CN114605423B - 一种钩吻中生物碱的制备方法 - Google Patents

一种钩吻中生物碱的制备方法 Download PDF

Info

Publication number
CN114605423B
CN114605423B CN202011404652.3A CN202011404652A CN114605423B CN 114605423 B CN114605423 B CN 114605423B CN 202011404652 A CN202011404652 A CN 202011404652A CN 114605423 B CN114605423 B CN 114605423B
Authority
CN
China
Prior art keywords
mobile phase
fraction
dimensional
chromatographic
chromatographic column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011404652.3A
Other languages
English (en)
Other versions
CN114605423A (zh
Inventor
梁鑫淼
刘典
刘艳芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202011404652.3A priority Critical patent/CN114605423B/zh
Publication of CN114605423A publication Critical patent/CN114605423A/zh
Application granted granted Critical
Publication of CN114605423B publication Critical patent/CN114605423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G5/00Alkaloids

Abstract

本发明提供了一种钩吻中生物碱的制备方法。采用制备型三维高效液相色谱方法,实现钩吻中生物碱的纯化制备。第一维采用极性共聚反相XCharge C18色谱柱,酸性流动相体系,对钩吻粗碱进行制备,降低样品复杂性;第二维制备采用C8CE色谱柱,碱性流动相体系;第三维制备采用C18CE色谱柱,碱性流动相体系。该方法采用台阶梯度结合线性梯度的洗脱方式,流动相组成为乙腈、甲醇和水,甲酸、乙酸、氨水、三乙胺等作为添加剂。该方法解决二维高效液相色谱针对复杂体系的峰容量不足的问题,可以实现钩吻中生物碱的分离纯化,为其他中药、生物样品中生物碱的分离纯化提供了良好的技术方案。

Description

一种钩吻中生物碱的制备方法
技术领域
本发明属于分析化学领域,涉及一种钩吻中生物碱的制备方法,具体地说是一种通过制备型三维高效液相色谱方法,实现钩吻中生物碱的高效分离纯化。
背景技术
天然化合物库是新药发现的重要来源。基于天然化合物库的组合化学和高通量筛选是现代新药发现最重要的手段(A.L.Harvey et al.,Natural products in drugdiscovery,Drug Discov Today,13,2008,894-901)。药用植物是天然化合物的重要来源,富含生物碱的药用植物尤其受到关注,因为具有药理活性的生物碱占据活性天然化合物半数之多(G.A.Cordell et al.,The potential of alkaloids in drug discovery,Phytotherapy Research,15,2001,183-205)。生物碱的分离纯化对于天然化合物库扩建和新药发现具有重大意义。
钩吻属植物钩吻富含生物碱,目前已分离得到120余种生物碱,因此新化合物发现较为困难。钩吻生物碱提取物具有抗癌、抗炎、镇痛、抗焦虑以及免疫调节等多种生理活性,但活性成分尚不明确(G.L.Jin et al.,Medicinal plants of the genus Gelsemium(Gelsemiaceae,Gentianales)--a review of their phytochemistry,pharmacology,toxicology and traditional use,Journal of Ethnopharmacology,152,2014,33-52)。因此,开展钩吻中生物碱的分离纯化工作对全面认识钩吻药理活性具有非常重要的作用,对天然化合物库的发展具有重要意义。
目前针对药用植物中的生物碱的分离纯化仍然面临非常大的挑战。生物碱的常规纯化方法包括硅胶柱色谱、pH区带高速逆流色谱以及制备型高效液相色谱(M.F.Bao etal.,Indole Alkaloids from Hunteria zeylanica,Journal of natural products,80,2017,790-797;N.Du et al.,Discovery of new muscarinic acetylcholine receptorantagonists from Scopolia tangutica,Scientific reports,7,2017,46067;L.Fang etal.,Large-scale separation of alkaloids from Gelsemium elegans by pH-zone-refining counter-current chromatography with a new solvent system screeningmethod,Journal of chromatography A,1307,2013,80-85;O.Sticher et al.,Naturalproduct isolation,Naturalproduct Reports,25,2008,517-554)。硅胶柱色谱存在生物碱死吸附、效率低及重复性差等问题;pH区带高效逆流色谱分辨率较低,无法实现微量成分的制备,也难以获得纯度较高的单体生物碱;制备型高效液相色谱具有高效、重复性好、可选择固定相多等优点,可用于钩吻生物碱分离纯化(O.Sticher et al.,Natural productisolation,Naturalproduct Reports,25,2008,517-554)。然而,对于复杂程度较高的药用植物来说,常用的二维高效液相色谱的分离制备能力十分有限,无法适应复杂样品的纯化。因此需要发展具有更强分离能力的三维高效液相色谱方法,实现复杂样品中的生物碱的分离纯化。
发明内容
针对上述问题,本发明的目的是发展一种三维高效液相色谱的方法,解决复杂样品中生物碱的分离纯化的问题。
具体的技术方案为:
本发明涉及一种钩吻中生物碱的制备的方法,具体是一种通过制备型三维高效液相色谱方法,流动相由水(A)、甲醇或乙腈(B)组成,采用甲酸、乙酸、氨水和三乙胺作为流动相添加剂,实现钩吻中生物碱的分离纯化。
其中所述的第一维色谱柱为极性共聚的C18色谱柱XCharge C18;第二维色谱柱为可耐碱性的C8CE色谱柱;第三维色谱柱为可耐碱性的C18CE色谱柱。色谱操作参数如下:色谱柱内径为4.6-100mm;样品浓度为1mg/mL-1g/mL;进样量为1μL-100mL;流速为0.7-100mL/min;柱温为25-40℃。
操作步骤为:
1)钩吻粗碱组分先经第一维高效液相色谱分离,色谱柱为极性共聚的碳十八柱,洗脱方式为线性梯度、台阶梯度,收集一维制备的馏分;
2)将一维制备的馏分经过第二维分离,色谱柱为可耐碱性的反相柱,选择权利要求1所述的流动相对馏分进行第二维制备,获得二维馏分。
3)将二维制备的馏分经过第三维分离,色谱柱为可耐碱性的反相柱,选择权利要求1所述的流动相对馏分进行第三维制备,获得生物简单体。
所述钩吻粗碱的制备方法为:称取5公斤~200公斤的钩吻根茎粉末,用5~30倍量的50%~95%乙醇溶液在50-100℃加热回流提取1-5次,每次回流提取的时间为1-3小时,合并提取液抽滤,用旋转蒸发仪40~80℃条件下减压回收乙醇,浓缩至20-150L;加入5%~20%硫酸到pH=3,采用乙酸乙酯等有机溶剂进行萃取,除去中性成分,收集水层。向水层加入10%~30%NaOH水溶液,使其pH=10,再采用二氯甲烷、氯仿、正丁醇等有机溶剂对水层再次进行萃取,收集二氯甲烷层。20~40℃条件下减压浓缩得到粗碱。
步骤1)中钩吻粗碱经第一维制备,梯度洗脱参数为:梯度时间范围为30-150min,流动相如权利要求1中所述,采用线性梯度或台阶梯度进行洗脱,其中流动相(B)体积浓度变化为由0%~15%到60%~100%,添加剂甲酸的比例为0.05%~1%,流速为50-100mL/min,检测器波长选择为190-400nm;采用5%~30%甲酸溶液及甲醇或乙腈对钩吻粗碱进行溶解,得到浓度为50-300mg/mL的样品,进样量为5-100mL,根据色谱峰进行馏分收集,将每个馏分减压浓缩至干备用,以进行第二维分离。
步骤2)中选取一维制备馏分中的代表性馏分,采用C8CE色谱柱进行第二维制备;洗脱参数为:梯度时间范围为20-80min,流动相为权利要求1中所述流动相,流动相(B)体积浓度变化为由10%~60%到40%~100%,添加剂氨水的比例为0.05%~5%,流速为10-100mL/min,检测波长为190-400nm。根据色谱分离情况进行馏分收集,将每个馏分减压浓缩至干备用,以进行第三维分离。
步骤3)中选取二维制备馏分中的代表性馏分,采用C18CE色谱柱进行第三维制备;洗脱参数为:梯度时间范围为20-80min,流动相为权利要求1中所述流动相,流动相(B)体积浓度变化为由10%~60%到40%~100%,添加剂乙酸的比例为0.05%~5%、三乙胺的比例为0.05%~5%,流速为10-100mL/min,检测波长为190-400nm。分别收集每个馏分中的色谱峰,并进行浓缩,经核磁实验确定,获得生物碱单体P1-P24。
所述化合物P1为4R-Gelsemine N-oxide,分子式为C20H22N2O3,分子量为338;所述化合物P2为4S-Gelsemine N-oxide,分子式为C20H22N2O3,分子量为338;所述化合物P3为11-hydroxykoumine,分子式为C20H22N2O2,分子量为322;所述化合物P4为11-hydroxygelsenicine,分子式为C19H22N2O4,分子量为342;所述化合物P5为18,19-(S)-hydroxydihydrogelsevirine,分子式为C21H26N2O5,分子量为386;所述化合物P6为11-Methoxyl-14-hydroxygelseniceine,分子式为C20H24N2O5,分子量为372;所述化合物P7为19(R)-hydroxygelselegine,分子式为C20H26N2O5,分子量为374;所述化合物P8为gelsemoxonine A,分子式为C20H26N2O6,分子量为390;所述化合物P9为gelsemoxonine,分子式为C19H22N2O5,分子量为358;所述化合物P10为19-(R)-Hydroxydihydrogelsevirine,分子式为C21H26N2O4,分子量为370;所述化合物P11为15-hydroxyhumantenine,分子式为C21H26N2O4,分子量为370;所述化合物P12为16-epi-voacarpine,分子式为C21H24N2O4,分子量为368;所述化合物P13为koumidine,分子式为C19H22N2O,分子量为294;所述化合物P14为Nb-demethylgelsevirine,分子式为C20H22N2O3,分子量为338;所述化合物P15为normacusineB,分子式为C19H22N2O,分子量为294;所述化合物P16为19-(Z)-akuammidine,分子式为C21H24N2O3,分子量为352;所述化合物P17为khasuanine A,分子式为C21H24N2O3,分子量为352;所述化合物P18为19-(E)-akuammidine,分子式为C21H24N2O3,分子量为352;所述化合物P19为koumine,分子式为C20H22N2O,分子量为306;所述化合物P20为gelsenicine,分子式为C19H22N2O3,分子量为326;所述化合物P21为dihydrokoumine,分子式为C20H22N2O,分子量为308;所述化合物P22为gelsevirine,分子式为C21H24N2O3,分子量为352;所述化合物P23为(4R)-Gelsevirine N4-oxide,分子式为C21H24N2O4,分子量为368;所述化合物P24为11-methoxy-19-hydroxygelselegine,分子式为C21H28N2O6,分子量为404。四个新化合物的结构信息如下:
Figure BDA0002813593260000041
本发明的有益效果
该方法解决钩吻中生物碱的分离纯化的问题,为其他中药、生物样品中生物碱的分离纯化提供了良好的技术方案。
附图说明
图1为钩吻总碱到化合物的制备流程图,(a)钩吻粗碱在XCharge C18色谱柱上的第一维制备结果;(b)钩吻馏分3在C8CE色谱柱上的第二维制备结果;(c)钩吻馏分3-6在C18CE色谱柱上的第三维制备结果。
图2为实施例4钩吻馏分(a)3-2、(b)3-4、(c)3-9和(d)3-10在C18CE色谱柱上的第三维制备结果。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和生物材料,如无特殊说明,均可从商业途径获得。
实施例1:钩吻生物碱富集
称取198公斤的钩吻根茎粉末,用10倍质量的70%乙醇溶液在70℃加热回流提取3次,每次回流提取的时间为2小时,合并提取液抽滤,用旋转蒸发仪55℃条件下减压回收乙醇,浓缩至85L;加入10%硫酸到pH=3,采用乙酸乙酯进行萃取,除去中性成分,收集水层。向水层加入20%NaOH水溶液,使其pH=10,再采用二氯甲烷对水层再次进行萃取,收集二氯甲烷层。30℃条件下减压浓缩得到粗碱粉末。
实施例2:钩吻粗碱一维制备
钩吻粗碱先经过第一维制备,色谱条件:色谱柱为XCharge C18色谱柱;流动相组成为体积浓度0.1%甲酸-水(v/v)(A)和体积浓度0.1%甲酸-甲醇(B);洗脱梯度为0-14min,体积浓度0%B;14-28min,体积浓度6%B;28-42min,体积浓度12%B;42-56min,体积浓度18%B;56-70min,体积浓度24%B;84-98min,体积浓度30%B;流速为300mL/min;检测波长为254nm;样品溶液浓度为188mg/mL,进样体积为80mL;按色谱峰进行馏分接取,共收集8个馏分(分别为馏分1至馏分8),每个馏分50℃减压浓缩至干后备用。
实施例3:钩吻馏分二维制备
选取一维制备馏分中的代表性馏分3,采用C8CE色谱柱进行第二维制备。色谱条件:色谱柱为C8CE色谱柱;流动相组成为0.125%氨水-水(v/v)(A)和甲醇(B);洗脱梯度为0-10min,体积浓度45-50%B;10-30min,体积浓度50-55%B;30-40min,体积浓度55-60%B;40-45min,体积浓度60-100%B;45-55min,体积浓度100%B;流速为300mL/min;检测波长为254nm;样品溶液浓度为553mg/mL,进样体积为17mL;按色谱峰进行馏分接取,共收集10个馏分(分别为馏分3-1、3-2、3-3、3-4、3-5、3-6、3-7、3-8、3-9至3-10),每个馏分50℃减压浓缩至干后备用。
一维制备馏分中的其它馏分同样按上述条件和过程进行二维制备;
实施例4:钩吻馏分三维制备
选取二维制备馏分中的馏分3-2、3-4、3-6、3-9和3-10进行第三维制备。色谱条件:色谱柱为C18CE色谱柱;流动相组成为:0.1%乙酸三乙胺-水(v/v)(A)和0.1%乙酸三乙胺-乙腈(v/v)(B);流速为3mL/min;检测波长为254nm;柱温为30℃;其他条件如下:3-2,洗脱梯度为0-30min,体积浓度30-50%B,样品溶液浓度为120mg/mL,进样体积为90μL;3-4,洗脱梯度为0-20min,体积浓度22-25%B;20-30min,体积浓度25-100%B,样品溶液浓度为95mg/mL,进样体积为90μL;3-6,洗脱梯度为0-40min,体积浓度23-30%B,样品溶液浓度为107mg/mL,进样体积为90μL;3-9,洗脱梯度为0-30min,体积浓度30-50%B,样品溶液浓度为95mg/mL,进样体积为90μL;3-10,洗脱梯度为0-30min,体积浓度30-50%B;30-40min,体积浓度50%B,样品溶液浓度为115mg/mL,进样体积为90μL。收集色谱峰,50℃减压浓缩至干,得到化合物P1~P24。高效液相色谱检测纯度大于95%。
二维制备馏分中的其它馏分同样按上述条件和过程进行三维制备;
实施例4:化合物鉴定数据
化合物P1~P24经理化测定,数据如下:
P1(4R-Gelsemine N-oxide),HR-ESI-MS(m/z):339.1707[M+H]+1H NMR(400MHz,MeOD)δ7.43(d,J=7.7Hz,1H,H-9),7.22(td,J=7.7,1.1Hz,1H,H-10),7.00(td,J=7.7,1.1Hz,1H,H-11),6.87(d,J=7.7Hz,1H,H-12),6.25(dd,J=17.9,11.0Hz,1H,H-19),5.16(dd,J=11.0,0.8Hz,1H,H-18b),5.06(dd,J=17.8,0.9Hz,1H,H-18a),4.14(overlapped,2H,H-17α,H-5),4.09(dd,J=11.3,2.0Hz,1H,H-17β),3.76(m,1H,H-3),3.50(d,J=12.3Hz,1H,H-21α),3.37(d,J=12.2Hz,1H,H-21β),3.32(s,3H,N-Me),3.25(m,1H,H-6),2.88(dd,J=14.5,2.9Hz,1H,H-14α),2.76(dd,J=8.4,2.1Hz,1H,H-16),2.56(m,1H,H-15),2.09(ddd,J=14.5,5.8,2.8Hz,1H,H-14β).13C NMR(151MHz,MeOD)δ179.68(C-2),142.67(C-13),137.00(C-19),132.08(C-8),129.67(C-9),129.61(C-11),122.90(C-10),115.15(C-18),110.52(C-12),87.09(C-5),80.88(C-21),70.39(C-3),61.37(C-17),54.91(C-20),53.65(C-7),53.55(C-6),50.95(N-Me),38.85(C-16),36.02(C-15),23.27(C-14);
P2(4S-Gelsemine N-oxide),HR-ESI-MS(m/z):339.1707[M+H]+1H NMR(400MHz,MeOD)δ8.38(s,1H,N-H),7.43(d,J=7.6Hz,1H,H-9),7.25(td,J=7.7,1.1Hz,1H,H-10),7.03(td,J=7.7,1.1Hz,1H,H-11),6.88(d,J=7.7Hz,1H,H-12),6.19(dd,J=17.9,11.1Hz,1H,H-19),5.14(m,1H,H-18a),5.05(dd,J=17.9,0.8Hz,1H,H-18b),4.22(dd,J=11.4,2.5Hz,1H,H-17α),4.07(s,1H,H-5),4.02(dd,J=11.4,2.0Hz,1H,H-17α),3.86(d,J=8.2Hz,1H,H-16),3.74(t,J=2.6Hz,1H,H-3),3.63(d,J=12.3Hz,1H,H-21α),3.19(s,3H,N-Me),3.15(d,J=12.4Hz,1H,H-21β),2.86(dd,J=14.5,2.9Hz,1H,H-14α),2.65(m,1H,H-15),2.60(s,1H,H-6),2.10(ddd,J=14.5,5.8,2.8Hz,1H,H-14β).13C NMR(151MHz,MeOD)δ179.24(C-2),142.77(C-13),136.46(C-19),131.70(C-8),129.79(C-9),129.43(C-11),122.94(C-10),115.06(C-18a),110.64(C-12),86.36(C-5),80.06(C-21),70.65(C-3),61.84(C-17α),59.35(C-6),55.32(C-7),51.39(N-Me),35.90(C-16),35.39(C-15),23.32(C-14);
P3(11-hydroxykoumine),HR-ESI-MS(m/z):323.1745[M+H]+
Figure BDA0002813593260000061
Figure BDA0002813593260000071
P4(11-hydroxygelsenicine),HR-ESI-MS(m/z):343.1706[M+H]+1H NMR(600MHz,DMSO)δ9.59(s,1H,H-11),7.24(d,J=8.2Hz,1H,H-9),6.42(dd,J=8.1,2.3Hz,1H,H-10),6.32(d,J=2.2Hz,1H,H-12),4.20(m,1H,H-5),4.18(dd,J=10.7,0.8Hz,1H,H-17α),4.11(dd,J=10.7,3.2Hz,1H,H-17β),3.80(s,3H,N-OMe),3.52(dd,J=4.4,1.8Hz,1H,H-3),2.77(t,J=9.2Hz,1H,H-15),2.45(m,2H,H-16),2.26(m,2H,H-19β),2.09(dd,J=14.6,1.6Hz,1H,H-14α),1.97(ddd,J=15.0,10.2,4.9Hz,1H,H-14β),1.93(dd,J=15.3,1.9Hz,1H,H-6β),1.14(t,J=7.3Hz,3H,H-18).13C NMR(151MHz,DMSO)δ181.74(C-20),170.99(C-2),157.61(C-11),138.65(C-13),125.52(C-9),122.21(C-8),108.97(C-10),94.44(C-12),74.64(C-3),71.72(C-5),62.91(N-OMe),61.32(C-17α),54.95(C-7),41.77(C-15),40.06(C-16),37.44(C-6α),26.63(C-14α),24.86(C-19α),9.88(C-18).
P5(18,19-(S)-hydroxydihydrogelsevirine),HR-ESI-MS(m/z):387.1991[M+H]+
Figure BDA0002813593260000072
Figure BDA0002813593260000081
P6(11-Methoxyl-14-hydroxygelseniceine),HR-ESI-MS(m/z):373.1802[M+H]+1H NMR(400MHz,MeOD)δ7.44(d,J=8.3Hz,1H,H-9),6.63(dd,J=8.4,2.4Hz,1H,H-10),6.54(d,J=2.4Hz,1H,H-12),4.42(dd,J=10.8,3.4Hz,1H,H-17β),4.31(overlapped,3H,H-5,H-14,H-17α),3.91(s,3H,N-OMe),3.81(s,3H,Ar-OMe),3.58(m,1H,H-3),2.88(dd,J=8.6,1.0Hz,1H,H-15),2.69(dt,J=22.6,7.5Hz,1H,H-19α),2.59(overlapped,2H,H-16,H-19β),2.49(dd,J=15.6,4.7Hz,1H,H-6α),2.08(dd,J=15.6,2.2Hz,1H,H-6β),1.28(t,J=7.4Hz,3H,H-18).13C NMR(151MHz,MeOD)δ184.24(C-20),173.41(C-2),161.94(C-11),140.13(C-13),126.78(C-9),124.84(C-8),109.24(C-10),95.15(C-12),80.82(C-3),72.73(C-5),66.83(C-14),63.98(N-OMe),62.07(C-17α),56.04(Ar-OMe),55.07(C-7),53.11(C-15),39.71(C-16),38.51(C-6α),26.56(C-19α),10.17(C-18).
P7(19(R)-hydroxygelselegine),HR-ESI-MS(m/z):375.2026[M+H]+
Figure BDA0002813593260000082
Figure BDA0002813593260000091
P8(gelsemoxonine A),HR-ESI-MS(m/z):391.1894[M+H]+
Figure BDA0002813593260000092
Figure BDA0002813593260000101
P9(gelsemoxonine),HR-ESI-MS(m/z):359.1666[M+H]+1H NMR(400MHz,Methanol-d4)δ7.57(dd,J=7.7,1.1Hz,1H,H-9),7.37(td,J=7.7,1.2Hz,1H,H-11),7.17(td,J=7.7,1.1Hz,1H,H-10),7.08(dd,J=7.8,0.9Hz,1H,H-12),4.51(d,J=2.4Hz,1H,H-14α),4.21(m,2H,H-17α),4.03(s,3H,N-OMe),3.83(ddd,J=8.6,4.8,1.6Hz,1H,H-5),3.73(d,J=2.7Hz,1H,H-3),3.33(m,1H,H-16),2.69(dq,J=18.3,7.2Hz,1H,H-19α),2.53(overlapped,2H,H-6α,19β),2.24(dd,J=16.0,4.8Hz,1H,H-6β),1.08(t,J=7.2Hz,3H,H-18).13C NMR(151MHz,MeOD)δ211.58(C-20),175.42(C-2),139.27(C-13),132.15(C-8),129.81(C-11),126.64(C-9),125.12(C-10),108.53(C-12),80.04(C-3),69.29(C-14),67.89(C-15),64.18(N-OMe),62.18(C-17),56.75(C-5),55.84(C-7),35.32(C-16),34.97(C-6),30.03(C-19),7.38(C-18).
P10(19-(R)-Hydroxydihydrogelsevirine),HR-ESI-MS(m/z):371.2053[M+H]+1HNMR(400MHz,MeOD)δ7.53(d,J=7.6Hz,1H,H-9),7.35(td,J=7.7,0.9Hz,1H,H-11),7.10(td,J=7.7,1.0Hz,1H,H-10),7.04(d,J=7.7Hz,1H,H-12),5.16(q,J=6.6Hz,1H,H-19),4.12(dd,J=11.2,2.1Hz,1H,H-17α),3.99(overlapped,4H,H-17β,N-OMe),3.84(s,1H,H-3),3.82(s,1H,H-5),3.29(d,J=10.8Hz,1H,H-21),2.73(d,J=10.9Hz,1H,H-21β),2.65(dd,J=14.8,2.9Hz,1H,H-14α),2.60(d,J=8.9Hz,1H,H-16),2.51(s,3H,N-Me),2.28(overlapped,2H,H-6,H-15),2.13(ddd,J=14.8,5.6,2.6Hz,1H,H-14α),1.09(d,J=6.6Hz,3H,H-18).13C NMR(151MHz,MeOD)δ175.32(C-2),140.94(C-13),129.83(C-9),129.53(C-11),128.96(C-8),124.04(C-10),108.59(C-12),72.97(C-5),70.44(C-3),64.02(N-OMe),61.58(C-17),58.94(C-21),57.79(C-20),53.67(C-7),48.69(C-6),40.22(N-Me),39.60(C-16),36.57(C-15),23.12(C-14),19.81(C-18).
P11(15-hydroxyhumantenine),HR-ESI-MS(m/z):371.2012[M+H]+1H NMR(400MHz,DMSO)δ7.46(d,J=7.5Hz,1H,H-9),7.34(t,J=7.7Hz,1H,H-11),7.11(t,J=7.5Hz,1H,H-10),7.04(d,J=7.7Hz,1H,H-12),5.78(q,J=6.8Hz,1H,H-19),4.25(dd,J=10.4,5.1Hz,1H,H-17α),3.96(d,J=10.4Hz,1H,H-17α),3.89(s,3H,N-OMe),3.54(d,J=7.7Hz,1H,H-14α),3.37(overlapped,3H,H-14α,H-21),2.50(d,J=15.3Hz,1H,H-14α),2.26(overlapped,4H,H-14α,N-Me),2.15(m,1H,H-14α),1.90(dd,J=15.3,7.8Hz,1H,H-14β),1.63(d,J=7.0Hz,3H,H-18),1.58(m,1H,H-6α).13C NMR(151MHz,DMSO)δ173.99(C-2),143.05(C-20),139.01(C-13),129.51(C-8),128.41(C-11),126.82(C-9),123.14(C-10),116.52(C-19),107.42(C-12),71.25(C-3),66.94(C-15),63.73(N-OMe),62.37(C-17),60.63(C-5),54.18(C-7),47.68(N-Me),43.88(C-16),42.71(C-21),37.02(C-14),26.08(C-6),13.09(C-18).
P12(16-epi-voacarpine),HR-ESI-MS(m/z):369.1789[M+H]+1H NMR(600MHz,MeOD)δ8.45(s,1H,N-H),7.46(d,J=7.9Hz,1H,H-9),7.35(d,J=8.2Hz,1H,H-12),7.11(ddd,J=8.1,7.2,1.0Hz,1H,H-11),7.01(m,1H,H-10),5.34(m,1H,H-19),4.59(d,J=5.8Hz,1H,H-5),4.25(m,1H,H-21),3.70(s,3H,COOCH3),3.59(d,J=10.6Hz,1H,H-17α),3.52(d,J=10.6Hz,1H,H-17β),3.41(dd,J=10.0,8.6Hz,1H,H-21β),3.31(m,36H,H-6β),3.28(dd,J=3.4,2.6Hz,1H,H-15),3.18(dd,J=16.4,6.2Hz,1H,H-6α),2.32(dd,J=14.4,3.8Hz,1H,H-14β),1.91(dd,J=14.4,2.2Hz,1H,H-14α),1.65(dt,J=6.9,2.0Hz,3H,H-18).13C NMR(151MHz,MeOD)δ176.43(COOCH3),138.68(C-2),137.53(C-13),127.09(C-8),123.08(C-11),120.15(C-10),119.64(C-9,C-20),117.95(C-19),112.47(C-12),107.85(C-7),82.80(C-3),64.29(C-17),59.80(C-5),58.33(C-16),54.93(COOCH3),52.65(C-21),38.04(C-15),35.47(C-14),22.43(C-6),13.11(C-18).
P13(koumidine),HR-ESI-MS(m/z):295.1820[M+H]+1H NMR(400MHz,MeOD)δ7.41(d,J=7.7Hz,1H,H-9),7.28(d,J=8.0Hz,1H,H-12),7.06(m,1H,H-11),6.98(m,1H,H-10),5.39(m,1H,H-19),4.17(dd,J=10.2,3.1Hz,1H,H-3),3.80(d,J=17.2Hz,1H,H-21α),3.67(d,J=18.0Hz,1H,H-21β),3.62(m,1H,H-5),3.52(dd,J=10.8,6.5Hz,1H,H-17α),3.16(dd,J=10.8,8.9Hz,1H,H-17β),3.04(d,J=15.6Hz,1H,H-6β),2.94(dd,J=16.2,5.8Hz,1H,H-6α),2.46(dd,J=5.6,2.9Hz,1H,H-15),2.27(m,1H,H-16),1.94(m,1H,H-14α),1.86(dt,J=13.0,3.3Hz,1H,H-14β),1.61(d,J=6.8Hz,3H,H-18).13C NMR(151MHz,MeOD)δ141.50(C-20),138.20(C-2),137.90(C-13),127.43(C-8),122.20(C-11),119.85(C-10),118.76(C-9),115.68(C-19),111.97(C-12),105.83(C-7),61.12(C-17),54.55(C-21),54.24(C-5),51.13(C-3),44.10(C-16),35.00(C-15),29.23(C-14),23.27(C-6),12.55(C-18).
P14(Nb-demethylgelsevirine),HR-ESI-MS(m/z):339.1708[M+H]+1H NMR(600MHz,MeOD)δ7.58(d,J=7.6Hz,1H,H-9),7.39(td,J=7.7,1.1Hz,1H,H-11),7.14(td,J=7.7,1.1Hz,1H,H-10),7.07(dd,J=7.8,0.5Hz,1H,H-12),6.23(dd,J=17.8,11.1Hz,1H,H-19),5.28(dd,J=11.1,0.5Hz,1H,H-18b),5.19(dd,J=17.8,0.6Hz,1H,H-18a),4.40(d,J=0.9Hz,1H,H-5),4.10(dd,J=11.4,2.0Hz,1H,H-17β),4.04(dd,J=11.3,2.2Hz,1H,H-17α),3.97(s,3H,N-OMe),3.82(m,1H,H-3),3.20(d,J=12.0Hz,1H,H-21α),3.13(d,J=11.9Hz,1H,H-21β),2.87(dd,J=14.7,2.9Hz,1H,H-14α),2.69(m,1H,H-15),2.52(d,J=7.9Hz,1H,H-16),2.16(ddd,J=14.7,5.8,2.8Hz,1H,H-14β),2.08(m,1H,H-6).13C NMR(151MHz,MeOD)δ173.09(C-2),140.74(C-13),135.90(C-19),130.23(C-11),129.44(C-9),127.90(C-8),124.35(C-10),116.58(C-18),108.76(C-12),70.50(C-3),66.17(C-5),64.01(N-OMe),60.86(C-17),54.14(C-21),53.06(C-6),52.97(C-7),52.28(C-20),41.10(C-16),36.72(C-15),23.39(C-14).
P15(normacusine B),HR-ESI-MS(m/z):295.1775[M+H]+1H NMR(600MHz,MeOD)δ8.46(s,1H,N-H),7.46(m,1H,H-9),7.34(dt,J=8.2,0.8Hz,1H,H-12),7.13(ddd,J=8.2,7.1,1.1Hz,1H,H-11),7.04(ddd,J=7.9,7.2,0.9Hz,1H,H-10),5.53(m,1H,H-19),4.70(d,J=9.2Hz,1H,H-3),4.09(d,J=16.4Hz,1H,H-21α),4.00(d,J=16.5Hz,1H,H-21β),3.53(d,J=1.5Hz,1H,H-17α),3.35(m,1H,H-17β),3.25(dd,J=16.1,5.1Hz,1H,H-6α),2.95(d,J=16.1Hz,1H,H-6β),2.54(m,1H,H-15),2.36(ddd,J=12.6,10.4,2.1Hz,1H,H-5),1.95(m,2H,H-14),1.66(dt,J=6.9,1.4Hz,3H,H-18).13C NMR(151MHz,MeOD)δ138.54(C-2),134.97(C-13),130.63(C-20),127.99(C-8),123.21(C-9),121.79(C-18),120.48(C-10),118.99(C-19),112.36(C-12),103.42(C-7),64.47(C-17),58.41(C-21),53.38(C-5),52.66(C-3),44.16(C-16),34.64(C-14),34.50(C-15),26.86(C-6),12.79(C-18).
P16(19-(Z)-akuammidine),HR-ESI-MS(m/z):353.1918[M+H]+1H NMR(400MHz,DMSO)δ10.66(s,1H,N-H),7.31(d,J=7.6Hz,1H,H-9),7.23(d,J=8.0Hz,1H,H-12),6.97(m,1H,H-11),6.90(m,1H,H-10),5.32(qd,J=6.6,4.4Hz,1H,H-19),4.67(t,J=5.2Hz,1H,OH),4.06(d,J=8.7Hz,1H,H-3),3.53(m,2H,H-17),3.47(s,2H,H-21),3.23(m,1H,H-6β),2.87(s,3H,COOCH3),2.65(m,3H,H-14β,H-15),2.45(m,1H,H-6α),1.75(m,1H,H-14α),1.54(d,J=6.7Hz,3H,H-18).13C NMR(151MHz,DMSO)δ172.75(COOCH3),139.80(C-20),138.83(C-2),136.25(C-13),126.45(C-8),120.09(C-11),118.05(C-9),117.21(C-10),115.06(C-19),110.89(C-12),103.97(C-7),67.52(C-17),57.38(C-5),52.76(C-21),51.32(C-16),50.32(C-3),49.55(COOCH3),35.49(C-15),30.13(C-14),24.05(C-6),12.29(C-13).
P17(khasuanine A),HR-ESI-MS(m/z):353.1972[M+H]+1H NMR(400MHz,MeOD)δ7.37(d,J=7.7Hz,1H,H-9),7.26(d,J=8.1Hz,1H,H-12),7.04(m,1H,H-11),6.96(m,1H,H-10),5.45(m,1H,H-19),4.23(d,J=9.5Hz,1H,H-16),3.78(d,J=9.7Hz,1H,H-15α),3.68(d,J=8.6Hz,1H,H-15β),3.63(m,1H,H-5),3.52(m,1H,H-22α),3.41(dd,J=16.6,3.1Hz,1H,H-22β),3.25(dd,J=4.1,1.3Hz,1H,H-21),2.94(s,3H,H-23),2.84(m,2H,H-6β),2.70(ddd,J=13.1,4.2,1.9Hz,1H,H-17α),1.90(m,1H,H-17β),1.68(dt,J=6.8,1.9Hz,2H,H-18).13C NMR(151MHz,MeOD)δ174.69(C-3),138.48(C-2),138.45(C-13),137.76(C-20),127.92(C-8),122.10(C-11),119.72(C-10),118.61(C-9),111.97(C-12),106.10(C-7),68.93(C-15),59.04(C-5),56.09(C-22),52.65(C-15),51.98(C-23),51.61(C-16),30.29(C-21),30.07(C-17),25.01(C-6),13.30(C-18).
P18(19-(E)-akuammidine),HR-ESI-MS(m/z):353.1915[M+H]+1H NMR(400MHz,MeOD)δ7.44(d,J=7.7Hz,1H,H-9),7.29(d,J=8.0Hz,1H,H-12),7.07(m,1H,H-11),6.99(m,1H,H-10),5.32(m,1H,H-19),4.29(d,J=6.4Hz,1H,H-5),4.14(dd,J=10.4,3.3Hz,1H,H-3),3.69(s,3H,N-Me),3.64(overlapped,4H,H-17,H-21),3.28(d,J=16.9Hz,1H,H-6α),3.20(t,J=2.9Hz,1H,H-15),3.08(dd,J=16.3,6.5Hz,1H,H-6β),1.98(ddd,J=13.1,10.5,2.4Hz,1H,H-14α),1.85(dt,J=13.5,3.5Hz,1H,H-14β),1.64(dt,J=6.9,2.0Hz,3H,H-18).13C NMR(151MHz,MeOD)δ138.12(C-20),137.54(C-2),136.49(C-13),127.52(C-8),122.33(C-11),119.91(C-9),119.06(C-10),117.71(C-19),112.01(C-12),105.76(C-7),64.42(C-17),56.14(C-21),55.43(C-5),55.35(C-16),52.48(N-Me),50.21(C-3),32.32(C-15),29.88(C-14),23.15(C-6),13.07(C-18).
P19(koumine),HR-ESI-MS(m/z):307.1747[M+H]+1H NMR(400MHz,Methanol-d4)δ7.63(d,J=7.2Hz,1H,H-12),7.53(d,J=7.5Hz,1H,H-9),7.38(td,J=7.6,1.3Hz,1H,H-11),7.31(td,J=7.5,1.2Hz,1H,H-10),4.91(ddd,J=3.6,2.3,1.1Hz,1H,H-3),4.86(dd,J=17.7,1.2Hz,1H,H-18a),4.80(dd,J=11.3,1.1Hz,1H,H-18b),4.67(dd,J=17.6,11.2Hz,1H,H-19),4.30(dd,J=12.0,4.6Hz,1H,H-17α),3.62(d,J=12.0Hz,1H,H-17β),3.25(d,J=11.8Hz,1H,H-21α),2.99(d,J=11.9Hz,1H,H-21β),2.91(td,J=3.7,2.1Hz,1H,H-16),2.86(m,1H,H-5),2.72(dt,J=14.9,3.8Hz,1H,H-3α),2.63(s,3H,N-H),2.40(t,J=1.9Hz,1H,H-6α),2.39(d,J=3.5Hz,1H,H-15),2.35(m,1H,H-6β),1.85(dt,J=14.8,2.3Hz,1H,H-6β).13C NMR(151MHz,MeOD)δ187.96(C-2),155.00(C-13),144.65(C-8),138.05(C-19),129.50(C-11),127.72(C-10),124.61(C-9),121.44(C-12),116.86(C-18),71.90(C-3),61.96(C-17),59.04(C-7),58.18(C-21),57.73(C-5),46.63(C-20),42.87(N-Me),38.63(C-16),34.03(C-15),30.48(C-6),25.96(C-14).
P20(gelsenicine),HR-ESI-MS(m/z):327.1668[M+H]+1H NMR(400MHz,Methanol-d4)δ7.54(d,J=7.5Hz,1H,H-9),7.29(td,J=7.8,0.8Hz,1H,H-11),7.09(td,J=7.6,0.7Hz,1H,H-10),6.94(d,J=7.7Hz,1H,H-12),4.31(m,1H,H-5),4.27(dd,J=11.1,3.1Hz,1H,H-17β),3.91(s,3H,N-OMe),3.67(dd,J=4.3,1.9Hz,1H,H-3),2.99(t,J=9.2Hz,1H,H-15),2.66(dd,J=16.7,7.6Hz,1H,H-19α),2.59(m,1H,H-16),2.48(dd,J=15.5,4.6Hz,2H,H-6α),2.30(dd,J=15.0,2.2Hz,1H,H-14α),2.18(ddd,J=14.9,10.0,4.6Hz,1H,H-14β),2.09(dd,J=15.5,2.3Hz,1H,H-6β),1.26(t,J=7.5Hz,3H,H-18).13C NMR(151MHz,MeOD)δ187.55(C-20),173.06(C-2),139.11(C-13),133.50(C-8),129.34(C-11),125.92(C-9),124.62(C-10),107.78(C-12),76.25(C-3),73.27(C-5),63.88(N-OMe),62.62(C-17),57.42(C-7),43.63(C-15),40.93(C-16),38.61(C-6),28.01(C-14),27.99(C-19),10.24(C-18).
P21(dihydrokoumine),HR-ESI-MS(m/z):309.1982[M+H]+1H NMR(400MHz,MeOD)δ7.21(d,J=7.4Hz,1H,H-9),7.03(td,J=7.7,1.1Hz,1H,H-11),6.75(td,J=7.4,0.8Hz,1H,H-10),6.66(d,J=7.7Hz,1H,H-12),5.57(dd,J=18.3,11.0Hz,1H,H-19),4.63(dd,J=5.2,1.0Hz,1H,3),4.24(m,1H,H-18),4.20(dd,J=11.9,5.0Hz,1H,H-18β),3.62(d,J=11.9Hz,1H,H-17),3.42(d,J=2.3Hz,1H,H-2),2.75(overlapped,2H,H-5,H-21),2.60(overlapped,2H,H-6β,H-16),2.50(s,3H,N-Me),2.46(d,J=11.7Hz,1H,H-21β),2.21(overlapped,3H,H-14,H-15),2.06(dd,J=14.6,3.9Hz,1H,H-6α).13C NMR(151MHz,MeOD)δ153.54(C-13),142.59(C-19),135.12(C-8),128.88(C-11),124.25(C-9),119.84(C-10),113.64(C-18),111.46(C-12),76.94(C-2),70.47(C-3),62.43(C-17),59.10(C-5),58.88(C-21),47.24(C-7),42.83(C-20),42.45(N-Me),38.53(C-16),33.04(C-6),30.98(C-15),20.87(C-14).
P22(gelsevirine),HR-ESI-MS(m/z):353.1857[M+H]+1H NMR(400MHz,Methanol-d4)δ7.54(d,J=7.6Hz,1H,H-9),7.34(td,J=7.7,1.0Hz,1H,H-11),7.09(td,J=7.7,1.0Hz,1H,H-10),7.03(d,J=7.7Hz,1H,H-12),6.21(dd,J=17.8,11.0Hz,1H,H-19),5.09(dd,J=11.0,1.2Hz,1H,H-18b),5.01(dd,J=17.8,1.2Hz,1H,H-18a),4.11(dd,J=11.0,2.2Hz,1H,H-17α),3.96(overlapped,3H,N-OMe),3.93(overlapped,1H,H-17β),3.72(tt,J=2.9,1.1Hz,1H,H-3),3.52(d,J=1.4Hz,1H,H-5),2.81(dd,J=14.5,3.0Hz,1H,H-14α),2.76(d,J=10.5Hz,1H,H-21α),2.48(d,J=8.3Hz,1H,H-16),2.37(d,J=6.0Hz,1H,H-15),2.32(d,J=10.6Hz,1H,H-21β),2.25(s,3H,N-Me),2.04(ddd,J=14.5,5.7,2.8Hz,1H,H-14β),1.95(m,1H,H-6).13C NMR(151MHz,MeOD)δ174.59(C-2),140.68(C-13),139.26(C-19),129.59(C-9,C-11),129.21(C-8),124.03(C-10),113.83(C-18),108.40(C-12),73.33(C-5),70.73(C-3),66.60(C-21),63.96(N-OMe),62.17(C-17),55.17(C-20),53.65(C-17),52.22(C-6),40.36(N-Me),38.88(C-16),37.11(C-15),23.91(C-14).
P23((4R)-Gelsevirine N4-oxide),HR-ESI-MS(m/z):369.1771[M+H]+1H NMR(400MHz,MeOD)δ7.66(dd,J=7.4,0.4Hz,1H,H-12),7.58(d,J=7.6Hz,1H,H-9),7.44(td,J=7.6,1.2Hz,1H,H-11),7.36(td,J=7.5,1.1Hz,1H,H-10),5.00(d,J=17.9Hz,1H,H-18a),4.95(d,J=11.4Hz,2H,H-18b),4.64(dd,J=17.9,11.4Hz,1H,H-19),4.38(dd,J=12.5,5.0Hz,1H,H-17α),4.09(d,J=13.9Hz,1H,H-21α),4.00(d,J=13.9Hz,1H,H-21β),3.73(overlapped,2H,H-5,H-17β),3.56(s,3H,N-OMe),3.45(m,1H,H-6α),3.14(m,1H,H-16),2.79(dt,J=15.1,3.8Hz,1H,H-14α),2.58(dd,J=15.4,3.7Hz,1H,H-6β),2.48(m,1H,H-15),1.91(dt,J=15.1,2.0Hz,1H,H-14β).13C NMR(151MHz,MeOD)δ186.14(C-2),155.18(C-13),143.35(C-8),134.97(C-19),130.14(C-11),128.19(C-10),124.72(C-9),121.91(C-12),119.14(C-18a),74.11(C-5),73.02(C-21),71.52(C-3),60.77(C-17),59.66(C-7),56.62(N-OMe),47.28(C-20),35.86(C-16),31.54(C-15),27.49(C-6),25.23(C-14).
P24(11-methoxy-19-hydroxygelselegine),HR-ESI-MS(m/z):405.2030[M+H]+1HNMR(400MHz,DMSO)δ7.29(d,J=8.3Hz,1H,H-9),6.64(dd,J=8.3,2.4Hz,1H,H-10),6.60(d,J=2.3Hz,1H,H-12),4.32(q,J=6.1Hz,1H,H-19),4.23(d,J=10.8Hz,1H,H-17α),4.13(dd,J=10.9,3.9Hz,1H,H-17β),3.91(s,3H,N-OMe),3.78(s,3H,O-Me),3.47(overlapped,2H,H-5,H-21α),3.39(d,J=6.1Hz,1H,H-3),3.30(d,J=10.9Hz,1H,H-21β),2.67(m,1H,H-16),2.31(ddd,J=10.3,5.8,1.5Hz,1H,H-15),2.20(d,J=15.9Hz,1H,H-14α),2.05(dd,J=15.8,3.7Hz,1H,H-6β),1.92(m,1H,H-14β),1.81(dd,J=15.8,2.4Hz,1H,H-6α),1.20(d,J=6.3Hz,3H,H-18).13C NMR(151MHz,DMSO)δ174.78(C-2),159.71(C-11),138.85(C-13),126.31(C-9),123.37(C-8),107.97(C-10),94.06(C-12),74.69(C-3),68.61(C-20),67.18(C-19),63.46(C-17),62.82(C-21),62.03(N-OMe),59.08(C-5),56.48(C-7),55.51(OMe),38.56(C-16),35.41(C-15),33.32(C-6),22.72(C-14),19.26(C-18).

Claims (1)

1.一种钩吻中生物碱的制备方法,其特征在于:
采用制备型三维高效液相色谱从钩吻粗碱中高效分离纯化生物碱,第一维制备采用酸性流动相体系,极性共聚的碳十八柱XCharge C18;第二维制备采用碱性流动相体系,采用C8CE色谱柱;第三维制备采用碱性流动相体系,采用C18CE色谱柱;流动相由流动相A水、流动相B甲醇和/或乙腈组成,采用甲酸、乙酸中的一种或二种作为酸性流动相A和/或流动相B的添加剂,采用氨水、三乙胺、乙酸三乙胺中的一种或二种作为碱性流动相A和/或流动相B的添加剂;
色谱操作参数如下:色谱柱内径为4.6-100 mm;样品浓度为1 mg/mL-1 g/mL;进样量为1 mL-100 mL;流速为0.7-100 mL/min;柱温为25-40oC;
操作步骤为:
1)钩吻粗碱先经过第一维高效液相色谱分离,色谱柱为极性共聚的碳十八柱,洗脱方式为线性梯度和/或台阶梯度,收集一维制备的馏分;
2)一维制备的馏分经过第二维分离,色谱柱为可耐碱性的碳八柱,选择所述的流动相对馏分进行第二维制备;
3)二维制备的馏分经过第三维分离,色谱柱为可耐碱性的碳十八柱,选择所述的流动相对馏分进行第三维制备;获得生物碱单体;
所述钩吻粗碱的制备方法为:称取5公斤~200公斤的钩吻根茎粉末,用粉末5~30倍质量的体积浓度50%~95%乙醇溶液在50-100oC加热提取、固液分离,收集提取液,固体产物中加入粉末5~30倍质量的体积浓度50%~95%乙醇溶液再次重复提取、固液分离操作过程0-4次,即共提取1-5次,每次提取的时间为1-3小时,合并提取液抽滤,液体用旋转蒸发仪40~80°C条件下回收乙醇,浓缩至20-150 L;加入体积浓度5%~20%硫酸调pH=2-4,采用乙酸乙酯进行萃取,除去中性成分,收集水层;向水层加入质量深度10%~30%NaOH水溶液,使其pH=19-11,再采用二氯甲烷、氯仿、正丁醇有机溶剂中的一种或二种以上对水层再次进行萃取,收集有机溶剂层;20~40°C条件下除有机溶剂得到粗碱;
步骤1)中钩吻粗碱经第一维制备,梯度洗脱参数为:梯度时间范围为30-150 min,采用线性梯度或台阶梯度进行洗脱,其中流动相B体积浓度变化为由0%~15%到60%~100%,流动相A和流动相B中添加剂甲酸的体积比例为0.05%~1%,流速为50-100 mL/min,检测器波长选择为190-400 nm;
采用5%~30%甲酸溶液及甲醇或乙腈对钩吻粗碱进行溶解,得到浓度为50-300 mg/mL的样品,进样量为5-100 mL,根据色谱分离情况按色谱峰进行馏分收集,将每个馏分减压浓缩至干备用,以进行第二维分离;
步骤2)中选取一维制备馏分中的代表性馏分,采用C8CE色谱柱进行第二维制备;洗脱参数为:梯度时间范围为20-80 min,流动相B体积浓度变化为由10%~60%到40%~100%,流动相A中添加剂氨水的质量比例为0.05%~5%,流速为10-100 mL/min,检测波长为190-400 nm;根据色谱分离情况按色谱峰进行馏分收集,将每个馏分减压浓缩至干备用,以进行第二维分离;
步骤3)中选取二维制备馏分中的代表性馏分,采用C18CE色谱柱进行第三维制备;洗脱参数为:梯度时间范围为20-80 min,流动相B体积浓度变化为由10%~60%到40%~100%,流动相A和流动相B中添加剂乙酸的体积比例为0.05%~5%、三乙胺的体积比例为0.05%~5%,流速为10-100 mL/min,检测波长为190-400 nm;按色谱峰进行馏分收集,并进行浓缩,获得生物碱单体。
CN202011404652.3A 2020-12-03 2020-12-03 一种钩吻中生物碱的制备方法 Active CN114605423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011404652.3A CN114605423B (zh) 2020-12-03 2020-12-03 一种钩吻中生物碱的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011404652.3A CN114605423B (zh) 2020-12-03 2020-12-03 一种钩吻中生物碱的制备方法

Publications (2)

Publication Number Publication Date
CN114605423A CN114605423A (zh) 2022-06-10
CN114605423B true CN114605423B (zh) 2023-04-14

Family

ID=81856859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011404652.3A Active CN114605423B (zh) 2020-12-03 2020-12-03 一种钩吻中生物碱的制备方法

Country Status (1)

Country Link
CN (1) CN114605423B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011466B (zh) * 2007-02-06 2010-11-17 南方医科大学 钩吻总生物碱的提取方法
CN104276973B (zh) * 2013-07-05 2017-05-10 中国科学院大连化学物理研究所 一种羟基肉桂酸胺类生物碱及其制备和应用
CN107987087A (zh) * 2017-10-30 2018-05-04 福建医科大学 中压制备液相色谱分离纯化钩吻素子的方法
CN107929367B (zh) * 2017-10-30 2021-02-19 福建医科大学 离子交换法从钩吻中分离制备钩吻生物碱的方法
CN107936033A (zh) * 2017-10-30 2018-04-20 福建医科大学 工业制备液相色谱分离纯化钩吻素子的方法
CN111233757B (zh) * 2018-11-28 2022-11-15 中国科学院大连化学物理研究所 一种夜交藤中极性化合物的纯化制备方法
CN111560024B (zh) * 2020-05-13 2021-06-08 湖南农业大学 一种高速逆流色谱结合制备液相色谱从钩吻生物碱中分离钩吻生物碱单体的方法

Also Published As

Publication number Publication date
CN114605423A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN101260138B (zh) 一种远志酸和远志皂苷元的高效分离提纯方法
CN108276271B (zh) 一种从迷迭香中同时制备高纯度鼠尾草酚和鼠尾草酸的方法
CN114605423B (zh) 一种钩吻中生物碱的制备方法
CN111560024B (zh) 一种高速逆流色谱结合制备液相色谱从钩吻生物碱中分离钩吻生物碱单体的方法
CN114414701B (zh) 一种诃子肉中诃子酸制备方法及其含量测定方法
CN109265494B (zh) 从滇山茶中提取山奈酚葡萄糖苷类化合物的方法
CN109400665B (zh) 从毛冬青中制备四种三萜类化合物对照品的方法
CN114414702B (zh) 一种诃子肉中诃黎勒酸制备方法及其含量测定方法
CN103145729B (zh) 银杏内酯b化合物及其制备方法
CN114989152A (zh) 铁皮石斛叶中分离制备两种芹菜素糖苷的方法
CN111233757B (zh) 一种夜交藤中极性化合物的纯化制备方法
CN109320572B (zh) 从滇山茶中提取黄酮类化合物的方法
CN102584779B (zh) 一种联苯环辛烯类木脂素化合物的制备方法
CN1318438C (zh) 鞣料云实素的制备方法
CN108383884B (zh) 一种不稳定西红花苷的分离纯化方法
CN110687224A (zh) 雷公藤药材及其制剂雷公藤多苷片中雷公藤内酯甲的测定方法
CN111363000B (zh) 一种从七叶皂苷钠中分离制备两种微量成分的方法
CN116003371B (zh) 一种萜类化合物及其提取方法和用途
CN111454319B (zh) 一种从七叶皂苷钠中分离制备一种微量成分的方法
CN109232674B (zh) 从南山茶中提取白杨素-8-C-β-D-葡萄糖苷的方法
CN111574362B (zh) 一种脂肪酸类化合物
CN116003238B (zh) 茉莉根中倍半萜类化合物及其提取方法和用途
CN114349808B (zh) 一种大萼香茶菜皂苷a和b单体的分离纯化方法及其应用
CN102464635B (zh) 一种牛蒡子苷元的分离纯化方法
CN109369751B (zh) 二氢山奈酚糖苷类化合物及其提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant