CN114605607B - 一种相变水合盐聚合充填材料及其制备方法、使用方法 - Google Patents

一种相变水合盐聚合充填材料及其制备方法、使用方法 Download PDF

Info

Publication number
CN114605607B
CN114605607B CN202210359009.6A CN202210359009A CN114605607B CN 114605607 B CN114605607 B CN 114605607B CN 202210359009 A CN202210359009 A CN 202210359009A CN 114605607 B CN114605607 B CN 114605607B
Authority
CN
China
Prior art keywords
component
parts
phase
change
hydrated salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210359009.6A
Other languages
English (en)
Other versions
CN114605607A (zh
Inventor
辛海会
张鹏程
林亿超
刘金虎
李剑锋
石长坤
竹永健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Mining Business Group Co ltd
China University of Mining and Technology CUMT
Original Assignee
Xuzhou Mining Business Group Co ltd
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Mining Business Group Co ltd, China University of Mining and Technology CUMT filed Critical Xuzhou Mining Business Group Co ltd
Priority to CN202210359009.6A priority Critical patent/CN114605607B/zh
Publication of CN114605607A publication Critical patent/CN114605607A/zh
Priority to LU502423A priority patent/LU502423B1/en
Application granted granted Critical
Publication of CN114605607B publication Critical patent/CN114605607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • C08J9/0009Phase change materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/147Halogen containing compounds containing carbon and halogen atoms only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/005Methods or devices for placing filling-up materials in underground workings characterised by the kind or composition of the backfilling material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2330/00Thermal insulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/184Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种相变水合盐聚合充填材料及其制备与使用方法,由A、B、C组分构成,A组分包括聚醚多元醇、发泡剂、阻燃剂、导热材料;B组分包括聚合MDI、胶粘剂;C组分为相变纳米流体,包括聚醚多元醇、硅油、复合相变纳米材料;复合相变纳米材料包括多孔材料、水合盐、表面活性剂、增稠剂、分散剂、阻燃剂。制备方法:先根据A、B组混合后检测聚氨酯的放热速率,再选择对应的多孔材料来制备复合相变纳米材料;按配比将A组分与C组分混合得A‑C混合组分,A‑C混合组分与B组分混合即得。本发明可实现材料聚合快慢的温度自适应调节,保障材料发泡性能原有属性,降低聚氨酯发泡固化反应温度,解决聚氨酯发泡固化反应温度过高引起火灾的难题。

Description

一种相变水合盐聚合充填材料及其制备方法、使用方法
技术领域
本发明属于煤矿高分子充填材料技术领域,具体涉及一种相变水合盐聚合充填材料及其制备方法、使用方法。
背景技术
随着煤矿开采深度增加,引起煤矿井下高冒区与裂隙带增多,导致煤自燃火灾与冒顶、片帮事故不断发生,严重影响煤矿安全生产,威胁煤炭工人的生命健康。由于聚合充填材料发泡体积大、发泡速度快、抗压强等优势,因此煤炭井下多采用聚合充填材料进行充填防护,保障支护安全,但现有的聚合充填材料的聚合反应速度快、放热量大,容易引发聚合材料着火事故。例如攀枝花花山煤+1030m水平四采区4238综采工作面,使用聚氨酯充填材料进行18-26#支架顶部高冒区充填时,由于反应大量放热,一次性注浆量过大而引发材料周边可燃物燃烧,发生了冒烟和着火事故。山东嘉祥县梁宝寺煤矿使用聚氨酯发泡充填材料,在反应过程中的总放热量和最高反应温度大大超过了安全生产行业标准所规定的极值,造成充填体芯部较长时间处于高温状态,在高温、可燃气体和氧气的多重作用下,材料芯部开始燃烧,引发火灾事故。
因此,解决聚合发泡过程中放热量大、放热量快的问题迫在眉睫。针对现有煤矿聚氨酯使用易高温自燃的危险特点,目前主要通过研究复合阻燃剂来提高聚氨酯的阻燃性能及自燃温度,从而防止聚氨酯使用高温自燃,但未能降低煤矿井下聚氨酯类材料使用的高温特性,仍然存在聚氨酯自身及其周边封堵煤体的引燃危险性。对于聚氨酯反应热问题,虽然已研究出解决方案,但仍存在以下不足:
(1)添加有机相变材料(高级脂肪酸、石蜡等)进行吸热降温,易助燃且会可能释放有毒气体,不利于井下施工安全;
(2)化学发泡剂水仍然占据发泡的主体,在化学发泡中放出大量热量,通过降低水的比例来降低反应热,从而实现聚氨酯降温,却改变了原有聚氨酯的发泡性能;
(3)前期添加的吸热物质会影响原材料的性能(材料发泡性能,前期反应热减少影响后期材料的胶凝固化反应力学性能等等);
(4)吸热物质一次性利用价值低。
发明内容
本发明的目的是提供一种相变水合盐聚合充填材料及其制备方法、使用方法,可实现材料聚合快慢的温度自适应调节,保障材料发泡性能原有属性,降低聚氨酯发泡固化反应温度,且复合相变纳米材料可重复吸收煤自燃产生的热量,从而解决聚氨酯发泡固化反应温度过高引起火灾事故的难题,进而防治煤自燃,保障煤矿安全生产。
为实现上述目的,本发明提供了一种相变水合盐聚合充填材料,由以下重量份的组分制成:A组分25-35份,B组分50-60份,C组分20-30份,A组分主要由以下重量份的组分制成:聚醚多元醇50-60份、发泡剂3-8份、阻燃剂8-10份、导热材料1-8份;B组分主要由以下重量份的组分制成:聚合MDI 72-80份、胶粘剂3-4份;C组分为相变纳米流体,相变纳米流体主要由以下重量份的组分制成:聚醚多元醇15-20份、硅油6-8份、复合相变纳米材料10-25份;所述复合相变纳米材料主要由以下重量份的组分制成:多孔材料10-20份、水合盐60-70份、表面活性剂1-4份、增稠剂2-4份、分散剂2-3份、阻燃剂4-6份。
进一步的,当检测A组分与B组分混合得到的聚合物的放热速率达到或高于1.2℃/s时,多孔材料选取导热系数为1-1.5W/(m·K)的增强导热参数型;当检测A组分与B组分混合得到的聚合物放热速率低于1.2℃/s时,多孔材料选取导热系数为0.02-0.2W/(m·K)的减弱导热参数型。
优选的,增强导热参数型的多孔材料由以下重量份的组分制成:膨胀石墨5-10份、石墨烯1-5份、碳纤维1-5份、膨胀蛭石1-5份组成;减弱导热参数型的多孔材料由以下重量份的组分制成:气凝胶5-10份、粉煤灰漂珠3-10份、膨胀珍珠岩1-5份。
进一步的,所述多孔材料的制备方法:研磨多孔材料的制备原材料,倒入热乙醇中浸没,再依次加入一定量的表面活性剂、分散剂与阻燃剂,搅拌30-45min使其均匀分散,真空抽滤、真空干燥12-16h后取出得到多孔材料。
优选的,所述多孔材料的制备原材料为膨胀石墨、石墨烯、碳纤维、膨胀蛭石、膨胀珍珠岩、气凝胶、粉煤灰漂珠其中一种或几种;水合盐为十二水磷酸氢二钠、十水硫酸钠、三水乙酸钠、十水碳酸钠、五水硫代硫酸钠其中一种或几种,增稠剂为羧甲基纤维素钠、黄原胶、淀粉和果胶其中一种或几种;表面活性剂为壬基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、十二烷基硫酸钠、十二烷基二甲基苄基溴化铵一种或几种,分散剂为水玻璃、三聚磷酸钠、六偏磷酸钠和焦磷酸钠一种或几种,阻燃剂为三聚氰胺聚磷酸盐、硼酸锌、磷酸三苯酯、磷酸锆、聚磷酸铵和磷酸三甲苯酯一种或几种。
优选的,A组分中,所述聚醚多元醇的官能度为3,相对分子量为3000,羟值为56;所述发泡剂为水与物理发泡剂的混合物,二者之间的混合质量比为2:5;所述物理发泡剂为三氯一氟甲烷和或HCFC-141b;所述导热材料为碳纤维、导热硅脂、膨胀石墨其中一种或几种。
优选的,B组分中,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;所述胶粘剂为干粉界面剂。
优选的,A组分、B组分、C组分均为流体状态,A组分和B组分的粘度为170-250cps;C组分粘度为150-200cps。
上述相变水合盐聚合充填材料的制备方法,该方法通过矿用低放热相变水合盐聚合充填材料的制备装置来实现,包括如下步骤:
a.制备复合相变纳米材料
S1.按配比将聚醚多元醇、发泡剂、阻燃剂、导热材料搅拌制备A组分;按配比将聚合MDI、胶粘剂搅拌制备B组分;
S2.根据煤矿加固煤岩体用高分子材料国家标准测量,按照1:1的体积比量取A组分和B组分并混合成总体积为200mL的测试样品,在搅拌器下搅拌15~30s后测量所制备得到的聚氨酯发泡完成前后反应放热温度变化,从而得出聚氨酯的放热速率;
S3.根据聚氨酯的放热速率来选择多孔材料的制备原料,当聚合物的放热速率达到或高于1.2℃/s时,则选取导热系数为1-1.5W/(m·K)的增强导热参数型的多孔材料;当聚合物放热速率低于1.2℃/s时,则选取导热系数为0.02-0.2W/(m·K)的减弱导热参数型的多孔材料;
S4.将水合盐在55-65℃下搅拌恒温熔化至澄清液体,加入一定量的增稠剂、分散剂、阻燃剂、表面活性剂,搅拌30-45min后,放入步骤S3选择的多孔材料来进行调节水合盐导热系数,搅拌1-1.5h后,在恒温振荡器中缓慢降至室温后,立即放入冰箱冷冻12-16h,最后用冷冻干燥机干燥24-30h后即得复合相变纳米材料;
b.制备矿用低放热相变水合盐聚合充填材料
S1.按配比将聚醚多元醇、发泡剂、阻燃剂、导热材料放入A料罐中搅拌制备A组分;按配比将聚合MDI、胶粘剂放入B料罐中搅拌制备B组分;按配比将聚醚多元醇、硅油、复合相变纳米材料放入C料罐中搅拌制备C组分相变纳米流体;
S2.按配比将A组分与C组分先通过混合釜Ⅰ混合,然后采用静态混合器Ⅰ预混1-5min,再通过混合釜Ⅱ充分搅拌混合得到A-C混合组分,A-C混合组分与B组分通过静态混合器Ⅱ混合得到矿用低放热相变水合盐聚合充填材料;
所述矿用低放热相变水合盐聚合充填材料的制备装置包括A料罐、B料罐和C料罐,A料罐和C料罐通过输出管路与混合釜Ⅰ连通,A料罐和C料罐的输出管路上分别安装有自动调节流量多功能智能变频流量泵Ⅰ、自动调节流量多功能智能变频流量泵Ⅱ;
混合釜Ⅰ通过静态混合器Ⅰ与混合釜Ⅱ连通,混合釜Ⅱ通过输出管路与静态混合器Ⅱ连通,混合釜Ⅱ的输出管路上安装有自动调节流量多功能智能变频流量泵Ⅳ;所述静态混合器Ⅰ的直径为140-180mm、长度为600-1000mm;
B料罐通过输出管路与静态混合器Ⅱ连通,B料罐的输出管路上设置有自动调节流量多功能智能变频流量泵Ⅲ;所述静态混合器Ⅱ的直径为200-250mm、长度为100-200mm。
上述相变水合盐聚合充填材料的使用方法,将喷枪与静态混合器Ⅱ连通,从静态混合器Ⅱ输出的矿用低放热相变水合盐聚合充填材料通过喷枪喷出,喷枪上设置有红外温度传感系统,红外温度传感系统与自动调节流量多功能智能变频流量泵Ⅰ、自动调节流量多功能智能变频流量泵Ⅱ、自动调节流量多功能智能变频流量泵Ⅲ、自动调节流量多功能智能变频流量泵Ⅳ分别电信号连接;红外温度传感系统测量实时聚充填材料的发泡温度,再将发泡温度转化为电子信号反馈给自动调节流量多功能智能变频流量泵,自动调节流量多功能智能变频流量泵接收到电子信号后进行判断处理电子数据来调整各组分的流速,其中,A组分和B组分流速均为4-10kg/min,当聚合充填材料的发泡温度低于70℃时,调整C组分流速为0.3-0.5kg/min;当聚合充填材料的发泡温度处于70-95℃时,则调整C组分流速为0.5-1kg/min并及时降低A组分、B组分流速低于4kg/min;若聚合充填材料的发泡温度高于95℃,则降低A-C混合组分的流速与B组分的流速至停止发泡。
本发明作用原理:本发明采用相变水合盐复合材料,能够在不损害原有聚氨酯发泡倍率与力学性能的前提下,同时降低聚氨酯发泡固化放热温度。首先根据聚氨酯放热速率,利用多孔材料调节水合盐导热系数,使得聚氨酯在发泡反应时期延迟或缩短水合盐相变时间,以便不影响前期聚氨酯发泡反应;在发泡完成后固化蓄热阶段,再利用低相变温度高潜热的水合盐复合材料进行相变吸热,在此过程中由于添加高导热材料调节了聚氨酯本身导热系数,水合盐相变复合材料吸热更加快速均匀,聚氨酯降温效果更加显著,经本发明改性后的聚氨酯最高反应温度为70-88℃,满足国家要求的指标≤95℃。
与现有技术相比,本发明具有以下优点:
(1)本发明通过复合水合盐相变材料实现延迟或者加快吸热过程,实现聚合快慢的温度自适应调节,保障聚氨酯的发泡性能;
(2)本发明通过添加导热材料,增强了聚氨酯的力学性能,同时提高了聚氨酯本身导热系数,增加自身散热能力,使得其与水合盐相变材料吸热范围相匹配;
(3)本发明制备相变纳米流体时,避免了复合水合盐相变材料吸热不均匀而发生聚氨酯并泡、塌泡的现象;
(4)本发明中的复合相变纳米材料在完成聚氨酯降温过程后可以循环使用,可用于吸收煤低温氧化产生的热量,减少煤自燃火灾事故的发生;
(5)本发明通过红外温度探测来及时控制流体流速,从而降低聚氨酯火灾事故发生的风险;
(6)本发明中阻燃剂与多孔材料的共同添加,大大提高了材料的氧指数和阻燃性能;随着复合纳米材料添加,阻燃吸附型多孔材料的阻燃效果导致氧指数有所增加;
(7)本发明添加工艺简单,适用于所有矿用聚氨酯市场,添加材料成本低,环保无污染,有抑制烟气和无卤阻燃性等优点。
附图说明
图1为本发明制备及使用装置示意图;
图中:1、A料罐;2、B料罐;3、C料罐;4、混合釜Ⅰ;5、静态混合器Ⅰ;6、混合釜Ⅱ;7、静态混合器Ⅱ;8、喷枪;9、红外温度传感系统;10、自动调节流量多功能智能变频流量泵Ⅲ;11、自动调节流量多功能智能变频流量泵Ⅰ;12、自动调节流量多功能智能变频流量泵Ⅱ;13、自动调节流量多功能智能变频流量泵Ⅳ;
图2为对比组(普通聚氨酯样品)与本实施例一制备得到的充填材料(改性聚氨酯)随时间变化的反应温度测量图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。
实施例一
一种相变水合盐聚合充填材料的制备方法,该方法通过矿用低放热相变水合盐聚合充填材料的制备装置来实现,包括如下步骤:
a.制备复合相变纳米材料
S1.按配比将聚醚多元醇50份、发泡剂8份、三聚氰胺聚磷酸盐8份、碳纤维4份搅拌制备A组分,所述聚醚多元醇的官能度为3,相对分子量为3000,羟值为56;所述发泡剂为水与HCFC-141b的混合物,二者之间的混合质量比为2:5;按配比将聚合MDI 80份、胶粘剂3份搅拌制备B组分,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;所述胶粘剂为干粉界面剂;A组分和B组分的粘度为170-250cps;
S2.根据煤矿加固煤岩体用高分子材料国家标准测量,按照1:1的体积比量取A组分和B组分并混合成总体积为200mL的测试样品,在搅拌器下搅拌15~30s后倒入直径50mm的容器中,将电热偶线放置在容器中间且距离容器底部40mm,测量所制备得到的聚氨酯发泡完成前后反应放热温度变化,从而得出聚氨酯的放热速率为1.5-2℃/s;
S3.当聚合物的放热速率达到或高于1.2℃/s时,则选取导热系数为1-1.5W/(m·K)的增强导热参数型的多孔材料;所述多孔材料的制备方法:研磨多孔材料的制备原材料11份,所述制备原材料由膨胀石墨5份、石墨烯2份、碳纤维2份、膨胀蛭石2份配制而成,倒入热乙醇中浸没,再依次加入2份表面活性剂壬基酚聚氧乙烯醚、2份分散剂水玻璃与4份阻燃剂三聚氰胺聚磷酸盐,搅拌30-45min使其均匀分散,真空抽滤、真空干燥12-16h后取出得到增强导热参数型的多孔材料;
S4.将60份十二水磷酸氢二钠在60℃下搅拌恒温熔化至澄清液体,加入4份羧甲基纤维素钠、2份三聚磷酸钠、1份十二烷基硫酸钠、4份硼酸锌,搅拌30min后,放入步骤S3得到的增强导热参数型的10份多孔材料来进行调节水合盐导热系数,搅拌1-1.5h后,在恒温振荡器中缓慢降至室温后,立即放入冰箱冷冻12h,最后用冷冻干燥机干燥24h后即得导热系数为0.6-0.8W/(m·K)的增强导热的复合相变纳米材料;
b.制备矿用低放热相变水合盐聚合充填材料
S1.按配比将聚醚多元醇50份、发泡剂8份、三聚氰胺聚磷酸盐8份、碳纤维4份放入A料罐1中搅拌制备A组分,所述聚醚多元醇的官能度为3,相对分子量为3000,羟值为56;所述发泡剂为水与HCFC-141b的混合物,二者之间的混合质量比为2:5;按配比将聚合MDI80份、胶粘剂3份放入B料罐3中搅拌制备B组分,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;所述胶粘剂为干粉界面剂;A组分和B组分的粘度为170-250cps;按配比将聚醚多元醇20份、硅油8份、复合相变纳米材料10份放入C料罐2中搅拌制备粘度为150cps的C组分相变纳米流体;
S2.按配比将25份A组分与30份C组分先通过混合釜Ⅰ4混合,然后采用静态混合器Ⅰ5预混1-5min,再通过混合釜Ⅱ6充分搅拌混合得到A-C混合组分,A-C混合组分与60份B组分通过静态混合器Ⅱ7混合得到矿用低放热相变水合盐聚合充填材料。
如图1所示,所述矿用低放热相变水合盐聚合充填材料的制备装置包括A料罐1、B料罐3和C料罐2,A料罐1和C料罐2通过输出管路与混合釜Ⅰ4连通,A料罐1和C料罐2的输出管路上分别安装有自动调节流量多功能智能变频流量泵Ⅰ11、自动调节流量多功能智能变频流量泵Ⅱ12;
混合釜Ⅰ4通过静态混合器Ⅰ5与混合釜Ⅱ6连通,混合釜Ⅱ6通过输出管路与静态混合器Ⅱ7连通,混合釜Ⅱ6的输出管路上安装有自动调节流量多功能智能变频流量泵Ⅳ13;所述静态混合器Ⅰ5的直径为140-180mm、长度为600-1000mm;
B料罐3通过输出管路与静态混合器Ⅱ7连通,B料罐3的输出管路上设置有自动调节流量多功能智能变频流量泵Ⅲ10;所述静态混合器Ⅱ7的直径为200-250mm、长度为100-200mm。
如图1所示,上述相变水合盐聚合充填材料的使用方法,将喷枪8与静态混合器Ⅱ7连通,从静态混合器Ⅱ7输出的矿用低放热相变水合盐聚合充填材料通过喷枪8喷出,喷枪8上设置有红外温度传感系统9,红外温度传感系统9与自动调节流量多功能智能变频流量泵Ⅰ11、自动调节流量多功能智能变频流量泵Ⅱ12、自动调节流量多功能智能变频流量泵Ⅲ10、自动调节流量多功能智能变频流量泵Ⅳ13分别电信号连接;红外温度传感系统9测量实时聚充填材料的发泡温度,再将发泡温度转化为电子信号反馈给自动调节流量多功能智能变频流量泵,自动调节流量多功能智能变频流量泵接收到电子信号后进行判断处理电子数据来调整各组分的流速,其中,A组分和B组分流速均为4-10kg/min,当聚合充填材料的发泡温度低于70℃时,调整C组分流速为0.3-0.5kg/min;当聚合充填材料的发泡温度处于70-95℃时,则调整C组分流速为0.5-1kg/min并及时降低A组分、B组分流速低于4kg/min;若聚合充填材料的发泡温度高于95℃,则降低A组分和C组分的混合组分的流速与B组分的流速至停止发泡。
将本实施例得到的矿用低放热相变水合盐聚合充填材料按照《煤矿井下反应型高分子材料安全管理办法(试行)》煤安监技装〔2020〕18号、《煤矿防灭火细则》的通知矿安﹝2021﹞156号使用条例进行性能检测,结果如下表1所示:
表1矿用低放热相变水合盐聚合充填材料性能检测结果
Figure GDA0003709974830000071
实施例二
一种相变水合盐聚合充填材料的制备方法,该方法通过矿用低放热相变水合盐聚合充填材料的制备装置来实现,包括如下步骤:
a.制备复合相变纳米材料
S1.按配比将聚醚多元醇60份、发泡剂5份、磷酸三苯酯10份、导热硅脂1份搅拌制备A组分;所述发泡剂为水与三氯一氟甲烷的混合物,二者之间的混合质量比为2:5;按配比将聚合MDI 80份、胶粘剂4份搅拌制备B组分,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;
S2.根据煤矿加固煤岩体用高分子材料国家标准测量,按照1:1的体积比量取A组分和B组分并混合成总体积为200mL的测试样品,在搅拌器下搅拌15~30s后倒入直径50mm的容器中,将电热偶线放置在容器中间且距离容器底部40mm,测量所制备得到的聚氨酯发泡完成前后反应放热温度变化,从而得出聚氨酯的放热速率为0.5-1℃/s;
S3.当聚合物的放热速率达到或低于1.2℃/s时,则选取导热系数为0.02-0.2W/(m·K)的减弱导热参数型的多孔材料;所述多孔材料的制备方法:研磨多孔材料的制备原材料16份,所述制备原材料由气凝胶8份、粉煤灰漂珠3份、膨胀珍珠岩5份配制而成,倒入热乙醇中浸没,再依次加入一定量的3份表面活性剂脂肪醇聚氧乙烯醚、2份分散剂三聚磷酸钠与4份阻燃剂磷酸三苯酯,搅拌30-45min使其均匀分散,真空抽滤、真空干燥12-16h后取出得到减弱导热参数型的多孔材料;
S4.将40份十二水磷酸氢二钠和30份十水硫酸钠的混合物在60℃下搅拌恒温熔化至澄清液体,加入3份黄原胶、3份水玻璃、2份脂肪醇聚氧乙烯醚、4份磷酸锆、2份聚磷酸铵,搅拌30min后,放入步骤S3得到的减弱导热参数型的13份多孔材料来进行调节水合盐导热系数,搅拌1-1.5h后,在恒温振荡器中缓慢降至室温后,立即放入冰箱冷冻12h,最后用冷冻干燥机干燥24h后即得导热系数为0.20-0.30W/(m·K)的减弱导热的复合相变纳米材料;
b.制备矿用低放热相变水合盐聚合充填材料
S1.按配比将聚醚多元醇60份、发泡剂5份、磷酸三苯酯10份、导热硅脂1份放入A料罐1中搅拌制备A组分;所述发泡剂为水与三氯一氟甲烷的混合物,二者之间的混合质量比为2:5;按配比将聚合MDI 80份、胶粘剂4份放入B料罐3中搅拌制备B组分,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;按配比将聚醚多元醇15份、硅油7份、复合相变纳米材料15份放入C料罐2中搅拌制备粘度为200cps的C组分相变纳米流体;
S2.按配比将30份A组分与20份C组分先通过混合釜Ⅰ4混合,然后采用静态混合器Ⅰ5预混1-5min,再通过混合釜Ⅱ6充分搅拌混合得到A-C混合组分,A-C混合组分与50份B组分通过静态混合器Ⅱ7混合得到矿用低放热相变水合盐聚合充填材料。
所述矿用低放热相变水合盐聚合充填材料的制备装置同实施例一。
上述相变水合盐聚合充填材料的使用方法同实施例一。
将本实施例得到的矿用低放热相变水合盐聚合充填材料按照《煤矿井下反应型高分子材料安全管理办法(试行)》煤安监技装〔2020〕18号、《煤矿防灭火细则》的通知矿安﹝2021﹞156号使用条例进行性能检测,结果如下表2所示:
表2矿用低放热相变水合盐聚合充填材料性能检测结果
Figure GDA0003709974830000091
实施例三
一种相变水合盐聚合充填材料的制备方法,该方法通过矿用低放热相变水合盐聚合充填材料的制备装置来实现,包括如下步骤:
a.制备复合相变纳米材料
S1.按配比将聚醚多元醇60份、发泡剂3份、聚磷酸铵10份、膨胀石墨8份搅拌制备A组分,所述聚醚多元醇的官能度为3,相对分子量为3000,羟值为56;所述发泡剂为水与HCFC-141b的混合物,二者之间的混合质量比为2:5;按配比将聚合MDI 72份、胶粘剂3份搅拌制备B组分,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;所述胶粘剂为干粉界面剂;A组分和B组分的粘度为170-250cps;
S2.根据煤矿加固煤岩体用高分子材料国家标准测量,按照1:1的体积比量取A组分和B组分并混合成总体积为200mL的测试样品,在搅拌器下搅拌15~30s后倒入直径50mm的容器中,将电热偶线放置在容器中间且距离容器底部40mm,测量所制备得到的聚氨酯发泡完成前后反应放热温度变化,从而得出聚氨酯的放热速率为1.3-1.8℃/s;
S3.当聚合物的放热速率达到或高于1.2℃/s时,则选取导热系数为1-1.5W/(m·K)的增强导热参数型的多孔材料;所述多孔材料的制备方法:研磨多孔材料的制备原材料13份,所述制备原材料由膨胀石墨7份、石墨烯1份、碳纤维2份、膨胀蛭石3份配制而成,倒入热乙醇中浸没,再依次加入一定量的2份表面活性剂十二烷基硫酸钠、3份分散剂六偏磷酸钠与4份阻燃剂磷酸三苯酯,搅拌30-45min使其均匀分散,真空抽滤、真空干燥12-16h后取出得到增强导热参数型的多孔材料;
S4.将30份三水乙酸钠与30份五水硫代硫酸钠的混合物在60℃下搅拌恒温熔化至澄清液体,加入2份黄原胶、3份三聚磷酸钠、2份壬基酚聚氧乙烯醚、2份十二烷基二甲基苄基溴化铵、5份磷酸锆,搅拌30min后,放入步骤S3得到的增强导热参数型的15份多孔材料来进行调节水合盐导热系数,搅拌1-1.5h后,在恒温振荡器中缓慢降至室温后,立即放入冰箱冷冻12h,最后用冷冻干燥机干燥24h后即得导热系数为0.8W/(m·K)的增强导热的复合相变纳米材料;
b.制备矿用低放热相变水合盐聚合充填材料
S1.按配比将聚醚多元醇60份、发泡剂3份、聚磷酸铵10份、膨胀石墨8份放入A料罐1中搅拌制备A组分,所述聚醚多元醇的官能度为3,相对分子量为3000,羟值为56;所述发泡剂为水与HCFC-141b的混合物,二者之间的混合质量比为2:5;按配比将聚合MDI 72份、胶粘剂3份放入B料罐3中搅拌制备B组分,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%;所述胶粘剂为干粉界面剂;A组分和B组分的粘度为170-250cps;按配比将聚醚多元醇20份、硅油6份、复合相变纳米材料25份放入C料罐2中搅拌制备粘度为180cps的C组分相变纳米流体;
S2.按配比将35份A组分与30份C组分先通过混合釜Ⅰ4混合,然后采用静态混合器Ⅰ5预混1-5min,再通过混合釜Ⅱ6充分搅拌混合得到A-C混合组分,A-C混合组分与55份B组分通过静态混合器Ⅱ7混合得到矿用低放热相变水合盐聚合充填材料。
所述矿用低放热相变水合盐聚合充填材料的制备装置同实施例一。
上述相变水合盐聚合充填材料的使用方法同实施例一。
将本实施例得到的矿用低放热相变水合盐聚合充填材料按照《煤矿井下反应型高分子材料安全管理办法(试行)》煤安监技装〔2020〕18号、《煤矿防灭火细则》的通知矿安﹝2021﹞156号使用条例进行性能检测,结果如下表3所示:
表3矿用低放热相变水合盐聚合充填材料性能检测结果
Figure GDA0003709974830000101
Figure GDA0003709974830000111
对比组即普通聚氨酯的制备:按配比将聚醚多元醇70份、HCFC-141b 8份、三聚氰胺磷酸盐8份放入容器中搅拌制备组分A;按配比将聚合MDI 80份、胶粘剂3份放入容器中搅拌制备组分B;再将A组分与B组分按照体积比1:1混合制备得到普通聚氨酯。对该普通聚氨酯的反应温度随时间进行测量,结果如图2所示。
由上表1-3和图2可知,矿用低放热相变水合盐聚合充填材料最高反应温度下降明显,由市面普通聚氨酯最高反应温度120-150℃下降至80℃附近,由此可知,随着添加复合相变纳米材料,最高反应温度越低。普通聚氨酯最高反应温度高,放热速率快,通过改善后的聚氨酯阻燃性能提高,通过复合相变纳米材料进行调节水合盐导热系数,使得保障聚氨酯原有发泡倍率,同时降低反应最高温度。
本实施例二中的聚氨酯发泡放热速率慢,通过添加的不同比例复合相变纳米材料完成减小材料的导热系数,完成了聚合快慢的温度自适应慢调节,保障了聚氨酯原有发泡性能,膨胀倍率基本不变维持3.5倍左右,完成了聚氨酯固化降温。本实施例一和实施例三中的聚氨酯发泡放热速率快,通过添加导热性强的多孔材料完成材料导热系数的增强,实现了聚合快慢的温度自适应快调节,保障了聚氨酯原有发泡性能,膨胀倍率基本不变维持3.5倍左右,完成了聚氨酯固化降温。因此,通过调整复合相变纳米材料的导热速率,实现了聚合快慢的温度自适应调节,降低了聚氨酯反应温度,保障了聚氨酯原有发泡性能。

Claims (8)

1.一种相变水合盐聚合充填材料,其特征在于,由以下重量份的组分制成:A组分25-35份,B组分50-60份,C组分20-30份,
A组分主要由以下重量份的组分制成:聚醚多元醇50-60份、发泡剂3-8份、阻燃剂8-10份、导热材料1-8份;
B组分主要由以下重量份的组分制成:聚合MDI 72-80份、胶粘剂3-4份;所述胶粘剂为干粉界面剂;
C组分为相变纳米流体,相变纳米流体主要由以下重量份的组分制成:聚醚多元醇15-20份、硅油6-8份、复合相变纳米材料10-25份;
所述复合相变纳米材料主要由以下重量份的组分制成:多孔材料10-20份、水合盐60-70份、表面活性剂1-4份、增稠剂2-4份、分散剂2-3份、阻燃剂4-6份;
当检测A组分与B组分混合得到的聚合物的放热速率达到或高于1.2℃/s时,多孔材料选取导热系数为1-1.5 W/(m·K)的增强导热参数型;当检测A组分与B组分混合得到的聚合物放热速率低于1.2℃/s时,多孔材料选取导热系数为0.02-0.2W/(m·K)的减弱导热参数型;
增强导热参数型的多孔材料由以下重量份的组分制成:膨胀石墨5-10份、石墨烯1-5份、碳纤维1-5份、膨胀蛭石1-5份组成;减弱导热参数型的多孔材料由以下重量份的组分制成:气凝胶5-10份、粉煤灰漂珠3-10份、膨胀珍珠岩1-5份。
2.根据权利要求1 所述的一种相变水合盐聚合充填材料,其特征在于,所述多孔材料的制备方法:研磨多孔材料的制备原材料,倒入热乙醇中浸没,再依次加入一定量的表面活性剂、分散剂与阻燃剂,搅拌30-45min使其均匀分散,真空抽滤、真空干燥12-16h后取出得到多孔材料。
3.根据权利要求2所述的一种相变水合盐聚合充填材料,其特征在于,多孔材料的制备原材料为膨胀石墨、石墨烯、碳纤维、膨胀蛭石、膨胀珍珠岩、气凝胶、粉煤灰漂珠其中一种或几种;水合盐为十二水磷酸氢二钠、十水硫酸钠、三水乙酸钠、十水碳酸钠、五水硫代硫酸钠其中一种或几种,增稠剂为羧甲基纤维素钠、黄原胶、淀粉和果胶其中一种或几种;表面活性剂为壬基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、十二烷基硫酸钠、十二烷基二甲基苄基溴化铵中的一种或几种,分散剂为水玻璃、三聚磷酸钠、六偏磷酸钠和焦磷酸钠中的一种或几种,阻燃剂为三聚氰胺聚磷酸盐、硼酸锌、磷酸三苯酯、磷酸锆、聚磷酸铵和磷酸三甲苯酯中的一种或几种。
4.根据权利要求1所述的一种相变水合盐聚合充填材料,其特征在于,A组分中,所述聚醚多元醇的官能度为3,相对分子量为3000,羟值为56;所述发泡剂为水与物理发泡剂的混合物,二者之间的混合质量比为2:5;所述物理发泡剂为三氯一氟甲烷和或HCFC-141b;所述导热材料为碳纤维、导热硅脂、膨胀石墨其中一种或几种。
5.根据权利要求1所述的一种相变水合盐聚合充填材料,其特征在于,B组分中,所述聚合MDI为多亚甲基多苯基多异氰酸酯,平均分子量为350-400,异氰酸酯基的质量分数为31-32%。
6. 根据权利要求1所述的一种相变水合盐聚合充填材料,其特征在于,A组分、B组分、C组分均为流体状态,A组分和B组分的粘度为170-250 cps;C组分粘度为150-200cps。
7. 一种如权利要求1-6任一项所述的相变水合盐聚合充填材料的制备方法,其特征在于,该方法通过矿用低放热相变水合盐聚合充填材料的制备装置来实现,包括如下步骤:
a.制备复合相变纳米材料
S1.按配比将聚醚多元醇、发泡剂、阻燃剂、导热材料搅拌制备A组分;按配比将聚合MDI、胶粘剂搅拌制备B组分;
S2.根据煤矿加固煤岩体用高分子材料国家标准测量,按照1:1的体积比量取A组分和B组分并混合成总体积为200mL的测试样品,在搅拌器下搅拌15~30 s后测量所制备得到的聚氨酯发泡完成前后反应放热温度变化,从而得出聚氨酯的放热速率;
S3.根据聚氨酯的放热速率来选择多孔材料的制备原料,当聚合物的放热速率达到或高于1.2℃/s时,则选取导热系数为1-1.5 W/(m·K)的增强导热参数型的多孔材料;当聚合物放热速率低于1.2℃/s时,则选取导热系数为0.02-0.2W/(m·K)的减弱导热参数型的多孔材料;
S4.将水合盐在55-65℃下搅拌恒温熔化至澄清液体,加入一定量的增稠剂、分散剂、阻燃剂、表面活性剂,搅拌30-45min后,放入步骤S3选择的多孔材料来进行调节水合盐导热系数,搅拌1-1.5h后,在恒温振荡器中缓慢降至室温后,立即放入冰箱冷冻12-16h,最后用冷冻干燥机干燥24-30h后即得复合相变纳米材料;
b.制备矿用低放热相变水合盐聚合充填材料
S1.按配比将聚醚多元醇、发泡剂、阻燃剂、导热材料放入A料罐(1)中搅拌制备A组分;按配比将聚合MDI、胶粘剂放入B料罐(3)中搅拌制备B组分;按配比将聚醚多元醇、硅油、复合相变纳米材料放入C料罐(2)中搅拌制备C组分相变纳米流体;
S2.按配比将A组分与C组分先通过混合釜Ⅰ(4)混合,然后采用静态混合器Ⅰ(5)预混1-5min,再通过混合釜Ⅱ(6)充分搅拌混合得到A- C混合组分,A- C混合组分与B组分通过静态混合器Ⅱ(7)混合得到矿用低放热相变水合盐聚合充填材料;
所述矿用低放热相变水合盐聚合充填材料的制备装置包括A料罐(1)、B料罐(3)和C料罐(2),A料罐(1)和C料罐(2)通过输出管路与混合釜Ⅰ(4)连通,A料罐(1)和C料罐(2)的输出管路上分别安装有自动调节流量多功能智能变频流量泵Ⅰ(11)、自动调节流量多功能智能变频流量泵Ⅱ(12);
混合釜Ⅰ(4)通过静态混合器Ⅰ(5)与混合釜Ⅱ(6)连通,混合釜Ⅱ(6)通过输出管路与静态混合器Ⅱ(7)连通,混合釜Ⅱ(6)的输出管路上安装有自动调节流量多功能智能变频流量泵Ⅳ(13);所述静态混合器Ⅰ(5)的直径为140-180mm、长度为600-1000mm;
B料罐(3)通过输出管路与静态混合器Ⅱ(7)连通,B料罐(3)的输出管路上设置有自动调节流量多功能智能变频流量泵Ⅲ(10);所述静态混合器Ⅱ(7)的直径为200-250mm、长度为100-200mm。
8. 一种如权利要求1-6任一项所述的相变水合盐聚合充填材料的使用方法,其特征在于,将喷枪(8)与静态混合器Ⅱ(7)连通,从静态混合器Ⅱ(7)输出的矿用低放热相变水合盐聚合充填材料通过喷枪(8)喷出,喷枪(8)上设置有红外温度传感系统(9),红外温度传感系统(9)与自动调节流量多功能智能变频流量泵Ⅰ(11)、自动调节流量多功能智能变频流量泵Ⅱ(12)、自动调节流量多功能智能变频流量泵Ⅲ(10)、自动调节流量多功能智能变频流量泵Ⅳ(13)分别电信号连接;红外温度传感系统(9)测量实时聚充填材料的发泡温度,再将发泡温度转化为电子信号反馈给自动调节流量多功能智能变频流量泵,自动调节流量多功能智能变频流量泵接收到电子信号后进行判断处理电子数据来调整各组分的流速,其中,A组分和B组分流速均为4-10kg/min,当聚合充填材料的发泡温度低于70℃时,调整C组分流速为0.3-0.5kg/min;当聚合充填材料的发泡温度处于70-95℃时,则调整C组分流速为0.5-1kg/min并及时降低A组分、B组分流速低于4kg/min;若聚合充填材料的发泡温度高于95℃,则降低A- C混合组分的流速与B组分的流速至停止发泡。
CN202210359009.6A 2022-04-07 2022-04-07 一种相变水合盐聚合充填材料及其制备方法、使用方法 Active CN114605607B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210359009.6A CN114605607B (zh) 2022-04-07 2022-04-07 一种相变水合盐聚合充填材料及其制备方法、使用方法
LU502423A LU502423B1 (en) 2022-04-07 2022-06-30 Phase-change hydrous salt polymeric filling material and methods for preparing and using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210359009.6A CN114605607B (zh) 2022-04-07 2022-04-07 一种相变水合盐聚合充填材料及其制备方法、使用方法

Publications (2)

Publication Number Publication Date
CN114605607A CN114605607A (zh) 2022-06-10
CN114605607B true CN114605607B (zh) 2023-03-03

Family

ID=81869884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210359009.6A Active CN114605607B (zh) 2022-04-07 2022-04-07 一种相变水合盐聚合充填材料及其制备方法、使用方法

Country Status (2)

Country Link
CN (1) CN114605607B (zh)
LU (1) LU502423B1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117050510A (zh) * 2023-09-27 2023-11-14 中国矿业大学 一种低放热聚氨酯泡沫材料及其制备方法与应用

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968724A (en) * 1990-05-31 1990-11-06 Arco Chemical Technology, Inc. Hydrated salt systems for controlled release of water in polyurethane foams
US5227408A (en) * 1991-06-11 1993-07-13 E. R. Carpenter Company, Inc. Carbon dioxide blown polyurethane packaging foam with chemical nucleating agents
EP0909783A1 (de) * 1997-10-17 1999-04-21 Maagh Leitungsbau GmbH Reaktionsmischung für Dichtung von Rohrverbindungen, Sanierverfahren und Mischkammer
CN102911340A (zh) * 2012-10-18 2013-02-06 合肥工业大学 一种低放热聚氨酯注浆加固材料及其制备方法
CN103497303A (zh) * 2013-09-25 2014-01-08 山西誉邦新动力科技有限公司 制备聚氨酯泡沫塑料的组合料
CN103694672A (zh) * 2013-12-13 2014-04-02 山东一诺威新材料有限公司 煤矿用高阻燃低温双组分充填材料及其制备方法
CN203994411U (zh) * 2014-07-15 2014-12-10 北京市建筑工程研究院有限责任公司 聚氨酯发泡板的生产设备
CN105017758A (zh) * 2015-08-14 2015-11-04 大同煤矿集团有限责任公司 煤矿用充填密闭材料
CN105294978A (zh) * 2015-11-25 2016-02-03 北京工业大学 一种改进型煤矿用聚氨酯封堵材料及其制备方法
CN106674671A (zh) * 2016-11-29 2017-05-17 安徽索亚装饰材料有限公司 一种提高聚氨酯保温发泡材料力学性能的制备方法
CN107033317A (zh) * 2017-06-13 2017-08-11 山西省建筑科学研究院 一种聚氨酯硬质泡沫材料及其制备方法与应用
CN108706953A (zh) * 2018-06-29 2018-10-26 南京红宝丽新材料有限公司 一种匀质低导热无机保温板及其制备方法
CN108948325A (zh) * 2018-07-05 2018-12-07 山西凝固力新型材料有限公司 一种矿用复合填充发泡材料及其制备方法
CN109180893A (zh) * 2018-08-14 2019-01-11 山东科技大学 煤矿注浆用低热值高强度聚氨酯材料及其制备方法
CN109354670A (zh) * 2018-10-17 2019-02-19 山东润义金新材料科技股份有限公司 三组分煤矿用聚氨酯改性酚醛树脂填充材料及其制备方法
CN109476056A (zh) * 2016-07-29 2019-03-15 科思创德国股份有限公司 用于制备发泡聚合物的系统和方法
CN112048056A (zh) * 2020-09-11 2020-12-08 山西华世中瑞新材料有限公司 一种矿用无机与有机复合的聚氨酯注浆加固材料及其制备方法
CN113136167A (zh) * 2020-01-20 2021-07-20 中国科学院青海盐湖研究所 具有流动性的水溶胶-水合盐-多孔材料复合体系及其制备方法和应用
CN113150235A (zh) * 2021-01-27 2021-07-23 北京科技大学 一种可膨胀型石墨硬质聚氨酯复合保温材料及其制备方法
CN114057974A (zh) * 2021-10-08 2022-02-18 山东北理华海复合材料有限公司 一种聚氨酯低放热发泡复合材料及其制备方法
WO2022160439A1 (zh) * 2021-01-27 2022-08-04 山东理工大学 用于聚氨酯硬质泡沫的碳酸醇胺盐发泡剂组合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859998B (zh) * 2015-01-22 2018-07-10 万华化学(宁波)容威聚氨酯有限公司 用于聚氨酯发泡的组合物,聚氨酯泡沫及其用途

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968724A (en) * 1990-05-31 1990-11-06 Arco Chemical Technology, Inc. Hydrated salt systems for controlled release of water in polyurethane foams
US5227408A (en) * 1991-06-11 1993-07-13 E. R. Carpenter Company, Inc. Carbon dioxide blown polyurethane packaging foam with chemical nucleating agents
EP0909783A1 (de) * 1997-10-17 1999-04-21 Maagh Leitungsbau GmbH Reaktionsmischung für Dichtung von Rohrverbindungen, Sanierverfahren und Mischkammer
CN102911340A (zh) * 2012-10-18 2013-02-06 合肥工业大学 一种低放热聚氨酯注浆加固材料及其制备方法
CN103497303A (zh) * 2013-09-25 2014-01-08 山西誉邦新动力科技有限公司 制备聚氨酯泡沫塑料的组合料
CN103694672A (zh) * 2013-12-13 2014-04-02 山东一诺威新材料有限公司 煤矿用高阻燃低温双组分充填材料及其制备方法
CN203994411U (zh) * 2014-07-15 2014-12-10 北京市建筑工程研究院有限责任公司 聚氨酯发泡板的生产设备
CN105017758A (zh) * 2015-08-14 2015-11-04 大同煤矿集团有限责任公司 煤矿用充填密闭材料
CN105294978A (zh) * 2015-11-25 2016-02-03 北京工业大学 一种改进型煤矿用聚氨酯封堵材料及其制备方法
CN109476056A (zh) * 2016-07-29 2019-03-15 科思创德国股份有限公司 用于制备发泡聚合物的系统和方法
CN106674671A (zh) * 2016-11-29 2017-05-17 安徽索亚装饰材料有限公司 一种提高聚氨酯保温发泡材料力学性能的制备方法
CN107033317A (zh) * 2017-06-13 2017-08-11 山西省建筑科学研究院 一种聚氨酯硬质泡沫材料及其制备方法与应用
CN108706953A (zh) * 2018-06-29 2018-10-26 南京红宝丽新材料有限公司 一种匀质低导热无机保温板及其制备方法
CN108948325A (zh) * 2018-07-05 2018-12-07 山西凝固力新型材料有限公司 一种矿用复合填充发泡材料及其制备方法
CN109180893A (zh) * 2018-08-14 2019-01-11 山东科技大学 煤矿注浆用低热值高强度聚氨酯材料及其制备方法
CN109354670A (zh) * 2018-10-17 2019-02-19 山东润义金新材料科技股份有限公司 三组分煤矿用聚氨酯改性酚醛树脂填充材料及其制备方法
CN113136167A (zh) * 2020-01-20 2021-07-20 中国科学院青海盐湖研究所 具有流动性的水溶胶-水合盐-多孔材料复合体系及其制备方法和应用
CN112048056A (zh) * 2020-09-11 2020-12-08 山西华世中瑞新材料有限公司 一种矿用无机与有机复合的聚氨酯注浆加固材料及其制备方法
CN113150235A (zh) * 2021-01-27 2021-07-23 北京科技大学 一种可膨胀型石墨硬质聚氨酯复合保温材料及其制备方法
WO2022160439A1 (zh) * 2021-01-27 2022-08-04 山东理工大学 用于聚氨酯硬质泡沫的碳酸醇胺盐发泡剂组合物
CN114057974A (zh) * 2021-10-08 2022-02-18 山东北理华海复合材料有限公司 一种聚氨酯低放热发泡复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
降温型聚氨酯/纳米粉煤灰注浆材料的降温机理分析;秦传睿;《煤炭学报》;20190910;第44卷(第S1期);第178-186页 *

Also Published As

Publication number Publication date
CN114605607A (zh) 2022-06-10
LU502423B1 (en) 2023-01-02

Similar Documents

Publication Publication Date Title
CN108610755B (zh) 一种水性相变吸热膨胀型隧道阻燃防火涂料及其制备方法
CN102675762B (zh) 无卤阻燃聚苯乙烯泡沫材料及其制备方法
CN114605607B (zh) 一种相变水合盐聚合充填材料及其制备方法、使用方法
CN102786740B (zh) 一种a级防火节能橡塑复合建筑保温材料及其制备方法
CN106738149B (zh) 一种相变吸热的膨胀阻燃木材的制造方法及其膨胀阻燃木材
CN108774030A (zh) 一种轻质阻燃建筑保温材料及其制备方法
CN102070850A (zh) 一种阻燃型发泡聚苯乙烯粒子及其制备方法
CN102173722A (zh) 一种防止煤炭自燃的复合胶体
CN106675304A (zh) 一种相变吸热的膨胀型阻燃防火水性涂料及其制备方法
CN104592697A (zh) 一种低密度高阻燃性复合多孔材料及其制备方法和应用
CN110812771A (zh) 一种泡沫防灭火材料及其制备方法和应用
CN112143216A (zh) 一种聚氨酯注浆加固材料及其制备方法
CN111793485B (zh) 一种堵水剂及其制备方法和应用
CN107337866A (zh) 一种具有保温防火性能的模塑聚苯板的生产方法
CN105802318A (zh) 一种膏状蓄能纳米绝热外墙腻子及制备方法
CN103232217A (zh) 矿用黄土复合凝胶防灭火材料及其制备方法
CN107129552A (zh) 一种无卤纳米阻燃剂/聚苯乙烯复合材料及其制备方法以及一种防火保温板及其制备方法
CN104945909A (zh) 一种核电用中密度硅酮橡胶
CN109180893A (zh) 煤矿注浆用低热值高强度聚氨酯材料及其制备方法
CN111908940A (zh) 一种工业管道用新型膨胀石墨水泥发泡保温材料
CN104445136A (zh) 一种节能建筑保温材料用泡沫炭及其制备方法
CN110950625A (zh) 一种新型可膨胀防火封堵材料的制备及应用
CN103397736B (zh) 结构保温一体化复合保温板的制作方法
CN107936476A (zh) 一种阻燃发泡材料及其制备方法
EP4177230A1 (en) Composition for thermal insulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant