CN114616760A - 相位同步电路和同相分配电路 - Google Patents

相位同步电路和同相分配电路 Download PDF

Info

Publication number
CN114616760A
CN114616760A CN201980101689.8A CN201980101689A CN114616760A CN 114616760 A CN114616760 A CN 114616760A CN 201980101689 A CN201980101689 A CN 201980101689A CN 114616760 A CN114616760 A CN 114616760A
Authority
CN
China
Prior art keywords
signal
phase
transmission
output
folding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980101689.8A
Other languages
English (en)
Other versions
CN114616760B (zh
Inventor
水谷浩之
池田翔
森田佳惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN114616760A publication Critical patent/CN114616760A/zh
Application granted granted Critical
Publication of CN114616760B publication Critical patent/CN114616760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/06Speed or phase control by synchronisation signals the synchronisation signals differing from the information signals in amplitude, polarity or frequency or length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0091Transmitter details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

为了在从1个基准信号源分支而利用多个缆线传输信号时使从各缆线输出的信号的相位稳定,考虑使用相位同步电路。但是,关于从缆线输出的各个信号,根据缆线长度、基于反馈控制的延迟量的组合,从多个传输路径输出的同步信号的相位有时不同。在本发明中,在相位同步电路设置使从传输路径输出的信号的频率成为偶数倍的频率倍增器,因此,即使在将1个基准信号分配为多个的情况下,从多个传输路径输出的同步信号的相位也一致。

Description

相位同步电路和同相分配电路
技术领域
本发明涉及相位同步电路和同相分配电路。
背景技术
在经由成为传输路径的缆线传输信号时,存在由于缆线周围的温度变化、针对缆线的振动而使被输出的信号的相位变动的问题。此时,存在如下的相位同步电路:以使在缆线中传输之前的信号与在缆线中传输而在传输目的地反射回来的信号即反射信号之间的相位差恒定的方式进行反馈控制,由此使从缆线输出的相位稳定(专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2014-11561号公报
发明内容
发明要解决的课题
为了在从1个基准信号源分支而利用多个缆线传输信号时使从各缆线输出的信号的相位稳定,考虑使用这样的相位同步电路。此时,通过在各缆线设置相位同步电路,能够使在缆线中传输后的各个信号的相位与从1个基准信号分支后的信号之间的相位差稳定。
在上述的相位同步电路中,当使用在缆线中传输而在传输目的地反射回来的往复信号进行控制以使与在缆线中传输之前的信号之间的相位差成为2nπ(n是由缆线长度、基于反馈控制的延迟量的组合决定的整数)时,由于相位调整的影响成为一半,因此,在缆线中传输而被输出的信号的相位相对于输入到缆线之前的信号具有nπ的相位差。此时,n的值按照各个缆线而不同,因此,即使向各个缆线输入相位一致的信号、且利用上述相位同步电路使缆线的输入侧和输出侧的相位稳定,在由缆线长度、基于反馈控制的延迟量的组合决定的n为奇数的情况下和n为偶数的情况下,相位也相差π,在多个传输目的地,同步信号的相位不同。
本发明是为了解决上述课题而完成的,其目的在于,得到如下的相位同步电路:在向多个传输路径输入了同相的信号的情况下,使从多个传输路径输出的同步信号的相位一致。
用于解决课题的手段
本发明的相位同步电路具有:相位控制部,其向传输信号的传输路径输出发送信号,根据与所述发送信号和折返信号之间的相位差对应的控制信号,对向所述传输路径输出的发送信号的相位进行控制,其中,所述折返信号是所述发送信号在所述传输路径中折返后的信号;信号折返部,其使从所述相位控制部输出到传输路径的发送信号的一部分作为所述折返信号向所述传输路径折返;以及频率倍增器,其使未被所述信号折返部折返而从所述传输路径输出的发送信号的频率成为偶数倍并进行输出。
发明效果
根据本发明,设置有使从传输路径输出的信号的频率成为偶数倍的倍增器,因此,即使在使信号从1个基准信号源分支的情况下,从多个传输路径输出的同步信号的相位也一致。
附图说明
图1是示出实施方式1的同相分配电路的结构的结构图。
图2是示出实施方式1的相位同步电路的结构的结构图。
图3是实施方式1的信号分离器中使用的90度混合器的结构图。
图4是示出实施方式2的高频信号产生电路的结构的结构图。
具体实施方式
实施方式1
图1是示出使用了本实施方式1的相位同步电路1a、1b、1c的同相分配电路的结构的结构图。同相分配电路在作为基准信号的发送源的基准信号产生电路7内,利用同相分配器9将从基准信号源6输出的基准信号分配为多个,利用不同的多个缆线3a、3b、3c将被分配的信号发送到位于多个发送目的地的同步信号产生电路8a、8b、8c,由此,向多个发送目的地输出相位一致的同步信号。
同相分配器9将基准信号源6输出的基准信号分配为相位一致的多个信号,作为基准信号输出到相位同步电路1a、1b、1c的信号分离器21a、1b、1c。例如,同相分配器9使用由硅IC(Integrated Circuit:集成电路)构成的同相分配器。
这里,被分配的信号是电磁波,例如能够应用于电波、微波。在基准信号产生电路7和同步信号产生电路8a、8b、8c分开而使缆线3a、3b、3c较长的情况下,由于作为传输路径的缆线3a、3b、3c周围的温度变化、或针对缆线3a、3b、3c的振动而使被传输的信号的相位产生变动,在各个传输目的地得到的信号之间的相位偏移。为了对该相位的偏移进行修正,在各传输路径设置相位同步电路1a、1b、1c。
基准信号源6是将基准信号输出到同相分配器9的信号源。例如使用能够输出准确频率的石英振荡器等。来自该基准信号源6的基准信号被输入到同相分配器9,从同相分配器9向各相位同步电路1a、1b、1c供给同相的基准信号。
在图1所示的同相分配电路的各传输路径设置有相同结构的相位同步电路1a、1b、1c。图2是示出本实施方式1的相位同步电路1的详细结构的结构图,但是,相位同步电路1a、1b、1c也是同样的结构。
相位同步电路1构成为具有:相位控制部2,其向传输信号的传输路径即缆线3输出发送信号,根据与发送信号和折返信号之间的相位差对应的控制信号,对向缆线3输出的信号的相位进行控制,其中,该折返信号是发送信号在缆线3中折返后的信号;信号折返部4,其使从相位控制部2输出到缆线3的发送信号的一部分作为折返信号向缆线3折返;以及频率倍增器5,其使未被信号折返部4折返而从缆线3输出的发送信号的频率成为偶数倍。
相位控制部2由信号分离器21、相位比较器22和相位控制器23构成,根据与发送信号和折返信号之间的相位差对应的控制信号,对向缆线3输出的发送信号的相位进行控制,其中,该发送信号是向传输信号的传输路径即缆线3输出的信号,该折返信号是发送信号在缆线3中折返后的信号。
信号分离器21输入由基准信号源6输出且由同相分配器9分配后的基准信号。而且,信号分离器21将基准信号分离成2个,将分离出的一个基准信号作为基准信号输出到相位比较器22,将分离出的另一个基准信号作为发送信号输出到相位控制器23,并且,将发送信号在缆线3中折返后的折返信号从相位控制器23输入,并经由信号分离器输出到相位比较器22。这里,折返信号是如下信号:由信号分离器21分离出的另一个基准信号作为发送信号输出到相位控制器23,从相位控制器23发送到缆线3,利用信号折返部4折返而在缆线3中往复返回的信号。
另外,信号分离器21能够由如下部件构成:具有输入输出信号的多个端子,以规定的关系进行各个端子间的信号传递。该信号分离器21例如能够由构成为进行上述这种端子间的信号传递的、由耦合线路或集中常数元件构成的90度混合器构成。此后,对信号分离器21使用90度混合器的情况进行说明。图3是实施方式1的信号分离器21中使用的90度混合器的结构图。该90度混合器具有第1端子、第2端子、第3端子、第4端子。第1端子和第2端子能够使信号双向通过,在信号通过时使相位变化90度。此外,第1端子和第4端子、第2端子和第3端子能够使信号双向通过,在通过时使相位变化180度。此外,在向信号分离器21的第1端子输入了基准信号时,信号分离器21对信号进行分离,从第2端子输出发送信号,从第4端子输出基准信号。进而,在向信号分离器21的第2端子输入了折返信号时,从第3端子输出折返信号。
相位比较器22对信号分离器21输出的基准信号的相位与通过相位控制器23而利用信号折返部4在缆线3中折返而再次通过相位控制器23后的信号之间的相位差进行比较,将与该相位差对应的控制信号输出到相位控制器23。
在本实施方式中,相位比较器22构成为具有第1端子、第2端子和第3端子。从信号分离器21的第4端子向相位比较器22的第1端子输入基准信号,从信号分离器21的第3端子向相位比较器22的第2端子输入折返信号。而且,从相位比较器22的第3端子将被输入的2个信号的相位差控制信号输出到相位控制器23的第3端子。该控制信号是使相位控制器23进行如下控制的信号:使从相位控制器23向缆线3输出的信号的相位在2个信号的相位差成为0的方向上变化。这样,相位比较器22对2个输入信号的相位进行比较并输出控制信号即可,例如使用由硅IC构成的相位比较器。
相位控制器23按照相位比较器22输出的控制信号,在被输入信号分离器21输出的发送信号时,使相位变化而输出到缆线3,并且,在被输入从信号折返部4在缆线3中传输而折返的折返信号时,使相位变化而输出到信号分离器21。相位控制器23按照被输入的控制信号使被输入的信号的相位变化并进行输出即可。
在本实施方式中,相位控制器23构成为具有第1端子、第2端子、第3端子。按照从第3端子输入的控制信号使从第1端子输入的信号的通过相位变化而从第2端子输出,并且,按照从第3端子输入的控制信号使从第2端子输入的信号从第1端子输出。例如,使用相位的变化量按照相位比较器22输出的控制电压而连续变化的模拟移相器。
缆线3将相位控制部2和信号折返部4作为信号的传输路径连接起来,将相位控制部2输出的发送信号传输到信号折返部4,并且,将从信号折返部4折返的折返信号传输到相位控制部2。例如,缆线3使用同轴缆线、双绞缆线。
信号折返部4使从相位控制部2输入的发送信号的一部分向缆线3折返。在本实施方式中,对使用与信号分离器21相同的90度混合器作为该信号折返部4的情况进行说明。信号折返部4在从相位控制器23在缆线3中传输的发送信号被输入到第1端子时,使相位变化90度而输出到第2端子。然后,将从第2端子输出的发送信号分离成2个,将一方输入到第4端子,由此,使从第1端子输入的发送信号的相位变化270度,作为折返信号从第1端子输出,将对发送信号进行分离后的另一方作为同步信号输出到频率倍增器5。第3端子在电阻处终结。
频率倍增器5使未被信号折返部4折返而从缆线3输出的发送信号的频率成为2倍,作为同步信号进行输出。在本实施方式中,对作为信号折返部4的90度混合器的第2端子的输出进行分离,未输入到第4端子的发送信号被输入到频率倍增器5,发送信号的频率成为2倍的发送信号作为同步信号进行输出。频率倍增器5能够使输入信号成为偶数倍即可,例如使用由硅IC构成的频率倍增器。
接着,对本发明的实施方式1的同相分配电路的动作进行说明。
基准信号源6向同相分配器9输入基准信号。同相分配器9在从基准信号源6被输入基准信号时,将被输入的基准信号分配为多个,将同相的基准信号输入到各个相位同步电路1a、1b、1c。相位同步电路1a、1b、1c在被输入基准信号时,从各个相位同步电路1a、1b、1c输出同步信号。
相位同步电路1的详细动作如下所述。
信号分离器21在向信号分离器21的第1端子输入基准信号时,对基准信号进行分离,从第2端子和第4端子进行输出。信号分离器21在从第1端子向第2端子输出基准信号时,使基准信号的相位变化90度,作为发送信号输出到相位控制器23的第1端子。此外,在从第1端子向第4端子输出基准信号时,使基准信号的相位变化180度,输出到相位比较器22的第1端子。
相位比较器22对从信号分离器21的第3端子输出且被输入到相位比较器22的第2端子的折返信号和从信号分离器21的第4端子输出且被输入到相位比较器22的第1端子的基准信号的信号的相位进行比较。相位比较器22将使得进行比较的相位差成为0的控制信号从相位比较器22的第3端子输出到相位控制器23的第3端子。
相位控制器23按照从相位比较器22输入的控制信号使从相位控制器23的第1端子输入的发送信号的相位变化,从第2端子输出到缆线3。此外,在从相位控制器23的第2端子输入折返信号时,按照从相位比较器22输入的控制信号使相位变化,并从第1端子输出到信号分离器21的第2端子。在从相位控制器23向信号分离器21输入折返信号时,信号分离器21使折返信号的相位变化180度,从第3端子输出到相位比较器22。
从相位控制器23输出的发送信号在缆线3中传输而被输入到信号折返部4的第1端子。信号折返部4使被输入的发送信号的相位变化90度而从第2端子输出。从第2端子输出的发送信号被分支为2个,一方被输入到频率倍增器5,另一方被输入到信号折返部4的第4端子。被输入到信号折返部4的第4端子的发送信号的相位变化180度,作为折返信号从信号折返部4的第1端子输出到缆线3,被输入到相位控制器23。
从信号折返部4的第2端子输出且被输入到频率倍增器5的发送信号的频率成为2倍,作为相位同步电路1的同步信号进行输出。
这里,对相位控制器23的动作的详细情况进行说明。
下面,使用数学式对从相位同步电路1输出的相位进行说明。
从信号折返部4的第2端子输出的同步信号的相位θ3用数式(1)表示。这里,将被输入到相位同步装置的基准信号的初始相位设为θ0,将相位控制器23的通过相位设为θtune,将缆线3的通过相位设为θcable
(数学式1)
θ3=θ0+π+θtunecable…(1)
此外,从信号分离器21的第4端子输出的基准信号的相位θ1用式(2)表示。
(数学式2)
θ1=θ0+π…(2)
由信号折返部4向缆线3折返而从信号分离器21的第3端子输出的发送信号的相位θ2用式(3)表示。
(数学式3)
θ2=θ0+3π+2θtune+2θcable…(3)
相位比较器22向相位控制器23输出控制信号,以使从信号分离器21的第4端子输出的基准信号的相位θ1与从第3端子输出的发送信号的相位θ2的相位差成为0,因此,在由该控制带来的稳定状态下,能够设为θ2=θ1+2nπ。由此,根据式(2)和式(3)得到以下的式(4)。
(数学式4)
θtunecable=(n-1)π…(4)
在将这里得到的式(4)代入式(1)时,得到以下的式(5)。
(数学式5)
θ3=θ0+nπ
根据式(5)可知,从信号折返部4输出的发送信号的相位θ3成为不依赖于θcable的值,因此,能够与缆线3周围的温度变化、针对缆线3的振动的变动无关地使θ3稳定。但是,如式(4)所示,根据缆线3的长度、基于反馈控制的延迟量的组合,n的值存在多个可能性,不清楚n的值是成为奇数还是成为偶数。
这里,考虑将基准信号分配为多个并利用多个缆线3传输信号的情况。关于式(5)所示的θ3的值,根据缆线3的长度、基于反馈控制的延迟量的组合,n的值不清楚,因此,从多个传输路径输出的信号的相位可能相差π。
因此,本发明的相位同步电路1使从缆线3输出的信号的频率成为2倍。从信号折返部4的第2端子输出的发送信号θ3被输入到频率倍增器5,频率成为2倍,因此,从相位同步电路1输出的相位θout用式(6)表示。
(数学式6)
θout=2θ3=2θ0+2nπ=2θ0
这样,本发明的相位同步电路1利用频率倍增器5使从信号折返部4的第2端子输出的发送信号θ3的相位成为偶数倍,因此,如式(6)所示,相位同步电路1的同步信号的相位θout成为用不依赖于n的数式表示的状态、即不依赖于缆线3的长度和基于反馈控制的延迟量的组合的相位。因此,在构成图1所示的将基准信号分配为多个并利用多个缆线3传输信号的同相分配电路的情况下,使用本相位同步电路1,由此,能够使从多个传输路径输出的同步信号的相位一致。
此外,如图1所示,利用多个基板构成同步信号产生电路8,由此,与利用1枚基板构成同步信号产生电路8的情况相比,能够在不被基板尺寸制约的任意的位置配置同步信号产生电路8。
实施方式2
接着,对实施方式2的高频信号产生电路进行说明。图4是示出实施方式2的高频信号产生电路的结构的结构图。在实施方式2中,实施方式1的同步信号产生电路8分别具有频率合成器10,这点与实施方式1不同,其他方面与实施方式1相同。
同步信号产生电路8在从频率倍增器5输出同步信号的输出目的地具有频率合成器10。频率合成器10根据被输入的信号生成频率比基准信号高的信号并进行输出。频率合成器10能够输出利用石英振荡器等基准信号源6无法输出的高频率的信号。此外,不仅能够输出频率固定的连续波(CW:Continuous Wave),还能够输出频率相对于时间线性变化的线性调频信号等。例如,频率合成器10能够使用PLL(Phase Locked Loop:锁相环路)。
接着,对实施方式2的动作进行说明。
从频率倍增器5输出的同步信号被输入到频率合成器10。频率合成器10根据同步信号生成频率比基准信号高的信号并进行输出。
通过这样构成,在频率合成器10输出高频的连续波的情况下,能够从全部同步信号产生电路8输出相位一致的信号。此外,在输出线性调频信号的情况下,也同样地,全部同步信号产生电路8能够输出相位一致的信号。作为产生多个高频的装置,还考虑利用同相分配器9分配从一个频率合成器10输出的高频信号,使用多个相同长度的高频缆线3,但是,如果是本实施方式的方法,则不使用高价的高频缆线就能够构成高频信号产生电路。
标号说明
1 相位同步电路
2 相位控制部
21 信号分离器
22 相位比较器
23 相位控制器
3 缆线
4 信号折返部
5 频率倍增器
6 基准信号源
7 基准信号产生电路
8 同步信号产生电路
9 同相分配器
10 频率合成器

Claims (7)

1.一种相位同步电路,其特征在于,所述相位同步电路具有:
相位控制部,其向传输信号的传输路径输出发送信号,根据与所述发送信号和折返信号之间的相位差对应的控制信号,对向所述传输路径输出的发送信号的相位进行控制,其中,所述折返信号是所述发送信号在所述传输路径中折返后的信号;
信号折返部,其使从所述相位控制部输出到传输路径的发送信号的一部分作为所述折返信号向所述传输路径折返;以及
频率倍增器,其使未被所述信号折返部折返而从所述传输路径输出的发送信号的频率成为偶数倍并进行输出。
2.根据权利要求1所述的相位同步电路,其特征在于,
所述相位控制部由以下部分构成:
信号分离器,其将所述发送信号分离成2个发送信号并进行输出;
相位控制器,其在输入从所述信号分离器输出的一个发送信号时,根据所述控制信号对被输入的发送信号的相位进行控制并输出到所述传输路径,并且,将被所述折返部折返的信号输出到所述信号分离器;以及
相位比较器,其将与所述信号分离器输出的另一个发送信号和所述相位控制器输出到信号分离器的折返信号之间的相位差对应的控制信号输出到所述相位控制器。
3.根据权利要求2所述的相位同步电路,其特征在于,
所述信号分离器由90度混合器构成。
4.根据权利要求1所述的相位同步电路,其特征在于,
所述信号折返部由90度混合器构成。
5.一种同相分配电路,其特征在于,所述同相分配电路具有:
基准信号源,其产生基准信号;
同相分配器,其将所述基准信号分配为相位相同的多个信号,并作为发送信号进行输出;以及
多个所述相位同步电路,它们分别输入从所述同相分配器输出的发送信号,
所述多个相位同步电路具有:
相位控制部,其根据与向进行传输的传输路径输出的发送信号和所述发送信号在所述传输路径中折返后的折返信号之间的相位差对应的控制信号,对向所述传输路径输出的发送信号的相位进行控制;
信号折返部,其使从所述相位控制部输出到传输路径的发送信号的一部分作为所述折返信号向所述传输路径折返;以及
频率倍增器,其使未被所述信号折返部折返而从所述传输路径输出的发送信号的频率成为偶数倍并进行输出。
6.根据权利要求5所述的同相分配电路,其特征在于,
所述同相分配电路具有频率合成器,该频率合成器根据从所述频率倍增器输出的信号生成频率比基准信号高的信号。
7.根据权利要求5或6所述的同相分配电路,其特征在于,
按照所述同相分配电路的每个传输路径,在1个基板上设置了所述信号折返部和所述频率倍增器。
CN201980101689.8A 2019-11-08 2019-11-08 相位同步电路和同相分配电路 Active CN114616760B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043791 WO2021090466A1 (ja) 2019-11-08 2019-11-08 位相同期回路及び同相分配回路

Publications (2)

Publication Number Publication Date
CN114616760A true CN114616760A (zh) 2022-06-10
CN114616760B CN114616760B (zh) 2023-08-18

Family

ID=75848301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980101689.8A Active CN114616760B (zh) 2019-11-08 2019-11-08 相位同步电路和同相分配电路

Country Status (5)

Country Link
US (1) US11722289B2 (zh)
JP (1) JP7160212B2 (zh)
CN (1) CN114616760B (zh)
DE (1) DE112019007772B4 (zh)
WO (1) WO2021090466A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450457A (en) * 1992-09-11 1995-09-12 Nec Corporation Sampling phase extracting circuit
JPH11261607A (ja) * 1998-03-09 1999-09-24 Nec Mobile Commun Ltd 装置間位相同期方式とその方法
US20020175776A1 (en) * 2001-05-22 2002-11-28 Telaxis Communications Corporation Optical to microwave converter using direct modulation phase shift keying
WO2006129061A2 (en) * 2005-06-01 2006-12-07 Tecteon Plc Phase difference calculator
JP2008072276A (ja) * 2006-09-13 2008-03-27 Fujitsu Access Ltd 位相同期回路
JP2009272998A (ja) * 2008-05-09 2009-11-19 Oki Semiconductor Co Ltd 位相同期回路及び半導体チップ
JP2011103541A (ja) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp 送信機
CN102726018A (zh) * 2011-12-31 2012-10-10 华为技术有限公司 一种多载波正交频分复用双工传输方法、装置及系统
CN102918775A (zh) * 2010-05-18 2013-02-06 索尼公司 信号传输系统、连接器装置、电子设备和信号传输方法
JP2013042478A (ja) * 2011-07-21 2013-02-28 Mitsubishi Electric Corp 光ファイバマイクロ波伝送装置および複合型光ファイバマイクロ波伝送装置
JP2014011561A (ja) * 2012-06-28 2014-01-20 Mitsubishi Electric Corp 同期信号配信装置
CN108604725A (zh) * 2016-02-02 2018-09-28 三菱电机株式会社 同相分配电路和阵列天线装置
WO2018198226A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 信号源

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123115A (ja) * 1989-10-05 1991-05-24 Fujitsu Ltd 位相差補正方法
US5298866A (en) * 1992-06-04 1994-03-29 Kaplinsky Cecil H Clock distribution circuit with active de-skewing
JPH08251149A (ja) * 1995-03-13 1996-09-27 Toshiba Corp クロック信号分配方式
US5852640A (en) * 1995-06-26 1998-12-22 Kliza; Phillip S. Clock distribution apparatus with current sensed skew cancelling
US6535038B2 (en) * 2001-03-09 2003-03-18 Micron Technology, Inc. Reduced jitter clock generator circuit and method for applying properly phased clock signals to clocked devices
JP2005018321A (ja) * 2003-06-25 2005-01-20 Nec Corp クロック補正装置
US7385932B2 (en) * 2004-04-27 2008-06-10 Telecommunications Research Laboratory Wideband frequency domain reflectometry to determine the nature and location of subscriber line faults
US7526054B2 (en) * 2005-03-04 2009-04-28 Analog Devices, Inc. Method, article, and apparatus for a dynamic phase delay compensator
US7426632B2 (en) * 2005-03-31 2008-09-16 Intel Corporation Clock distribution for interconnect structures
US7551140B2 (en) * 2005-11-03 2009-06-23 Symbol Technologies, Inc. Low return loss rugged RFID antenna
WO2009076355A1 (en) * 2007-12-11 2009-06-18 Marvell World Trade Ltd. Sub-symbol rate cable tester
JP6127688B2 (ja) 2013-04-25 2017-05-17 三菱電機株式会社 光ファイバマイクロ波伝送装置
WO2020217388A1 (ja) * 2019-04-25 2020-10-29 三菱電機株式会社 位相同期回路

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450457A (en) * 1992-09-11 1995-09-12 Nec Corporation Sampling phase extracting circuit
JPH11261607A (ja) * 1998-03-09 1999-09-24 Nec Mobile Commun Ltd 装置間位相同期方式とその方法
US20020175776A1 (en) * 2001-05-22 2002-11-28 Telaxis Communications Corporation Optical to microwave converter using direct modulation phase shift keying
WO2006129061A2 (en) * 2005-06-01 2006-12-07 Tecteon Plc Phase difference calculator
JP2008072276A (ja) * 2006-09-13 2008-03-27 Fujitsu Access Ltd 位相同期回路
JP2009272998A (ja) * 2008-05-09 2009-11-19 Oki Semiconductor Co Ltd 位相同期回路及び半導体チップ
JP2011103541A (ja) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp 送信機
CN102918775A (zh) * 2010-05-18 2013-02-06 索尼公司 信号传输系统、连接器装置、电子设备和信号传输方法
JP2013042478A (ja) * 2011-07-21 2013-02-28 Mitsubishi Electric Corp 光ファイバマイクロ波伝送装置および複合型光ファイバマイクロ波伝送装置
CN102726018A (zh) * 2011-12-31 2012-10-10 华为技术有限公司 一种多载波正交频分复用双工传输方法、装置及系统
JP2014011561A (ja) * 2012-06-28 2014-01-20 Mitsubishi Electric Corp 同期信号配信装置
CN108604725A (zh) * 2016-02-02 2018-09-28 三菱电机株式会社 同相分配电路和阵列天线装置
WO2018198226A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 信号源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
柯有强;陶庆肖;: "多路射频信号传输光纤线路相位补偿技术", 光纤与电缆及其应用技术, no. 04 *
黄公弼;高烽;: "相位自动校正环路分析", 制导与引信, no. 02 *

Also Published As

Publication number Publication date
JPWO2021090466A1 (zh) 2021-05-14
JP7160212B2 (ja) 2022-10-25
WO2021090466A1 (ja) 2021-05-14
US11722289B2 (en) 2023-08-08
DE112019007772B4 (de) 2023-11-23
CN114616760B (zh) 2023-08-18
US20220224507A1 (en) 2022-07-14
DE112019007772T5 (de) 2022-07-28

Similar Documents

Publication Publication Date Title
CN113692710B (zh) 相位同步电路
EP2843839B1 (en) Circuit and method for suppressing a phase mismatch between the outputs of a plurality of phase synchronisation circuits in an electronic circuit
KR101043664B1 (ko) 위상 어레이 레이더 시스템들 및 이들의 서브 어셈블리들
US20080265999A1 (en) Radiation source
JP5213789B2 (ja) 高周波発振源
WO2008057182A2 (en) Frequency agile phased locked loop
CN115603763A (zh) 多通道信号合成电路及多通道信号合成方法
CN114616760B (zh) 相位同步电路和同相分配电路
EP3675362B1 (en) Local oscillator
US5697089A (en) Local oscillator having plural oscillators facilitating channel switching
JP7472402B2 (ja) クロックソース回路、ケース、及びマルチケースカスケードシステム
US9590597B2 (en) Voltage-controlled ring oscillator with delay line
CN112313878B (zh) 相位振幅控制振荡装置
KR20100050487A (ko) 복수의 측정 채널 어셈블리 및/또는 측정 장치의 동기화 방법, 및 적합한 측정 장치
WO2016104521A1 (ja) 周波数変換装置
US8884705B2 (en) Frequency synthesis device with feedback loop
JP6505821B1 (ja) アンテナアレイの位相制御器及び位相制御方法、並びにそれを用いた通信装置
JP6505816B1 (ja) アンテナアレイの位相制御器及び位相制御方法、並びにそれを用いた通信装置
EP2983294B1 (en) RF circuit
JPH04145723A (ja) 局部発振器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant