CN114574726A - 一种FeCoCu中熵合金粘结相硬质合金的制备方法 - Google Patents

一种FeCoCu中熵合金粘结相硬质合金的制备方法 Download PDF

Info

Publication number
CN114574726A
CN114574726A CN202210197778.0A CN202210197778A CN114574726A CN 114574726 A CN114574726 A CN 114574726A CN 202210197778 A CN202210197778 A CN 202210197778A CN 114574726 A CN114574726 A CN 114574726A
Authority
CN
China
Prior art keywords
fecocu
powder
preparing
entropy alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210197778.0A
Other languages
English (en)
Other versions
CN114574726B (zh
Inventor
程继贵
陈睿智
王彬
陈鹏起
李雨阳
许荡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210197778.0A priority Critical patent/CN114574726B/zh
Publication of CN114574726A publication Critical patent/CN114574726A/zh
Application granted granted Critical
Publication of CN114574726B publication Critical patent/CN114574726B/zh
Priority to US18/092,211 priority patent/US11718899B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1054Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种FeCoCu中熵合金粘结相硬质合金的制备方法,属于新型粘结相超细晶硬质合金的制备领域。本发明的制备方法包括如下步骤:1)通过溶液燃烧合成法制备FeCoCu前驱体粉末;2)通过机械合金化制备FeCoCu中熵合金粉;3)所得FeCoCu中熵合金粉与超细WC粉末以及成形剂等均匀混合,制得混合料并压制成形,4)成形坯体预烧脱除成形剂后,通过微波烧结制得WC‑FeCoCu硬质合金。本发明的制备方法可降低烧结温度和时间,可在降低成本的同时,获得晶粒细小、高硬度并且具有良好韧性的新型硬质合金。

Description

一种FeCoCu中熵合金粘结相硬质合金的制备方法
技术领域
本发明属于新型粘结相超细晶硬质合金的制备领域,具体涉及一种以FeCoCu中熵合金作粘结相超细晶硬质合金的快速制备方法。
背景技术
WC-Co基硬质合金是以WC作为硬质相,金属Co作为粘结相,通过粉末冶金工艺生产的一类合金。因其具有高硬度、高耐磨性、以及高抗压强度,作为工具材料广泛应用于军工、航天航空、机械加工、石油钻井、矿山工具、电子通讯、建筑等领域。但常规液相烧结制备WC-Co硬质合金时,WC晶粒易长大,使得合金的性能变差。另一方面,随着Co在新能源材料、高温合金等领域应用扩大,其资源日益紧张。随着现代工业技术的发展,服役条件更加苛刻,对高性能硬质合金的需求日益增加,对其组织性能也提出新的要求。研究开发具有超细晶组织结构的新型粘低钴或无钴结相硬质合金具有重要意义。
中熵合金是三种金属元素按照等原子比或近等原子比形成的合金,因具有简单的晶体结构和低的堆垛层错,其强度高于其中任一组元的,并由于高韧性以及良好的断裂韧性,近年来受到越来越多的关注。Gao等(高鹏,马自豪,顾及,倪颂,索涛,李玉龙,宋旼,米耀荣,廖晓舟.CrCoNi中熵合金优异的高应变速率拉伸学性能(英文)[J/OL].Science ChinaMaterials:1-9[2022-01-14].)通过真空感应熔炼制备了CrCoNi中熵合金,实验结果表明CrCoNi合金具有高强度的同时,表现出优异的塑性,是一种具有良好应用前景的合金材料。然而真空熔炼等方式制备中熵合金成本较高,难以应用于工业生产,机械合金化制备中熵合金粉则成本较低。机械合金化过程中若不添加无水乙醇等研磨介质则会导致各组元分布不均匀,影响试样性能;若加入研磨介质则会降低球磨能量,降低制备效率。公开号为CN109371307A的中国专利公开了一种以高熵合金粉末为粘结剂的WC基硬质合金的制备方法,但该专利要求直接使用高能球磨制备高熵合金粉。此方法未能成功制备成分均匀的高熵合金粉作为粘结相,导致硬质合金试样中组织不均匀,WC晶粒尺寸差别较大。
WC-Co硬质合金的性能随着其中WC晶粒尺寸的减小而提高,WC晶粒通过溶解-析出机制长大,难以获得超细晶硬质合金。使用快速烧结是解该问题的有效途径。然而众多快速烧结方式中放电等离子烧结、热压烧结等因其成本较高,无法实现大规模制备,难以应用于实际工业生产。微波烧结作为新型快速烧结方式,因其独特的烧结机制快速而整体加热材料,使得材料的烧结过程大大缩短,被广泛应用于陶瓷材料的制备。Ehsan Ghasali(Ghasali E,Alizadeh M,Ebadzadeh T,et al.Investigation on microstructural andmechanical properties of B4C–aluminum matrix composites prepared by microwavesintering[J].Journal of Materials Research and Technology,2015,26(4).)使用微波烧结在850℃成功制备了晶粒尺寸均匀,力学性能优异的B4C-Al陶瓷材料。目前尚未有报道使用微波烧结制备中熵合金粘结相硬质合金。
因此,通过对于粘结相的改进以及采用超细WC粉末作为原料结合微波烧结可以获得新型组织结构和性能优异的硬质合金,更好满足现代工业需求。
发明内容
本发明旨在提供一种FeCoCu中熵合金粘结相硬质合金的制备方法,用以解决硬质合金中碳化钨异常长大以及传统硬质合金性能难以满足现代工业需求的问题。
本发明为实现发明目的,采用如下技术方案:
一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,按如下步骤进行:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按一定的摩尔比例溶于去离子水中,经超声振荡后得到混合溶液,将溶液在马弗炉中加热,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤一所得氧化物前驱体粉末充分研磨,经氢气还原,制得FeCoCu混合粉末,再经高能球磨、筛分后制得FeCoCu中熵合金粉末。
步骤三、制备WC-FeCoCu粉末混合料
将步骤二所得FeCoCu中熵合金粉末与超细WC粉按一定质量比例混合,加入一定质量比的聚乙二醇(PEG)作为成形剂,无水乙醇作为介质,经球磨后所得混合料浆进行真空干燥、研磨筛分,制得WC-FeCoCu粉末混合料。
步骤四、制备WC-FeCoCu烧结体
将步骤三所得WC-FeCoCu粉末混合料于钢模中以100-300MPa压力压制成形后,置于管式炉中在氢气气氛下脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下进行微波烧结,制得WC-FeCoCu硬质合金。
进一步地,步骤一中所述的硝酸钴、硝酸铜、硝酸铁、甘氨酸比例为1:1:1:(3-9)。
进一步地,步骤一中所述混合溶液的加热温度为200-350℃,加热时间为1-5h。
进一步地,步骤二中所述氧化物前驱体粉末的还原温度为500-750℃,还原时间为1-4h。
进一步地,步骤二中所述高能球磨过程中的球料比为5:1-20:1,球磨转速为100-500rpm,球磨时间为12-72h。
进一步地,步骤三中所述超细WC粉末的粒径范围为0.4-0.8μm。
进一步地,步骤三中所述超细WC粉与FeCoCu中熵合金粉末质量比为7:3-19:1,PEG为WC-FeCoCu总质量的1%-5%。
进一步地,步骤三中所述球磨过程中的球料比为3:1-10:1,转速为100-400rpm,球磨时间为12-72h。
进一步地,步骤四中所述脱除成形剂的温度为400-800℃,保温时间为1-5h。
进一步地,步骤四中所述微波烧结温度为1100-1500℃,烧结时间为10-60min。
与现有技术相比,本发明FeCoCu中熵合金粘结相硬质合金的制备方法,具有以下有益效果:
1、本发明的方法通过溶液燃烧合成法和机械合金化得到FeCoCu中熵合金粉,相比直接混合后机械合金化组织更加均匀,有利于提高硬质合金的综合性能。
2、本发明的方法使用中熵合金取代钴作为硬质合金粘结相既提高了硬质合金的综合性能,同时减少了钴资源的使用。
3、本发明的方法采用了微波烧结制备WC-FeCoCu硬质合金,相比传统烧结方式大大缩短了烧结时间,有效节约资源;同时快速烧结方式有效抑制了WC晶粒的异常长大,硬质合金晶粒细小,有利于进一步提高硬质合金综合力学性能。
4、本发明的方法工艺简单,可制备不同形状尺寸的WC-FeCoCu硬质合金,适合规模化生产,具有良好的工业应用前景。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细地说明。
图1为本发明FeCoCu中熵合金粘结相硬质合金的制备方法的工艺流程图;
图2为本发明实施例3制备得到的WC-10FeCoCu硬质合金的背散射扫描电镜图;
图3为本发明实施例3制备得到的WC-10FeCoCu硬质合金断口的扫描电镜图。
具体实施方式
以下通过特定的具体实例详细描述本发明的实施方式,但是以下具体实施方式本质上仅是示例,本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
除非另有指明,本发明中使用的所有技术和科学术语与本领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本领域技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
图1为本发明FeCoCu中熵合金粘结相硬质合金的制备方法的工艺流程图;以下按照图1所示的工艺流程图对本发明的FeCoCu中熵合金粘结相硬质合金的制备方法进行详细的说明。
实施例1
本实施例一种FeCoCu中熵合金粘结相硬质合金的制备方法,具体步骤如下:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按1:1:1:9的摩尔比例溶解于100mL去离子水中,经超声振荡得到混合溶液,将溶液在马弗炉中于350℃加热1h,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤一所得氧化物前驱体粉末充分研磨,然后在750℃下经氢气还原2h,得到FeCoCu混合粉末。所得FeCoCu混合粉末经高能球磨、筛分后制得FeCoCu中熵合金粉末。高能球磨球料比为20:1,球磨转速为100rpm,球磨时间12h。
步骤三、制备WC-FeCoCu粉末混合料
将步骤二所得FeCoCu中熵合金粉末与0.8μm的超细WC粉按质量比2:8混合,加入WC-20FeCoCu总质量1%聚乙二醇(PEG)作为成形剂和100mL无水乙醇,经球磨后所得混合料浆进行真空中干燥、研磨筛分,制得WC-20FeCoCu(质量分数)粉末混合料。高能球磨球料比为5:1,球磨转速为200rpm,球磨时间72h。
步骤四、制备WC-FeCoCu烧结体
将步骤三所得WC-20FeCoCu粉末混合料于钢模中以100MPa压力压制成形后,置于管式炉中在氢气气氛下于400℃预烧3h脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下于1200℃下烧结35min,制得WC-10FeCoCu硬质合金烧结体。
实施例2
本实施例一种FeCoCu中熵合金粘结相硬质合金的制备方法,具体步骤如下:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按1:1:1:3的摩尔比例溶解于100mL去离子水中,经超声振荡得到混合溶液,将溶液在马弗炉中于350℃加热1h,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤一所得氧化物前驱体粉末充分研磨,然后在500℃下经氢气还原4h,得到FeCoCu混合粉末。所得FeCoCu混合粉末经高能球磨、筛分后制得FeCoCu中熵合金粉末。高能球磨球料比为5:1,球磨转速为500rpm,球磨时间72h。
步骤三、制备WC-FeCoCu粉末混合料
将步骤二所得FeCoCu中熵合金粉末与0.8μm的超细WC粉按质量比3:7混合,加入WC-30FeCoCu总质量2.5%聚乙二醇(PEG)作为成形剂和100mL无水乙醇,经球磨后所得混合料浆进行真空中干燥、研磨筛分,制得WC-30FeCoCu(质量分数)粉末混合料。高能球磨球料比为3:1,球磨转速为400rpm,球磨时间12h。
步骤四、制备WC-FeCoCu烧结体
将步骤三所得WC-30FeCoCu粉末混合料于钢模中以100MPa压力压制成形后,置于管式炉中在氢气气氛下于600℃预烧2h脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下于1100℃下烧结60min,制得WC-10FeCoCu硬质合金烧结体。
实施例3
本实施例一种FeCoCu中熵合金粘结相硬质合金的制备方法,具体步骤如下:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按1:1:1:4的摩尔比例溶于100mL去离子水中,经超声振荡得到混合溶液,将溶液在马弗炉中于250℃加热2h,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤一所得氧化物前驱体粉末充分研磨,然后在600℃下经氢气还原2h,得到FeCoCu混合粉末。所得FeCoCu混合粉末经高能球磨、筛分后制得FeCoCu中熵合金粉末。高能球磨球料比为6:1,球磨转速为400rpm,球磨时间72h。
步骤三、制备WC-FeCoCu粉末混合料
将步骤二所得FeCoCu中熵合金粉末与0.4μm的超细WC粉按质量比1:9混合,加入WC-10FeCoCu总质量2.5%聚乙二醇(PEG)作为成形剂和100mL无水乙醇,经球磨后所得混合料浆进行真空中干燥、研磨筛分,制得WC-10FeCoCu(质量分数)粉末混合料。高能球磨球料比为3:1,球磨转速为400rpm,球磨时间24h。
步骤四、制备WC-FeCoCu烧结体
将步骤三所得WC-10FeCoCu粉末混合料于钢模中以100MPa压力压制成形后,置于管式炉中在氢气气氛下于450℃预烧2h脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下于1300℃下烧结20min,制得WC-10FeCoCu硬质合金烧结体。
实施例4
本实施例一种FeCoCu中熵合金粘结相硬质合金的制备方法,具体步骤如下:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按1:1:1:4.5的摩尔比例溶解于100mL去离子水中,经超声振荡得到混合溶液,将溶液在马弗炉中于200℃加热2h,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤一所得氧化物前驱体粉末充分研磨,然后在600℃下经氢气还原2.5h,得到FeCoCu混合粉末。所得FeCoCu混合粉末经高能球磨、筛分后制得FeCoCu中熵合金粉末。高能球磨球料比为10:1,球磨转速为400rpm,球磨时间48h。
步骤三、制备WC-FeCoCu粉末混合料
将步骤二所得FeCoCu中熵合金粉末与0.6μm的超细WC粉按质量比1:19混合,加入WC-5FeCoCu总质量5%聚乙二醇(PEG)作为成形剂和100mL无水乙醇,经球磨后所得混合料浆进行真空中干燥、研磨筛分,制得WC-5FeCoCu(质量分数)粉末混合料。高能球磨球料比为3:1,球磨转速为200rpm,球磨时间48h。
步骤四、制备WC-FeCoCu烧结体
将步骤三所得WC-5FeCoCu粉末混合料于钢模中以100MPa压力压制成形后,置于管式炉中在氢气气氛下于400℃预烧3h脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下于1500℃下烧结10min,制得WC-10FeCoCu硬质合金烧结体。
实施例5
本实施例一种FeCoCu中熵合金粘结相硬质合金的制备方法,具体步骤如下:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按1:1:1:6的摩尔比例溶解于100mL去离子水中,经超声振荡得到混合溶液,将溶液在马弗炉中于300℃加热2.5h,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤二所得氧化物前驱体粉末充分研磨,然后在750℃下经氢气还原2h,得到FeCoCu混合粉末。所得FeCoCu混合粉末经高能球磨、筛分后制得FeCoCu中熵合金粉末。高能球磨球料比为5:1,球磨转速为400rpm,球磨时间48h。
步骤三、制备WC-FeCoCu粉末混合料
将步骤三所得FeCoCu中熵合金粉末与0.8μm的超细WC粉按质量比1:9混合,加入WC-10FeCoCu总质量3.5%聚乙二醇(PEG)作为成形剂和100mL无水乙醇,经球磨后所得混合料浆进行真空中干燥、研磨筛分,制得WC-10FeCoCu(质量分数)粉末混合料。高能球磨球料比为10:1,球磨转速为400rpm,球磨时间24h。
步骤四、制备WC-FeCoCu烧结体
将步骤四所得WC-10FeCoCu粉末混合料于钢模中以100MPa压力压制成形后,置于管式炉中在氢气气氛下于550℃预烧3h脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下于1400℃下烧结15min,制得WC-10FeCoCu硬质合金烧结体。
实施例6
(1)相对密度从测试
基于Archimedes原理通过排水法对实施例1-5制备的WC-FeCoCu硬质合金烧结体样品进行密度测试,将样品放入分析天平上,测得质量m1;再将样品放在浸入于去离子水中的天平托盘上,测得质量m2;最后根据阿基米德原理,烧结体样品的实际密度按下式计算:
Figure BDA0003526570490000081
对于WC-FeCoCu硬质合金的理论密度,可通过加和法则按下式进行估算:
Figure BDA0003526570490000082
其中ρ为合金的理论密度,a1-an为各个组元的质量分数,ρ1n为各个组元的理论密度,其中a1-an的单位为%,而ρ及ρ1n的单位为g/cm3
测得的相对密度见表1。
(2)硬度测试
采用布维硬度计(HBV-30A,中国)对实施例1-5制备的WC-FeCoCu硬质合金烧结体样品的硬度进行测试。将所需测试的样品表面经400、600、800目金刚石沙盘打磨、抛光后获得镜面。抛光后的样品放在载物台上,使用30kgf作为加载载荷,试验力保持时间为15s。对于每个样品选取不同位置分别测试10次,取其平均值,结果见表1。
(3)断裂韧性测试
通过压痕法测试对实施例1-5制备的WC-FeCoCu硬质合金烧结体样品的断裂韧性进行测试。具体的,在各样品经过硬度测试后,对硬度压痕四周裂纹长度进行测定,通过按下式计算断裂韧性(KIC):
Figure BDA0003526570490000091
其中HV30为样品的维氏硬度,单位为N/mm2。∑L为裂纹长度总和,∑L=L1+L2+L3+L4,单位为mm。
计算结果见表1。
表1实施例中样品性能
Figure BDA0003526570490000092
表1为各实施例中样品性能。由上表可知,以0.4-0.8μm粒径范围的WC粉末作为原料制备中熵合金粘结相硬质合金时均未出现WC颗粒异常长大的现象。说明FeCoCu中熵合金相比传统金属Co粘结相具有抑制WC晶粒长大的作用。同时FeCoCu中熵合金粘结相对于硬质合金的性能也有一定的改善。
(4)场发射扫描电子显微镜组织观察
采用场发射扫描电子显微镜对实施例1制备的WC-FeCoCu烧结体样品的表面及断口微观形貌进行观察,场发射扫描电子显微镜的型号为FE-SEM SU8020Hitachi。先将样品的测试面经120目、240目、400目、600目、800目金刚石沙盘依次进行磨制,抛光,获得平整的镜面后,再对样品进行测试。为了避免样品的污染和氧化,在测试前临时制备新断口以保证测试过程中的实验数据可靠性。
图2是实施例3制备得到的WC-10FeCoCu硬质合金的背散射扫描电镜图(FE-SEM,SU8020 Hitachi,日本),从图2中可以看出,样品表面没有明显的缺陷,致密度较高;WC晶粒细小均匀,无明显异常长大。根据Hall-Petch规则,晶粒尺寸越小,硬度越高。图3是实施例3制备得到的WC-10FeCoCu硬质合金断口的扫描电镜图,由图3中可以看出,较粗大的晶粒表面存在撕裂棱,WC-10FeCoCu硬质合金的断裂方式为沿晶断裂和穿晶断裂共存,这种断裂机制使得硬质合金的强度较高,韧性较好。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (10)

1.一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,所述制备方法按以下步骤进行:
步骤一、制备前驱体粉末
将硝酸钴、硝酸铜、硝酸铁以及甘氨酸按一定的摩尔比例溶于去离子水中,经超声振荡后得到混合溶液,将溶液在马弗炉中加热,得到疏松多孔的氧化物前驱体粉末。
步骤二、制备FeCoCu中熵合金粉末
将步骤一所得氧化物前驱体粉末充分研磨,经氢气还原,制得FeCoCu混合粉末,再经高能球磨、筛分后制得FeCoCu中熵合金粉末。
步骤三、制备WC-FeCoCu粉末混合料
将步骤二所得FeCoCu中熵合金粉末与超细WC粉按一定质量比例混合,加入一定质量比的PEG作为成形剂,无水乙醇作为介质,经球磨后所得混合料浆进行真空干燥、研磨筛分,制得WC-FeCoCu粉末混合料。
步骤四、制备WC-FeCoCu烧结体
将步骤三所得WC-FeCoCu粉末混合料于钢模中以100-300MPa压力压制成形后,置于管式炉中在氢气气氛下脱除成形剂,然后置于微波烧结炉中在N2-H2混合气氛下进行微波烧结,制得WC-FeCoCu硬质合金。
2.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤一中所述的硝酸钴、硝酸铜、硝酸铁、甘氨酸比例为1:1:1:(3-9)。
3.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤一中所述混合溶液的加热温度为200-350℃,加热时间为1-5h。
4.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤二中所述氧化物前驱体粉末的还原温度为500-750℃,还原时间为1-4h。
5.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤二中所述高能球磨过程中的球料比为5:1-20:1,球磨转速为100-500rpm,球磨时间为12-72h。
6.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤三中所述超细WC粉末的粒径范围为0.4-0.8μm。
7.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤三中所述超细WC粉与FeCoCu中熵合金粉末质量比为7:3-19:1,PEG为WC-FeCoCu总质量的1%-5%。
8.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤三中所述球磨过程中的球料比为3:1-10:1,转速为100-400rpm,球磨时间为12-72h。
9.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤四中所述脱除成形剂的温度为400-800℃,保温时间为1-5h。
10.根据权利要求1所述的一种FeCoCu中熵合金粘结相硬质合金的制备方法,其特征在于,步骤四中所述微波烧结温度为1100-1500℃,烧结时间为10-60min。
CN202210197778.0A 2022-03-01 2022-03-01 一种FeCoCu中熵合金粘结相硬质合金的制备方法 Active CN114574726B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210197778.0A CN114574726B (zh) 2022-03-01 2022-03-01 一种FeCoCu中熵合金粘结相硬质合金的制备方法
US18/092,211 US11718899B1 (en) 2022-03-01 2022-12-31 Preparation method of cemented carbide with iron, cobalt and copper medium-entropy alloy as binding phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210197778.0A CN114574726B (zh) 2022-03-01 2022-03-01 一种FeCoCu中熵合金粘结相硬质合金的制备方法

Publications (2)

Publication Number Publication Date
CN114574726A true CN114574726A (zh) 2022-06-03
CN114574726B CN114574726B (zh) 2022-08-23

Family

ID=81771950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210197778.0A Active CN114574726B (zh) 2022-03-01 2022-03-01 一种FeCoCu中熵合金粘结相硬质合金的制备方法

Country Status (2)

Country Link
US (1) US11718899B1 (zh)
CN (1) CN114574726B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161505A (zh) * 2022-07-21 2022-10-11 广东工业大学 一种新型粘结相硬质合金的制备方法
CN115533111A (zh) * 2022-10-11 2022-12-30 浙江工业大学 一种高比表面积高熵合金纳米粉末及其制备方法
CN115747555A (zh) * 2022-11-02 2023-03-07 江苏科技大学 一种分级多孔多组元合金电极材料的制备方法及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117947300B (zh) * 2024-01-25 2024-09-24 自贡中兴耐磨新材料有限公司 一种具有弱低温脆性的钨合金及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095471A (zh) * 2018-10-29 2018-12-28 合肥工业大学 一种具有核壳结构的wc包覆稀土氧化物无粘结相硬质合金的制备方法
CN109252081A (zh) * 2018-10-31 2019-01-22 华南理工大学 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法
KR20200006906A (ko) * 2018-07-11 2020-01-21 엘지전자 주식회사 스피노달 분해를 이용한 경량 중엔트로피 합금
CN112250442A (zh) * 2020-09-30 2021-01-22 北京科技大学 一种高强韧无粘结相纳米晶硬质合金的制备方法
CN113846257A (zh) * 2021-09-29 2021-12-28 郑州大学 一种中熵合金粘结剂硬质合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371307A (zh) 2018-11-29 2019-02-22 福建工程学院 一种以高熵合金粉末为粘结剂的wc基硬质合金的制备方法
CN111286664A (zh) * 2020-03-27 2020-06-16 燕山大学 一种以高熵合金为粘结相的超细碳化钨硬质合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200006906A (ko) * 2018-07-11 2020-01-21 엘지전자 주식회사 스피노달 분해를 이용한 경량 중엔트로피 합금
CN109095471A (zh) * 2018-10-29 2018-12-28 合肥工业大学 一种具有核壳结构的wc包覆稀土氧化物无粘结相硬质合金的制备方法
CN109252081A (zh) * 2018-10-31 2019-01-22 华南理工大学 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法
CN112250442A (zh) * 2020-09-30 2021-01-22 北京科技大学 一种高强韧无粘结相纳米晶硬质合金的制备方法
CN113846257A (zh) * 2021-09-29 2021-12-28 郑州大学 一种中熵合金粘结剂硬质合金及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONGUNMOON 等: ""Corrosion-resistant Cu-Fe-based immiscible medium-entropy alloy with tri-layer passivation"", 《CORROSION SCIENCE》 *
钱铖等: ""WC晶粒尺寸对中熵合金(Co-Ni-Fe)粘结剂硬质合金力学性能和微观组织的影响"", 《 JOURNAL OF CENTRAL SOUTH UNIVERSITY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161505A (zh) * 2022-07-21 2022-10-11 广东工业大学 一种新型粘结相硬质合金的制备方法
CN115533111A (zh) * 2022-10-11 2022-12-30 浙江工业大学 一种高比表面积高熵合金纳米粉末及其制备方法
CN115533111B (zh) * 2022-10-11 2024-03-29 浙江工业大学 一种高比表面积高熵合金纳米粉末及其制备方法
CN115747555A (zh) * 2022-11-02 2023-03-07 江苏科技大学 一种分级多孔多组元合金电极材料的制备方法及其应用

Also Published As

Publication number Publication date
US11718899B1 (en) 2023-08-08
CN114574726B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN114574726B (zh) 一种FeCoCu中熵合金粘结相硬质合金的制备方法
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
Yun et al. Effects of sintering temperature and nano Ti (C, N) on the microstructure and mechanical properties of Ti (C, N) cermets cutting tool materials with low Ni-Co
CN101824575A (zh) 一种超细晶碳化钨/钴系硬质合金及其制备方法
CN110396632A (zh) 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN108796333A (zh) 一种W-Mo-Re-HfC合金材料及其制备方法
CN115305401B (zh) 高熵合金-高熵陶瓷结合的碳化钨硬质合金及其制备方法
CN102560215A (zh) 一种Ni3Al粘结的超细晶碳化钨基硬质合金及制备方法
CN113549801A (zh) 一种第二相强化高熵粘结剂硬质合金及其制备方法
Yuan et al. Effects of ultrafine refractory carbides on microstructure and mechanical properties of hot-pressing sintered TiB2-ZrC cermet composites at different temperatures
Zhang et al. Synthesis and characterization of extremely hard and strong (W, Ti, Ta) C cermet by spark plasma sintering
CN104388717B (zh) 一种添加稀土元素快速制备梯度硬质合金的方法
CN113880557A (zh) AL2O3-cBN基陶瓷刀具材料及其制备方法
Ni et al. Effects of metal binder on the microstructure and mechanical properties of Al 2 O 3-based micro-nanocomposite ceramic tool material
CN115365501B (zh) 放电等离子体辅助球磨制备高熵合金及其在金刚石工具上的应用
CN112877578A (zh) 超细晶粒硬质合金及其制备方法
CN110981489A (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
CN110922195A (zh) 原位反应制备镁铝尖晶石-碳化硅复合材料的方法
CN114318163B (zh) 一种用于金刚石工具的超细多元预合金粉末及其制备方法
CN113584367B (zh) 一种高硬高韧的硬质合金及其制备方法
CN111155019B (zh) 一种稀土复合铁钼强化镍基硬质合金及其制备方法和应用
CN107287464A (zh) 一种含纳米TiN陶瓷的钛基多孔复合材料制备方法
CN111961948A (zh) 一种SiC颗粒增强铁基复合材料及其制备方法
JP2008196041A (ja) 超硬合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant