CN112851329B - 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 - Google Patents
一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN112851329B CN112851329B CN202110057497.0A CN202110057497A CN112851329B CN 112851329 B CN112851329 B CN 112851329B CN 202110057497 A CN202110057497 A CN 202110057497A CN 112851329 B CN112851329 B CN 112851329B
- Authority
- CN
- China
- Prior art keywords
- sample
- tabletting
- lead titanate
- ceramic material
- bismuth ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2641—Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法,包括以下步骤:按化学计量比称取所需原料并充分混合均匀并研磨至较小粒径得到原始料,预压片后置于高温反应炉中进行预烧,将上述预烧结得到的样品置于研钵中二次研磨成合适粒径的粉末,加入粘结剂进行造粒,再次进行压片塑形后得到的样品放入高温反应炉中,首先加热至500℃,保温30min进行排粘,随后采用高升温速率较快地加热至目标烧结温度1000℃‑1300℃,同时往炉内通氧气,保温100‑300min,最后随炉冷却至室温,得到目标陶瓷样品。陶瓷晶相结构为纯钙钛矿相,具有优异的多功能性,显示饱和的电滞回线,最大铁电极化超过70μC/cm2,具有显著的压电响应,正压电系数超过100pC/N,逆压电系数达200pm/V等。
Description
技术领域
本发明属于铁性功能陶瓷材料技术领域,具体涉及一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法。
背景技术
BiFeO3-PbTiO3基(铁酸铋钛酸铅基)钙钛矿型铁性功能材料具有铁电,压电,磁性性能,同时相变温度高,在铁电存储器,压电驱动器,传感器,换能器等领域有广阔的应用前景。功能陶瓷例如PZT压电陶瓷有着广泛的应用,例如超声探头,声呐装置,传感器等等。而当前的材料无法满足极端的使用环境比如航空航天汽车发动机等要求高温工作条件的领域。
而BiFeO3-PbTiO3基功能陶瓷具有高相变温度,是潜在的高温条件应用的功能陶瓷材料,从而引起了人们关注。目前,BiFeO3-PbTiO3基陶瓷大都采用传统固相法进行制备,但其难以烧结成陶瓷,往往具有杂相容易出现(尤其是BiFeO3含量较高的组分),化学缺陷较多,电性能差,无法得到饱和电滞回线等缺点,因而无法投入使用。近年来,有报道指出采用热压技术和高能球磨结合可制备出高质量的BFPT基陶瓷【Amorín,H.,et.al.,M.Multiferroism and enhancement of material properties across themorphotropic phase boundary of BiFeO3-PbTiO3.Journal of Appied Physics,,115,104104(2014)】,但所制备的陶瓷样品需要经过高温淬火才能获得饱和电滞回线。用这种制备方法具有工艺成本较高,流程较复杂,能耗较高等缺点。
发明内容
本发明提供了一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法,能有效抑制材料中杂质生成,降低材料中化学缺陷浓度,从而显著改善其电性能。
为达到上述目的,本发明所述一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,包括以下步骤:
步骤1、称取原料:各原料摩尔比为:Fe2O3:X2O3:TiO2:PbO:Bi2O3=x:0.1x:2(1-x):2(1-x):0.9x,0.6≤x≤0.9,X2O3为用于改性的稀土氧化物,将原料研磨并混合得到原始料;
步骤2、将步骤1得到的原始料进行预压片,然后置于高温反应炉中以10℃/min-20℃/min的升温速率升温至700℃-950℃并保温,得到预烧结样品;
步骤3、将步骤2得到的预烧结样品研磨成粉末并造粒,然后进行压片塑形,得到压片成型样品;
步骤4、将步骤3得到的压片成型样品放入高温反应炉中,首先以升温速率为1-10℃/min加热至500℃-600℃,并保温进行排粘;随后采用升温速率15℃/min-30℃/min加热至目标烧结温度,保温设定时间后,随炉冷却至室温,得到目标陶瓷样品。
进一步的,步骤2中,预压片时,施加的压力为100MPa-500MPa。
进一步的,步骤2中,保温时间为60min-200min。
进一步的,步骤3中,以500MPa-800MPa的压力进行压片塑形。
进一步的,步骤4中,目标烧结温度为1000℃-1300℃。
进一步的,步骤4中,在高温反应炉加热至目标烧结温度时,往炉内通氧气。
一种铁酸铋钛酸铅基功能陶瓷材料,其化学式为x Bi0.9X0.1FeO3-(1-x)PbTiO3,0.6≤x≤0.9,X为稀土,陶瓷晶相结构为纯钙钛矿相。
一种铁酸铋钛酸铅基功能陶瓷材料,其化学式为x Bi0.9X0.1FeO3-(1-x)PbTiO3,0.6≤x≤0.7,效果最佳。
与现有技术相比,本发明至少具有以下有益的技术效果:
第一,区别于传统烧结工艺,针对BFO基材料固相烧结中经常出现的杂相和差电性能,提出采用非常规的较高升温速率烧结,在较高升温速率下,快速跳过了杂相容易生成的温度区间,且一定程度减少了挥发性元素(铅,铋)高温下的挥发,从而有效去除了陶瓷样品的杂相,显著降低了缺陷浓度,提高了陶瓷样品电学性能,并且该工艺简单,能耗低。
第二,对BFPT基陶瓷进行稀土(Sm,Dy)改性,由于稀土离子半径与原本A位离子(Bi3+)不同,通过取代会提高BFPT的晶格稳定性,减小了晶格应力,从而解决了未掺杂BFPT陶瓷碎裂成粉或形成疏松多孔的结构的问题,最终形成了致密的陶瓷结构。
第三,制备的BFPT基陶瓷材料中,获得了饱和的电滞回线,超高的铁电极化强度-73uC/cm2,显示出显著的压电活性等铁性性能。
第四,陶瓷晶相结构为纯钙钛矿相,具有优异的多功能性,显示饱和的电滞回线,最大铁电极化超过70μC/cm2,具有显著的压电响应,正压电系数超过100pC/N,逆压电系数达200pm/V等。
附图说明
图1是采用常规烧结工艺制备的PT10样品,和实施例1-3中采用改进烧结工艺制备的PT10,PT25,PT40样品的XRD结构对比和ESR谱图;
图2是实施例1-3中采用改进烧结工艺制备的PT10,PT25,PT40样品的电滞回线;
图3是实施例1-3中采用改进烧结工艺制备的PT10,PT25,PT40样品的电致应变曲线;
图4是实施例4和实施例5制备的Sm-PT25样品和实施例5制备的Sm-PT34样品的XRD结构对比和ESR谱图;
图5是实施例4和实施例5制备的Sm-PT25样品和实施例5制备的Sm-PT34样品的电滞回线;
图6是实施例4和实施例5制备的Sm-PT25样品和实施例5制备的Sm-PT34样品的电致应变曲线;
图7是实施例1制备的Dy-PT10样品和实施例2制备的Dy-PT25样品的磁滞回线图。
实施例中XRD测试数据为用PANalytical Empyrean X-射线衍射仪(铜K-alpha1)测试得到,ESR测试数据为用日本精工JEOL型ESR谱仪测试得到,电滞回线和电致应变测试数据为用配有MTI激光形变测试仪的TF Analyzer2000型铁电压电测试系统测试得到,正压电系数d33由中科院声学所ZJ-3型d33测试仪测试得到。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例,对本发明进行了进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,包括以下步骤:
步骤一、按化学计量比称取所需原料,各原料摩尔比为:Fe2O3:X2O3:TiO2:PbO:Bi2O3=x:0.1x:(1-x):(1-x):0.9x,0.6≤x≤0.9,X2O3为用于改性的稀土氧化物,并将原料充分混合均匀并研磨至较小粒径得到原始料;
步骤二、将步骤一得到的混合均匀的原始料在模具中以100MPa-500 MPa的压力进行预压片,然后置于高温反应炉中升温至700℃-950℃进行预烧结,相对传统的小于5℃/min的升温速率而言,本发明采用高达10℃/min-20℃/min的升温速率,保温60min-200min,得到预烧结样品;
步骤三、将步骤二得到的预烧结样品置于研钵中二次研磨成合适粒径的粉末,加入粘结剂如PVA进行造粒,在模具中以500MPa-800 MPa的压力进行压片塑形,得到压片成型样品;
步骤四、将步骤三得到的压片成型样品放入高温反应炉中,首先以升温速率为1-10℃/min加热至500℃,保温30min进行排粘;随后采用较高的升温速率15-30℃/min较快地加热至目标烧结温度1000℃-1300℃,同时往炉内通氧气,保温100min-300min;最后随炉冷却至室温,得到目标陶瓷样品。
一种采用改进固态烧结工艺制备的BiFeO3-PbTiO3基功能陶瓷材料,采用了上述陶瓷烧结工艺制备,陶瓷化学组分为掺杂的BiFeO3-PbTiO3基材料,陶瓷晶相结构为纯钙钛矿相;具有优异的多功能性,显示饱和的电滞回线,最大铁电极化超过70μC/cm2;具有显著的压电响应,正压电系数超过100pC/N,逆压电系数达200pm/V,居里温度可超过450℃。
实施例1
一种采用改进固态烧结工艺制备的Dy(镝)掺杂0.9BiFeO3-0.1PbTiO3功能陶瓷材料,化学组分为0.9Bi0.9Dy0.1FeO3-0.1PbTiO3,简称为Dy-PT10。包括如下步骤:
步骤一:按化学计量比称取所需原料:各原料摩尔比为:Fe2O3:Dy2O3:TiO2:PbO:Bi2O3:=0.9:0.09:0.2:0.2:0.81,将原料充分混合均匀并研磨得到原始料。
步骤二:将步骤一得到的混合均匀的原始料在模具中以100MPa的压力进行预压片,然后置于高温反应炉中升温至700℃后保温200min进行预烧结,得到预烧结样品。相对传统工艺而言,这里采用较高升温速率:10℃/min;
步骤三:将步骤2得到的预烧结样品置于研钵中二次研磨成合适粒径的粉末,再加入粘结剂如PVA进行造粒,然后在模具中以500MPa的压力进行压片塑形,得到压片成型样品。
步骤四:将步骤三得到的压片成型样品放入高温反应炉中,首先以升温速率为1℃/min加热至500℃,然后保温30min进行排粘;随后采用较高的升温速率15℃/min热至目标烧结温度1000℃,同时往高温反应炉内通氧气,保温120min;最后随炉冷却至室温,得到目标陶瓷样品Dy-PT10。
从图1中可以看出,采用本发明可以有效去除常规工艺中出现的杂相,降低了样品中Fe2+离子,氧空位等化学缺陷的浓度,从而获得了饱和的电滞回线,证实了材料优异的铁电性,如图2所示。同时,其160kV/cm电场下电致应变达到0.09%,对应逆压电系数为74pm/V,测试样品正压电系数d33为30pC/N。如图7所示,Dy-PT10具有铁磁性,饱和剩余磁化强度1.10emu/g,表明了良好的压电性与铁磁性。
实施例2
一种采用改进固态烧结工艺制备的Dy掺杂0.75BiFeO3-0.25PbTiO3功能陶瓷材料,化学组分为0.75Bi0.9Dy0.1FeO3-0.25PbTiO3,简称为Dy-PT25。包括如下步骤:
步骤一:按化学计量比称取所需原料:各原料摩尔比为:Fe2O3:Dy2O3:TiO2:PbO:Bi2O3:=0.75:0.075:0.5:0.5:0.675,将原料充分混合均匀并研磨得到原始料。
步骤二:将步骤一得到的混合均匀的原始料在模具中以200MPa的压力进行预压片,然后置于高温反应炉中升温至800℃,相对传统工艺而言,这里采用较高升温速率,可达12℃/min,保温100min,得到预烧结样品。
步骤三:将步骤2得到的预烧结样品置于研钵中二次研磨成合适粒径的粉末,加入粘结剂如PVA进行造粒,在模具中以600MPa的压力进行压片塑形,得到压片成型样品。
步骤四:将步骤三得到的压片成型样品放入高温反应炉中,首先加热至500℃,升温速率为3℃/min,保温30min进行排粘;随后采用较高的升温速率20℃/min较快地加热至目标烧结温度1100℃,同时往炉内通氧气,保温120min;最后随炉冷却至室温,得到目标陶瓷样品Dy-PT25。
图1表明采用改进烧结工艺制备的Dy-PT25样品获得了纯的钙钛矿相结构;获得了饱和的电滞回线,其剩余极化强度高达73μC/cm2,如图2所示;同时,图3中蝴蝶应变曲线表明在外加电场170kV/cm下,其电致应变达到0.14%,对应逆压电系数为80pm/V;测试样品正压电系数d33为80pC/N。如图7所示,Dy-PT25具有铁磁性,饱和剩余磁化强度0.17emu/g。以上数据表明材料压电性优异,且具有铁磁性。
实施例3
一种采用改进固态烧结工艺制备的Dy掺杂0.6BiFeO3-0.4PbTiO3功能陶瓷材料,化学组分为0.6Bi0.9Dy0.1FeO3-0.4PbTiO3,简称为Dy-PT40。包括如下步骤:
步骤一:按化学计量比称取所需原料:Fe2O3、TiO2、PbO、Bi2O3和Dy2O3,各原料摩尔比为:Fe2O3:Dy2O3:TiO2:PbO:Bi2O3:=0.6:0.06:0.8:0.8:0.54,将原料充分混合均匀并研磨得到原始料。
步骤二:将步骤一得到的混合均匀的原始料在模具中以300MPa的压力进行预压片,然后置于高温反应炉中升温至825℃,相对传统工艺而言,这里采用较高升温速率,可达15℃/min,保温130min,得到预烧结样品。
步骤三:将步骤2得到的预烧结样品置于研钵中二次研磨成合适粒径的粉末,加入粘结剂如PVA进行造粒,在模具中以500-800MPa的压力进行压片塑形,得到压片成型样品。
步骤四:将步骤三得到的压片成型样品放入高温反应炉中,首先加热至500℃,升温速率为5.5℃/min,保温30min进行排粘;随后采用较高的升温速率22.5℃/min较快地加热至目标烧结温度1200℃,同时往炉内通氧气,保温120min;最后随炉冷却至室温,得到目标陶瓷样品Dy-PT40。
图1表明采用改进烧结工艺制备的Dy-PT40样品获得了纯的钙钛矿相结构;获得了饱和的电滞回线,如图2所示;同时,图3中蝴蝶应变曲线表明其外加180kV/cm电场下电致应变达到0.32%,对应逆压电系数为203pm/V;测试正压电系数d33达到105pC/N。表明材料压电性优异。
实施例4
一种采用改进固态烧结工艺制备的Sm掺杂0.75BiFeO3-0.25PbTiO3功能陶瓷材料,化学组分为0.75Bi0.9Sm0.1FeO3-0.25PbTiO3,简称为Sm-PT25。包括如下步骤:
步骤一:按化学计量比称取所需原料:Fe2O3、TiO2、PbO、Bi2O3和Sm2O3,各原料摩尔比为:Fe2O3:Sm2O3:TiO2:PbO:Bi2O3:=0.75:0.075:0.5:0.5:0.675,将原料充分混合均匀并研磨得到原始料。
步骤二:将步骤一得到的混合均匀的原始料在模具中以400MPa的压力进行预压片,然后置于高温反应炉中升温至900℃,相对传统工艺而言,这里采用较高升温速率,可达18℃/min,保温150min,得到预烧结样品。
步骤三:将步骤2得到的预烧结样品置于研钵中二次研磨成合适粒径的粉末,加入粘结剂如PVA进行造粒,在模具中以700MPa的压力进行压片塑形,得到压片成型样品。
步骤四:将上步骤三得到的压片成型样品放入高温反应炉中,首先加热至500℃,升温速率为8℃/min,保温30min进行排粘;随后采用较高的升温速率25℃/min较快地加热至目标烧结温度1250℃,同时往炉内通氧气,保温120min;最后随炉冷却至室温,得到目标陶瓷样品Sm-PT25。
图4表明采用改进烧结工艺制备的Sm-PT25样品获得了纯的钙钛矿相结构;获得了饱和的电滞回线,其剩余极化强度高达48μC/cm2,如图2所示;同时,图3中蝴蝶应变曲线表明在外加电场80kV/cm下,其电致应变达到0.07%,对应逆压电系数为120pm/V;测试样品正压电系数d33为28pC/N。表明材料具有良好压电性。
实施例5
一种采用改进固态烧结工艺制备的Sm掺杂0.66BiFeO3-0.34PbTiO3功能陶瓷材料,化学组分为0.66Bi0.9Sm0.1FeO3-0.34PbTiO3,简称为Sm-PT34。包括如下步骤:
步骤一:按化学计量比称取所需原料:Fe2O3、TiO2、PbO、Bi2O3和Sm2O3,各原料摩尔比为:Fe2O3:Dy2O3:TiO2:PbO:Bi2O3:=0.66:0.066:0.68:0.68:0.594,将原料充分混合均匀并研磨得到原始料。
步骤二:将步骤一得到的混合均匀的原始料在模具中以500MPa的压力进行预压片,然后置于高温反应炉中升温至950℃,相对传统工艺而言,这里采用较高升温速率,可达20℃/min,保温60min,得到预烧结样品。步骤三:将步骤2得到的预烧结样品置于研钵中二次研磨成合适粒径的粉末,加入粘结剂如PVA进行造粒,在模具中以800MPa的压力进行压片塑形,得到压片成型样品。
步骤四:将步骤三得到的压片成型样品放入高温反应炉中,首先加热至500℃,升温速率为10℃/min,保温30min进行排粘;随后采用较高的升温速率30℃/min较快地加热至目标烧结温度1300℃,同时往炉内通氧气,保温120min;最后随炉冷却至室温,得到目标陶瓷样品Sm-PT25。
图4表明采用改进烧结工艺制备的Sm-PT34样品获得了纯的钙钛矿相结构;获得了饱和的电滞回线,其剩余极化强度高达40μC/cm2,如图2所示;同时,图3中蝴蝶应变曲线表明在外加电场80kV/cm下,其电致应变达到0.13%,对应逆压电系数为180pm/V;测试样品正压电系数d33为85pC/N。表明材料压电性优异。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。
Claims (8)
1.一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1、称取原料,各原料摩尔比为:Fe2O3:X2O3:TiO2:PbO:Bi2O3=x:0.1x:2(1-x):2(1-x):0.9x,0.6≤x≤0.9,X2O3为用于改性的稀土氧化物,将原料研磨并混合得到原始料;
步骤2、将步骤1得到的原始料进行预压片,然后置于高温反应炉中以10℃/min-20℃/min的升温速率升温至700℃-950℃并保温,得到预烧结样品;
步骤3、将步骤2得到的预烧结样品研磨成粉末并造粒,然后进行压片塑形,得到压片成型样品;
步骤4、将步骤3得到的压片成型样品放入高温反应炉中,首先以升温速率为1-10℃/min加热至500℃-600℃,并保温进行排粘;随后采用升温速率15℃/min-30℃/min加热至目标烧结温度,保温设定时间后,随炉冷却至室温,得到目标陶瓷样品。
2.根据权利要求1所述的一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,其特征在于,所述步骤2中,预压片时,施加的压力为100MPa-500MPa。
3.根据权利要求1所述的一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,其特征在于,所述步骤2中,保温时间为60min-200min。
4.根据权利要求1所述的一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,其特征在于,所述步骤3中,以500MPa-800MPa的压力进行压片塑形。
5.根据权利要求1所述的一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,其特征在于,所述步骤4中,目标烧结温度为1000℃-1300℃。
6.根据权利要求1所述的一种铁酸铋钛酸铅基功能陶瓷材料的制备方法,其特征在于,所述步骤4中,在高温反应炉加热至目标烧结温度时,往炉内通氧气。
7.权利要求1所述的方法制备的一种铁酸铋钛酸铅基功能陶瓷材料,其特征在于,其化学式为x Bi0.9X0.1FeO3-(1-x)PbTiO3,0.6≤x≤0.9,所述X为Sm,陶瓷晶相结构为纯钙钛矿相。
8.根据权利要求7所述的一种铁酸铋钛酸铅基功能陶瓷材料,其特征在于,其化学式为xBi0.9X0.1FeO3-(1-x)PbTiO3,0.6≤x≤0.7。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110057497.0A CN112851329B (zh) | 2021-01-15 | 2021-01-15 | 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110057497.0A CN112851329B (zh) | 2021-01-15 | 2021-01-15 | 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112851329A CN112851329A (zh) | 2021-05-28 |
CN112851329B true CN112851329B (zh) | 2022-05-20 |
Family
ID=76007080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110057497.0A Active CN112851329B (zh) | 2021-01-15 | 2021-01-15 | 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112851329B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115632131B (zh) * | 2022-11-18 | 2024-05-10 | 洲际高能科技(北京)有限公司 | 一种锂离子电池正极材料及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100509703C (zh) * | 2007-04-25 | 2009-07-08 | 上海大学 | 强磁场作用下制备铁酸铋镧-钛酸铅固溶体陶瓷的方法 |
CN102249659B (zh) * | 2011-06-16 | 2012-10-24 | 桂林电子科技大学 | 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法 |
JP6329462B2 (ja) * | 2014-08-11 | 2018-05-23 | イビデン株式会社 | セラミック構造体の製造方法 |
CN106906517A (zh) * | 2017-02-27 | 2017-06-30 | 西安交通大学 | 一种铁酸铋‑钛酸铅压电单晶及其制备方法 |
-
2021
- 2021-01-15 CN CN202110057497.0A patent/CN112851329B/zh active Active
Non-Patent Citations (3)
Title |
---|
Jian Zhuang.Local polar structure and multiferroic properties of (1−x)Bi0.9Dy0.1FeO3−xPbTiO3 solid solution.《Journal Of Applied Physics》.2014, * |
Local polar structure and multiferroic properties of (1−x)Bi0.9Dy0.1FeO3−xPbTiO3 solid solution;Jian Zhuang;《Journal Of Applied Physics》;20140811;第066809-1~066809-7页 * |
升温速率对LSCF 相纯度的影响;范宝安;《电源技术》;20081231;第758-759、792页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112851329A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Piezoelectric properties of spark-plasma-sintered (Na0. 5K0. 5) NbO3–PbTiO3 ceramics | |
KR101754292B1 (ko) | 압전 및 강유전 특성이 향상된 BiFeO3-BaTiO3 세라믹스의 제조방법 및 이를 이용하여 제조된 무연 압전 세라믹스 | |
CN110590352B (zh) | 低极化场强产生高压电铁酸铋-钛酸钡基压电陶瓷及制备 | |
Mirzaei et al. | Effect of Nb doping on sintering and dielectric properties of PZT ceramics | |
Vuong et al. | The sintering behavior and physical properties of Li2CO3-doped Bi0. 5 (Na0. 8K0. 2) 0.5 TiO3 lead-free ceramics | |
CN114276138B (zh) | 铌酸钾钠基无铅压电陶瓷及其制备方法 | |
Ahmed et al. | Enhanced electromechanical properties of 0.65 Bi1. 05FeO3–0.35 BaTiO3 ceramics through optimizing sintering conditions | |
CN112851329B (zh) | 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 | |
JP2007084408A (ja) | 圧電セラミックス | |
CN110563456A (zh) | 高居里温度、高压电性能的无铅铁酸铋基压电陶瓷及制备 | |
CN104402426A (zh) | 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷 | |
CN111018516A (zh) | 钛酸钡基高储能密度电子陶瓷及其制备方法 | |
KR102380196B1 (ko) | 우수한 물성을 가지는 비스무스 페라이트-티탄산 바륨계 친환경 무연 압전 세라믹스 및 그 제조방법 | |
CN115894020B (zh) | 一种高压电系数的pmnzt基压电陶瓷及其制备方法和应用 | |
CN109456057B (zh) | 锆钛酸钡钙基无铅压电陶瓷及其制备方法 | |
CN116693285A (zh) | 一种超顺电相钛酸铋钠基弛豫储能陶瓷材料及其制备方法 | |
CN115385675B (zh) | 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法 | |
KR20110043339A (ko) | 저온 소성용 무연 압전세라믹 조성물 및 제조방법 | |
CN111333413A (zh) | 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法 | |
CN111170736A (zh) | 一种铅基钙钛矿结构高温压电陶瓷及其制备方法 | |
CN115849905A (zh) | 一种高温压电陶瓷材料、制备方法及应用 | |
CN105218092B (zh) | 一种同时具备大位移及低滞后的锆钛酸铅基压电陶瓷材料及其制备方法 | |
KR100875479B1 (ko) | 비납계 압전 세라믹스 조성물 및 그 제조방법 | |
Chae et al. | Influence of the sintering temperature and Ag2O dopants on microstructure and piezoelectric properties of 0.94 (K0. 5Na0. 5) NbO3–0.06 LiNbO3 lead-free ceramics | |
KR102348835B1 (ko) | 분위기 제어를 통한 비납계 압전 세라믹 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |