x)(0.68PMN-0.32PT)-xBNZ。
一种铌镁酸铅-钛酸铅基压电陶瓷材料的制备方法,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨12~24h,烘干后,在1060~1140℃马弗炉中煅烧,制得前驱体MgNb2O6;煅烧的升温速率为5℃/min,保温4~5h。
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨12~24h,烘干后,置于温度为1050~1150℃马弗炉中烧结,制得基体材料0.68PMN-0.32PT;烧结的升温速率为5℃/min,保温2~3h。
(3)制备粉料
按照(1-x)(0.68PMN-0.32PT)-xBNZ计量比,称取步骤(2)所得基体材料0.68PMN-0.32PT与Bi2O3、Na2CO3、ZrO2,混合后球磨12~24h,在80~100℃烘箱中烘干,制得粉料;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液,混匀后制成坯体;聚乙烯醇水溶液的质量浓度为5-10wt%。
制成坯体的方法为:在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
烧结的升温速率为5℃/min,烧结温度为1150~1200℃,保温时间为2~3h;为避免元素损失,烧结过程中采用相同组分粉料作为气氛补偿进行埋粉。
排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2~4h。
步骤(1)-(3)中,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
步骤(1)、(2)中,烘干温度为60~80℃,烘干时间为10~12h。
本发明有益的技术效果在于:
本发明在0.68PMN-0.32PT体系中引入Bi3+、Na+、Zr4+,通过组分调控和工艺优化,有效提高了该材料的综合性能,压电性能优异(1040pC/N)、具有明显的弛豫特征,推进了铅基陶瓷材料的进一步发展。
本发明所用原料成本较低,工艺步骤简单、易于操作、重复性好、成品率高。
附图说明
图1为本发明实施例制得陶瓷材料的X射线衍射图谱。
图2为本发明实施例制得陶瓷材料的压电常数随组分变化曲线。
图3为本发明实施例制得陶瓷材料的介电常数随温度变化曲线。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
对比例1(x=0)
一种铌镁酸铅-钛酸铅基压电陶瓷材料0.68PMN-0.32PT的制备方法,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨24h,烘干后,在1100℃马弗炉中煅烧并保温4h(煅烧的升温速率为5℃/min),制得前驱体MgNb2O6
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨24h,烘干后,置于温度为1100℃马弗炉中烧结并保温2h(烧结的升温速率为5℃/min),制得基体材料0.68PMN-0.32PT;
(3)制备粉料
将步骤(2)所得粉体进行二次球磨24h,并在80℃烘箱中烘干12h;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液(7wt%),混匀后在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2h。
烧结的升温速率为5℃/min,烧结温度为1100℃,保温时间为2h;为避免元素损失,烧结过程中采用相同组分粉料作为气氛补偿进行埋粉。
步骤(1)-(3)中,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
步骤(1)、(2)中,烘干温度为80℃,烘干时间为10h。
实施例1(x=0.01)
一种铌镁酸铅-钛酸铅基压电陶瓷材料0.99(0.68PMN-0.32PT)-0.01BNZ的制备方法,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨24h,烘干后,在1100℃马弗炉中煅烧并保温4h(煅烧的升温速率为5℃/min),制得前驱体MgNb2O6
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨24h,烘干后,置于温度为1100℃马弗炉中烧结并保温2h(烧结的升温速率为5℃/min),制得基体材料0.68PMN-0.32PT;
(3)制备粉料
按照0.99(0.68PMN-0.32PT)-0.01BNZ计量比,称取步骤(2)所得基体材料0.68PMN-0.32PT与Bi2O3、Na2CO3、ZrO2,混合后球磨24h,在80℃烘箱中烘干,制得粉料;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液(7wt%),混匀后在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2h。
烧结的升温速率为5℃/min,烧结温度为1150℃,保温时间为2h;为避免元素损失,烧结过程中采用相同组分粉料作为保护气氛进行埋粉。
步骤(1)-(3)中,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
步骤(1)、(2)中,烘干温度为60℃,烘干时间为12h。
实施例2(x=0.03)
一种铌镁酸铅-钛酸铅基压电陶瓷材料0.97(0.68PMN-0.32PT)-0.03BNZ的制备方法,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨24h,烘干后,在1100℃马弗炉中煅烧并保温4h(煅烧的升温速率为5℃/min),制得前驱体MgNb2O6
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨24h,烘干后,置于温度为1100℃马弗炉中烧结并保温2h(烧结的升温速率为5℃/min),制得基体材料0.68PMN-0.32PT;
(3)制备粉料
按照0.97(0.68PMN-0.32PT)-0.03BNZ计量比,称取步骤(2)所得基体材料0.68PMN-0.32PT与Bi2O3、Na2CO3、ZrO2,混合后球磨24h,在80℃烘箱中烘干,制得粉料;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液(7wt%),混匀后在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2h。
烧结的升温速率为5℃/min,烧结温度为1150℃,保温时间为2h;为避免元素损失,烧结过程中采用相同组分粉料作为气氛补偿进行埋粉。
步骤(1)-(3)中,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
步骤(1)、(2)中,烘干温度为70℃,烘干时间为10h。
实施例3(x=0.05)
一种铌镁酸铅-钛酸铅基压电陶瓷材料0.95(0.68PMN-0.32PT)-0.05BNZ的制备方法,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨24h,烘干后,在1100℃马弗炉中煅烧并保温4h(煅烧的升温速率为5℃/min),制得前驱体MgNb2O6
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨24h,烘干后,置于温度为1100℃马弗炉中烧结并保温2h(烧结的升温速率为5℃/min),制得基体材料0.68PMN-0.32PT;
(3)制备粉料
按照0.95(0.68PMN-0.32PT)-0.05BNZ计量比,称取步骤(2)所得基体材料0.68PMN-0.32PT与Bi2O3、Na2CO3、ZrO2,混合后球磨24h,在80℃烘箱中烘干,制得粉料;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液(7wt%),混匀后在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2h。
烧结的升温速率为5℃/min,烧结温度为1200℃,保温时间为2h;为避免元素损失,烧结过程中采用相同组分粉料作为气氛补偿进行埋粉。
步骤(1)-(3)中,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
步骤(1)、(2)中,烘干温度60~80℃,烘干时间为10h。
实施例4(x=0.07)
一种铌镁酸铅-钛酸铅基压电陶瓷材料0.93(0.68PMN-0.32PT)-0.07BNZ的制备方法,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨24h,烘干后,在1100℃马弗炉中煅烧并保温4h(煅烧的升温速率为5℃/min),制得前驱体MgNb2O6
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨24h,烘干后,置于温度为1100℃马弗炉中烧结并保温2h(烧结的升温速率为5℃/min),制得基体材料0.68PMN-0.32PT;
(3)制备粉料
按照0.93(0.68PMN-0.32PT)-0.07BNZ计量比,称取步骤(2)所得基体材料0.68PMN-0.32PT与Bi2O3、Na2CO3、ZrO2,混合后球磨24h,在80℃烘箱中烘干,制得粉料;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液(7wt%),混匀后在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2h。
烧结的升温速率为5℃/min,烧结温度为1180℃,保温时间为2h;为避免元素损失,烧结过程中采用相同组分粉料作为气氛补偿进行埋粉。
步骤(1)-(3)中,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
步骤(1)、(2)中,烘干温度为60℃,烘干时间为12h。
测试例:
将上述实施例制得的陶瓷材料进行抛光、上电极且极化,极化电场为10~15kV/cm,极化时间为20min,极化温度为120℃;测定产品的压电性能如表1所示。
表1
Figure BDA0003550046330000081
图1为本发明实施例制得陶瓷材料的X射线衍射图谱,图1(a)为在室温下测试的XRD图谱,测试范围为20°~60°,图1(b)为44°~46°的局部放大图。从数据中可以看出,随着BNZ掺杂量的增加,材料的相结构逐渐从三方相转变为三方-四方相共存,但始终保持纯的钙钛矿结构,表明BNZ的掺杂可以形成稳定固溶体。
图2为不同掺杂量样品的压电常数曲线,可以看出随着BNZ掺杂量的增加,压电常数呈现先增大后减小的效果,当掺杂量为0.05时,具有明显的增益效果。
图3为不同掺杂量样品的介电常数随温度的变化曲线,从图中可以看出,随着掺杂量的增加,材料的居里温度逐渐降低,但弛豫性逐渐增强。

Claims (10)

1.一种铌镁酸铅-钛酸铅基压电陶瓷材料,其特征在于,所述压电陶瓷材料用以下通式表示:
(1-x)(0.68PbMg1/3Nb2/3O3-0.32PbTiO3)-x(Bi0.5Na0.5)ZrO3,其中0.00<x≤0.07;简称(1-x)(0.68PMN-0.32PT)-xBNZ。
2.一种权利要求1所述铌镁酸铅-钛酸铅基压电陶瓷材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)制备前驱体MgNb2O6
按照MgNb2O6计量比,称取MgO、Nb2O5,将MgO与Nb2O5混合后球磨12~24h,烘干后,在1060~1140℃马弗炉中煅烧,制得前驱体MgNb2O6
(2)制备基体材料0.68PMN-0.32PT
按照0.68PMN-0.32PT计量比,称取MgNb2O6与PbO、TiO2,混合后球磨12~24h,烘干后,置于温度为1050~1150℃马弗炉中烧结,制得基体材料0.68PMN-0.32PT;
(3)制备粉料
按照(1-x)(0.68PMN-0.32PT)-xBNZ计量比,称取步骤(2)所得基体材料0.68PMN-0.32PT与Bi2O3、Na2CO3、ZrO2,混合后球磨12~24h,在80~100℃烘箱中烘干,制得粉料;
(4)制备坯体
在步骤(3)制得的粉料中加入聚乙烯醇水溶液,混匀后制成坯体;
(5)制备所述压电陶瓷材料
将步骤(4)所得坯体置于马弗炉中排胶、烧结,制得所述铌镁酸铅-钛酸铅基压电陶瓷材料。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,煅烧的升温速率为5℃/min,保温4~5h。
4.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,烧结的升温速率为5℃/min,保温2~3h。
5.根据权利要求2所述的制备方法,其特征在于,步骤(4)中,聚乙烯醇水溶液的质量浓度为5-10wt%。
6.根据权利要求2所述的制备方法,其特征在于,步骤(4)中,制成坯体的方法为:在10MPa的压力下压制成直径为10mm,厚度为1mm的圆柱状坯体。
7.根据权利要求2所述的制备方法,其特征在于,步骤(5)中,排胶的条件为:升温速率为1℃/min,排胶温度为600℃,保温时间为2~4h。
8.根据权利要求2所述的制备方法,其特征在于,步骤(5)中,烧结的升温速率为5℃/min,烧结温度为1150~1200℃,保温时间为2~3h。
9.根据权利要求2所述的制备方法,其特征在于,球磨的条件为:料球水比为1:2:1.5,球磨机转速均为300r/min。
10.根据权利要求2所述的制备方法,其特征在于,步骤(1)、(2)中,烘干温度为60~80℃,烘干时间为10~12h。
CN202210259100.0A 2022-03-16 2022-03-16 一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法 Active CN114621009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210259100.0A CN114621009B (zh) 2022-03-16 2022-03-16 一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210259100.0A CN114621009B (zh) 2022-03-16 2022-03-16 一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114621009A true CN114621009A (zh) 2022-06-14
CN114621009B CN114621009B (zh) 2023-02-28

Family

ID=81901372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210259100.0A Active CN114621009B (zh) 2022-03-16 2022-03-16 一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114621009B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805185A (zh) * 2010-03-19 2010-08-18 江苏工业学院 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN102757232A (zh) * 2012-07-17 2012-10-31 西北工业大学 铌镁酸铅-钛酸铅陶瓷的制备方法
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN104372409A (zh) * 2013-08-14 2015-02-25 中国科学院上海硅酸盐研究所 三元系弛豫基铁电压电单晶及其生长方法
CN107268084A (zh) * 2016-04-08 2017-10-20 中国科学院上海硅酸盐研究所 铌酸钾钠-锆酸铋钠无铅压电单晶及其生长方法
CN107500764A (zh) * 2017-08-09 2017-12-22 上海师范大学 铌镁酸铅‑钛酸铅‑铁酸铋多铁性陶瓷材料及其制备方法
CN107915486A (zh) * 2017-11-17 2018-04-17 南京大学 一种提高pmn‑pt居里温度、压电性及热稳定性的方法
CN109608195A (zh) * 2018-12-26 2019-04-12 同济大学 高压电性、高电致应变的无铅压电陶瓷材料及其制备方法
CN110372381A (zh) * 2019-07-09 2019-10-25 西安交通大学 一种织构化稀土改性铌镁酸铅-钛酸铅基压电铁电陶瓷材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805185A (zh) * 2010-03-19 2010-08-18 江苏工业学院 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN102757232A (zh) * 2012-07-17 2012-10-31 西北工业大学 铌镁酸铅-钛酸铅陶瓷的制备方法
CN104372409A (zh) * 2013-08-14 2015-02-25 中国科学院上海硅酸盐研究所 三元系弛豫基铁电压电单晶及其生长方法
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN107268084A (zh) * 2016-04-08 2017-10-20 中国科学院上海硅酸盐研究所 铌酸钾钠-锆酸铋钠无铅压电单晶及其生长方法
CN107500764A (zh) * 2017-08-09 2017-12-22 上海师范大学 铌镁酸铅‑钛酸铅‑铁酸铋多铁性陶瓷材料及其制备方法
CN107915486A (zh) * 2017-11-17 2018-04-17 南京大学 一种提高pmn‑pt居里温度、压电性及热稳定性的方法
CN109608195A (zh) * 2018-12-26 2019-04-12 同济大学 高压电性、高电致应变的无铅压电陶瓷材料及其制备方法
CN110372381A (zh) * 2019-07-09 2019-10-25 西安交通大学 一种织构化稀土改性铌镁酸铅-钛酸铅基压电铁电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114621009B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN109553413B (zh) 一种织构化压电陶瓷及其制备方法和用途
CN115321979B (zh) 一种多元素掺杂的铅基压电陶瓷及其制备方法
CN109534810A (zh) 钛酸铋钠基无铅驱动器陶瓷及其制备方法和应用
CN109704762A (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
CN115385689A (zh) 一种铌镁酸铅-锆钛酸铅基压电陶瓷材料及其制备方法
CN109970443B (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
KR101091192B1 (ko) 저온 소성용 무연 압전세라믹 조성물 및 제조방법
CN115894020B (zh) 一种高压电系数的pmnzt基压电陶瓷及其制备方法和应用
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN114621009B (zh) 一种铌镁酸铅-钛酸铅基压电陶瓷材料及其制备方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN111170736A (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN103172377B (zh) 反应固相生长制备高性能压电陶瓷的方法
CN112851329B (zh) 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法
CN113979747A (zh) 一种外加锑酸铋的改性锆钛酸铅压电陶瓷及其制备方法
CN109279891B (zh) 一种铁酸铋基电致应变陶瓷及其制备方法和应用
KR100875479B1 (ko) 비납계 압전 세라믹스 조성물 및 그 제조방법
CN113248247A (zh) 一种三元压电陶瓷及其制备方法和应用
CN117326866B (zh) 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法
CN115894021B (zh) 一种高机械品质因数硬性压电陶瓷材料及其制备方法
CN115504783B (zh) 一种knn基无铅压电陶瓷及其制备方法
Bućko et al. Photoluminescence and electrical properties in Pr-modified (Ba1-xCax) TiO3 multifunctional ceramics
CN117164357B (zh) 一种五元系大功率型压电陶瓷材料及其制备方法
CN115745605B (zh) 一种用预处理后的五氧化二铌制备铌锆酸钾钠铋铁的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant