CN114570348B - 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用 - Google Patents

可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用 Download PDF

Info

Publication number
CN114570348B
CN114570348B CN202210204990.5A CN202210204990A CN114570348B CN 114570348 B CN114570348 B CN 114570348B CN 202210204990 A CN202210204990 A CN 202210204990A CN 114570348 B CN114570348 B CN 114570348B
Authority
CN
China
Prior art keywords
titanium dioxide
titanium
composite photocatalyst
photocatalyst
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210204990.5A
Other languages
English (en)
Other versions
CN114570348A (zh
Inventor
陈其凤
郑鹏
胡勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202210204990.5A priority Critical patent/CN114570348B/zh
Publication of CN114570348A publication Critical patent/CN114570348A/zh
Application granted granted Critical
Publication of CN114570348B publication Critical patent/CN114570348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用。二氧化钛基纳米复合光触媒的制备方法为:将含钛前驱体溶解到溶剂中得到含钛溶液,再添加含硅化合物并搅拌均匀,最后添加稀土盐并溶解,得到混合液;混合液在密闭条件下进行热压反应,反应完成后降至室温,抽滤得到固体,固体干燥后得到二氧化钛基纳米复合光触媒。二氧化钛基纳米复合光触媒中稀土的掺杂量占0.2~2.0mol%,硅的掺杂量占5.0~20mol%。本发明通过在纳米二氧化钛晶体中掺入稀土和氧化硅等其它组分,一方面显著提高复合光触媒的比表面积,另一方面将光触媒的吸光频谱拓展到可见光区,使去除甲醛等VOCs的性能大幅度提高。

Description

可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及 其应用
技术领域
本发明涉及光触媒技术领域,具体涉及可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用。
背景技术
光催化剂,又称为光触媒,是一类具有光催化性能的半导体材料,常见的光催化剂包括无机光催化剂和有机光催化剂,而使用比较多的是以过渡金属氧化物为主的光催化剂。光催化剂是治理环境污染和利用太阳能经行能量转变的的材料之一。光催化剂在光的照射下,会产生出氧化能力极强的活性氧,包括羟基自由基(·OH)、超氧自由基(·O2 -)和单线态氧(1O2)。这些活性氧物种具有很强的光催化氧化能力,可氧化分解各种有机化合物和部分无机物,比如可以消除环境挥发性有机污染物(VOCs),把有机污染物分解成无污染的水和二氧化碳;还能破坏细菌的细胞膜和固化病毒的蛋白质,可杀灭细菌。因而,光催化剂具有极强的净化空气、防污自洁、杀菌、除臭、防霉等功能。
环境污染性有机挥发物,如甲醛,其是生产油漆、人造纤维、合成树脂、人造板材等的必须原料。如今,室内环境中存在以甲醛、苯类为主的VOCs。研究结果表明,甲醛含量超标可引发人类多种疾病,如鼻咽癌、鼻腔癌和鼻窦癌和白血病。因此,研制一种可以降解室内空气中的甲醛来实现保护人类健康是一种行之有效的途径。
目前降低空气中甲醛等含量的方法主要有物理吸附法和光降解法两种。物理吸附的方法是使用木炭、活性炭等多孔性材料,利用其结构上的多孔性吸附甲醛。此种方法中吸附剂达到饱和吸附之后不再吸附,吸附效率低。光降解方法是采用二氧化钛等半导体材料在紫外光照射下对有机物光催化氧化来完成的。但是,此种方法由于其吸收光波段在紫外区,日光中的紫外光很少(仅约占5%),而可见光约占45%左右。因此,二氧化钛的光催化降解效率受到限制。此外,二氧化钛还存在光生载流子复合快、分离效率低等缺点,而杂原子/离子的晶格掺杂修饰可以改变二氧化钛的微观电性质,从而改善光生电荷的分离效率和传输速率。因此,需要一种高性能紫外-可见光激发的二氧化钛基纳米复合光触媒,其不仅在紫外光激发,而且能在可见光激发的二氧化钛光触媒,以提高去除甲醛的性能。
发明内容
针对上述现有技术,本发明的目的是提供可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用。本发明通过在纳米二氧化钛晶格中掺入稀土金属离子和硅原子等其它组分元素,一方面显著提高复合光触媒的比表面积,改善复合光催化剂的表面性质(包括酸碱性和电性)以提高对VOCs的吸附量;另一方面拓展了光触媒的吸光频谱到可见光区;最重要的是提高了光生电荷的分离效率,最终使得复合光触媒的光催化去除甲醛的性能大幅度提高。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供二氧化钛基纳米复合光触媒利用可见光催化降解甲醛或提高甲醛降解率中的应用,所述二氧化钛基纳米复合光触媒由以下方法制备:
(1)将含钛前驱体溶解到溶剂中得到含钛溶液,再添加含硅化合物并搅拌均匀,最后添加稀土盐并溶解,得到混合液;
(2)混合液在密闭条件下升温进行热压反应,反应完成后将至室温,抽滤得到固体,固体干燥后得到二氧化钛基纳米复合光触媒。
优选的,步骤(1)中,所述含钛前驱体选自钛酸乙酯、钛酸异丙酯、钛酸正丁酯、硫酸氧钛或硫酸钛;所述溶剂为有机醇、水或者醇水混合液;所述含硅化合物选自硅酸乙酯、正硅酸甲酯、正硅酸丙酯、硅酸异丙酯或长链有机硅;所述稀土盐选自硝酸铈、硝酸镧、硝酸钕或硝酸钐。
优选的,所述含钛前驱体为钛酸异丙酯;所述有机醇为乙醇;所述含硅化合物为硅酸乙酯。
优选的,所述含钛前驱体、含硅化合物和稀土盐的摩尔比为100:(5~20):(0.2~2.0);所述含钛溶液的浓度为0.01~2.0mol/L。
优选的,所述含钛前驱体、含硅化合物和稀土盐的摩尔比为100:10:0.5;所述含钛溶液的浓度为0.05-1.0mol/L。
优选的,步骤(1)中,所述搅拌为电磁搅拌,搅拌的速度为500~1500r/min,搅拌的时间为30~60min。
优选的,步骤(1)中,稀土盐通过超声分散进行溶解,超声分散的功率为1~5kW、频率为25~150kHz、时间为30~60min。
优选的,步骤(2)中,所述升温反应为以10℃/min升至100℃,再以3-5℃/min升至150-200℃,然后保温4~24h。
本发明的第二方面,提供利用上述方法制备得到的二氧化钛基纳米复合光触媒,所述二氧化钛基纳米复合光触媒中稀土的掺杂量占二氧化钛的0.2~2.0mol%,硅的掺杂量占二氧化钛的5~20mol%。
优选的,所述二氧化钛基纳米复合光触媒中稀土的掺杂量占二氧化钛的0.5mol%,硅掺杂量为10mol%。
本发明的有益效果:
(1)本发明通过在纳米二氧化钛晶体中掺入稀土金属离子和硅原子等其它组分元素,一方面显著提高复合光触媒的比表面积,改善复合光催化剂的表面性质(包括酸碱性和电性)以提高对VOCs的吸附量;另一方面拓展了光触媒的吸光频谱到可见光区;最重要的是提高了光生电荷的分离效率,最终使得复合光触媒的光催化去除甲醛的性能大幅度提高。
(2)本发明制备的光触媒可在紫外光很少的日光照射下进行光催化降解甲醛,使光催化降解甲醛不再受紫外光的限制,并且与现有技术相比,甲醛的降解率提高了20%左右。
附图说明
图1为不同光触媒制备的光触媒的X射线衍射图谱。(a)中从上往下分别为对比例1,对比例2,对比例3,实施例1;(b)图中从上往下分别为对照例(未进行掺杂的TiO2),实施例2,实施例1,实施例3,实施例4;(c)为实施例1在800℃焙烧后的晶型仍是锐钛矿。
图2为实施例1制备的光触媒的透射电子显微镜图像;其中,(a)为对照例(未进行掺杂的TiO2)放大50万倍的TEM;(b)为对照例(未进行掺杂的TiO2)放大100万倍的TEM;(c)为实施例1放大100万倍的TEM图;(d)为实施例1放大200万倍的TEM图。
图3为不同光触媒紫外-可见漫反射光谱;其中,(a)为对照例(未进行掺杂的TiO2),实施例1-4;(b)为对比例1-5。
图4为光触媒的氮吸附/脱附等温线,由上往下的顺序依次为:对比例3,对比例4,实施例1,对比例2。
图5为不同光触媒降解甲醛的动力学曲线。
图6为未掺杂二氧化钛光触媒的带结构图
图7为硅掺杂二氧化钛光触媒的带结构图
图8为铈掺杂二氧化钛光触媒的带结构图
图9为硅-铈共掺杂二氧化钛光触媒的带结构图
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术介绍的,虽然硅掺杂二氧化钛可以提高光触媒的比表面积,稀土掺杂二氧化钛可以拓展光触媒的吸光频谱,但上述掺杂并没有大幅提高甲醛的降解率。基于此,本申请提供了可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用,通过在纳米二氧化钛晶格中掺入稀土金属离子和硅原子,不仅提高了二氧化钛的吸附率、以及拓展了吸光频谱,甲醛的降解率高于单独进行硅掺杂二氧化钛或单独稀土掺杂二氧化钛得到的光触媒的降解率之和。
根据密度泛函理论(Density functional theory,DFT),以Materials Studio数据包中的Castep模块的计算结果可以看出(图6-9),虽然分别掺杂硅和铈元素都会使得二氧化钛的带隙变小,从而拓展二氧化钛的光吸收频谱,但是铈元素的影响更大一点。而通过本发明的研究发现,令人意想不到的结果是:硅和铈元素同时掺杂可以更大程度的降低二氧化钛的带隙,使得光吸收得到了更大程度的拓展,这说明铈和硅元素在二氧化钛中存在着明显的协同作用,这意味着共掺杂样品的光催化活性会有更大成都的提高。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1
将1.065g钛酸异丙酯溶解到乙醇中得到浓度为0.05mol/L的钛酸异丙酯溶液,将0.084mL硅酸乙酯分散到上述体系中,以1000转/分种电磁搅拌45分钟;将0.0081g硝酸铈溶解到上述液体中,超声分散45分钟,接着将其转移到聚四氟乙烯内衬的高压反应釜中,先以10℃/min升至100℃,然后4℃/min升至175℃并保温12h。冷却至室温,将所得固体抽滤分离,在60°的真空干燥(-0.1MPa)中干燥12h,得到光触媒,记为C0.5S10T-0.05M。
XRD结果表明实施例1所制备的C0.5S10T-0.05M为锐钛矿相,同时其XRD衍射图谱中均没有检测到其它杂峰,表明所制备的样品具有很高的纯度(见图1)。并且,该复合光触媒具有很好的高温稳定性,在800°高温焙烧后仍然保持高活性的锐钛矿晶型,这对高温下处理VOCs是十分有益的。
通过高分辨透射电子显微镜(HRTEM)进一步分析:在TEM上观察到C0.5S10T-0.05M的颗粒形态,如图2所示,可以清楚地看到多晶特征和晶格条纹,表明制备的纳米颗粒具有良好的结晶度;同时可以观察到颗粒尺寸非常小(3~5nm),颗粒分散性非常高。
实施例2~4
与实施例1的区别在于:硝酸铈的加入量分别为0.0036g、0.0178g、0.356g,制备得到的光触媒分别记为C0.2S10T-0.05M、C1.0S10T-0.05M、C2.0S10T-0.05M。
采用紫外-可见漫反射光谱测定了实施例1~4制备的光触媒以及未进行掺杂的原始TiO2(PT)对光的吸收能力,如图3所示,可以看出实施例1~4制备的光触媒具有明显的可见光吸收。
对比例1:制备硅掺杂的二氧化钛光触媒
将1.065g钛酸异丙酯溶解到乙醇中得到浓度为0.05mol/L的钛酸异丙酯溶液,将0.084mL硅酸乙酯分散到上述体系中,以1000转/分种电磁搅拌45分钟;接着将其转移到聚四氟乙烯内衬的高压反应釜中,先以10℃/min升至100℃,然后4℃/min升至175℃,在175℃下保温14h。冷却至室温,将所得的固体抽滤分离,在-0.1MPa的真空干燥箱中真空干燥12h,得到光触媒,记为S10T-0.05M。
对比例2:制备铈掺杂的二氧化钛光触媒
将1.065g钛酸异丙酯溶解到乙醇中得到浓度为0.05mol/L的钛酸异丙酯溶液,将0.0081g硝酸铈溶解到上述液体中,超声分散45分钟,接着将其转移到聚四氟乙烯内衬的高压反应釜中,先以10℃/min升至100℃,然后4℃/min升至175℃,在175℃下保温14h。冷却至室温,将所得的固体抽滤分离,在-0.1MPa的真空干燥箱中真空干燥12h,得到光触媒,记为C0.5T-0.05M。
对比例3
与实施例1的区别在于:硅酸乙酯的加入量为0.252mL,即硅在复合光触媒中的摩尔含量为30%,制备所得的光触媒分别标记为C0.5S30T-0.05。
对比例4
与实施例1的区别在于:硝酸铈的加入量分别为0.0534g,制备得到的光触媒分别记为C3.0S10T-0.05M。
对比例5
与实施例1的区别在于:硅酸乙酯的加入量为0.252mL,硝酸铈的加入量分别为0.0534g,制备得到的光触媒分别记为C3.0S30T-0.05M。
检测实施例1~4和对比例1~4制备的光触媒的孔体积、平均孔径和比表面积,并以未进行掺杂的TiO2作为对照例,所得结果见表1。
表1
由表1可知,实施例1~4制备的复合光触媒比表面积的增加可以归因于硅的引入,而铈元素的引入对复合光触媒比表面积的影响并不大。硅元素引入到二氧化钛中,导致光触媒晶粒的粒径明显变小,这主要四由于硅元素打断了二氧化钛晶体中钛氧八面体的连续性,从而减小了晶粒尺寸,进而提高了比表面积。
应用例:光催化降解甲醛
(1)光催化反应条件:选择有机污染物(甲醛)作为光催化降解目标物。将实施例1~4和对比例1~4制备的100mL的光触媒分散剂(1mg/mL光触媒水溶液)均匀分别喷涂在3张1.0m2的基纸上,自然晾干后放入1.5m3的实验舱内,开启日光灯(20W)照射24小时,然后检测实验舱内甲醛的含量。空白实验舱中甲醛浓度为1.15mg/m3。检测依据和方法参照QB/T2761-2006。
(2)在避光和强力搅拌条件下,样品在1h内对有机污染物达到了吸附-脱附平衡。其中实施例1~4以及对比例1~4制备的光催化剂对有机污染物的吸附能力见表2,表明样品的吸附能力与其比表面积是成正相关性。
降解率=(吸附前甲醛的浓度-吸附后甲醛的浓度)/吸附前甲醛的浓度*100%。
表2
虽然从表1中可以看出,硅的掺杂量增加可以提高光触媒的比表面积,但是结合表2可以看出,对比例1制备的光触媒对甲醛的降解率并不高。对比例2单独进行稀土元素的掺杂后,光触媒对于甲醛的降解率虽然有了提高,但对比例1和2对甲醛的降解率之和也远低于本申请对甲醛的降解率。从上述实验结果和图5降解甲醛的动力学实验曲线可以看出,铈元素的掺杂提高了二氧化钛的可见光催化性能;单独掺杂硅元素并未明显提升二氧化钛的光催化性能,只是提高对甲醛的吸附量;同时掺杂铈元素和硅元素能极大的提高可见光催化降解甲醛的性能,这说明两种掺杂组分能协同提高复合二氧化钛光触媒的光催化性能。此外,铈元素以离子形式加入反应体系才能实现铈元素掺杂到二氧化钛中,以氧化物的形式难以实现原位掺杂。
而对比例3和4分别提高了硅和稀土的掺入量,但其对甲醛的降解率并没有大幅提高,而对比例5既提高了硅的掺入量又提高了稀土的掺入量,但其对甲醛的降解率反而降低了。说明本发明制备的光触媒可以在可见光照射下,大幅提高甲醛的降解率。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (1)

1.二氧化钛基纳米复合光触媒利用可见光催化降解甲醛或提高甲醛降解率的应用,其特征在于,所述二氧化钛基纳米复合光触媒由以下方法制备:
(1)将含钛前驱体溶解到溶剂中得到含钛溶液,再添加含硅化合物并搅拌均匀,最后添加稀土盐并溶解,得到混合液;所述含钛前驱体为钛酸异丙酯;所述溶剂为乙醇;所述含硅化合物为正硅酸乙酯;所述含钛前驱体、含硅化合物和稀土盐的摩尔比为100 : 10 : 0.5;所述稀土盐为硝酸铈;所述含钛溶液的浓度为0.05-1.0mol/L;所述搅拌为电磁搅拌,搅拌的速度为500-1500r/min,搅拌的时间为30~60min;稀土盐通过超声分散进行溶解,超声分散的功率为 1~5 kW,频率为25~150 kHz,时间为30~60min;
(2)混合液在密闭条件下热压反应,反应完成后降至室温,抽滤得到固体,固体干燥后得到二氧化钛基纳米复合光触媒;所述反应为以10 ℃/min升至100℃,再以4℃/min升至175℃,保温12 h。
CN202210204990.5A 2022-03-02 2022-03-02 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用 Active CN114570348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210204990.5A CN114570348B (zh) 2022-03-02 2022-03-02 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210204990.5A CN114570348B (zh) 2022-03-02 2022-03-02 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用

Publications (2)

Publication Number Publication Date
CN114570348A CN114570348A (zh) 2022-06-03
CN114570348B true CN114570348B (zh) 2024-03-12

Family

ID=81771699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210204990.5A Active CN114570348B (zh) 2022-03-02 2022-03-02 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用

Country Status (1)

Country Link
CN (1) CN114570348B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117101641B (zh) * 2023-09-25 2024-04-30 中国人民解放军火箭军工程大学 一种钕掺杂的介孔二氧化钛纳米光催化剂及其制备方法和应用
CN117531365A (zh) * 2023-12-04 2024-02-09 山西博允环保新科技有限公司 一种长效分解有害气体的净化方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045203A (zh) * 2007-04-29 2007-10-03 华南农业大学 铈掺杂二氧化钛/硅胶复合光催化剂及其制备方法
CN101716519A (zh) * 2009-11-06 2010-06-02 彭子明 掺杂复合纳米TiO2粉体及其制备方法
CN102380366A (zh) * 2011-09-16 2012-03-21 河南理工大学 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN102764666A (zh) * 2012-07-09 2012-11-07 陕西科技大学 一种氮铈共掺二氧化钛空心球光催化剂及其制备方法
CN105080528A (zh) * 2014-05-08 2015-11-25 东北大学 一种预先成型的硅藻土负载TiO2及稀土掺杂TiO2光催化剂的制备方法
CN108514890A (zh) * 2018-05-04 2018-09-11 苏州聚康新材料科技有限公司 一种TiO2/稀土/HY分子筛光催化材料的制备方法
CN109174075A (zh) * 2018-09-04 2019-01-11 中国科学院上海硅酸盐研究所 一种用于光催化降解VOCs的稀土元素改性二氧化钛纳米光催化材料及其制备方法
CN110787842A (zh) * 2019-11-12 2020-02-14 杭州鼎好新材料有限公司 一种光催化降解甲醛的光催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795173B2 (en) * 2006-06-01 2010-09-14 Carrier Corporation Long-lived high volumetric activity photocatalysts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045203A (zh) * 2007-04-29 2007-10-03 华南农业大学 铈掺杂二氧化钛/硅胶复合光催化剂及其制备方法
CN101716519A (zh) * 2009-11-06 2010-06-02 彭子明 掺杂复合纳米TiO2粉体及其制备方法
CN102380366A (zh) * 2011-09-16 2012-03-21 河南理工大学 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN102764666A (zh) * 2012-07-09 2012-11-07 陕西科技大学 一种氮铈共掺二氧化钛空心球光催化剂及其制备方法
CN105080528A (zh) * 2014-05-08 2015-11-25 东北大学 一种预先成型的硅藻土负载TiO2及稀土掺杂TiO2光催化剂的制备方法
CN108514890A (zh) * 2018-05-04 2018-09-11 苏州聚康新材料科技有限公司 一种TiO2/稀土/HY分子筛光催化材料的制备方法
CN109174075A (zh) * 2018-09-04 2019-01-11 中国科学院上海硅酸盐研究所 一种用于光催化降解VOCs的稀土元素改性二氧化钛纳米光催化材料及其制备方法
CN110787842A (zh) * 2019-11-12 2020-02-14 杭州鼎好新材料有限公司 一种光催化降解甲醛的光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中国材料研究学会,黄伯云 等.《中国战略性新兴产业 新材料 环境工程材料》.中国铁道出版社,2018,538. *
溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能;陈其凤 等;《物理化学学报》;第25卷(第4期);617-623 *
董发勤 等.《生态功能基元材料及其复合建材集成技术》.电子科技大学出版社,2008,44-45. *

Also Published As

Publication number Publication date
CN114570348A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN114570348B (zh) 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用
CN109364992B (zh) 一种氮掺杂石墨烯/纳米二氧化钛光催化剂及其制备方法和应用
EP2445635B1 (en) Method for the preparation doped catalytic carbonaceous composite materials
CN113164867B (zh) 富勒烯及其衍生物复合材料在降解甲醛、室内VOCs或抑菌中的应用
Xinshu et al. Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation
Demircivi et al. Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3
Kumar et al. g-C3N4/NaTaO3 organic–inorganic hybrid nanocomposite: high-performance and recyclable visible light driven photocatalyst
CN107243340B (zh) 一种二氧化铈纳米棒掺杂二氧化钛纳米颗粒光催化剂的制备方法
CN113058659A (zh) 一种纳米TiO2/UiO-66复合材料的制备方法与应用
CN110776049A (zh) 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法
CN109174075A (zh) 一种用于光催化降解VOCs的稀土元素改性二氧化钛纳米光催化材料及其制备方法
Li et al. Construction of CeO 2/TiO 2 heterojunctions immobilized on activated carbon fiber and its synergetic effect between adsorption and photodegradation for toluene removal
Li et al. Photocatalytic degradation of organic dyes by La 3+/Ce 3+-H 3 PW 12 O 40 under different light irradiation
Yang et al. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide
JP2004122056A (ja) 多孔質酸化チタンとその製造方法
CN110252375B (zh) 一种铁、氮、钴共掺杂的二氧化钛/活性炭复合物、制备方法及作为光催化剂应用
CN111111428A (zh) 富勒烯及其衍生物负载的半导体复合材料在光催化降解室内VOCs中的应用
CN115155624B (zh) 用于可见光催化除醛的异质结复合材料及其制备方法以及可见光催化降解VOCs的方法
CN107649108B (zh) 一种可见光光触媒及其制备方法
CN113856658A (zh) 一种Co3O4纳米颗粒负载的TiO2复合光催化材料及其制备方法和应用
CN109331803B (zh) 二氧化钛-石墨烯复合材料及其在光触媒纳米溶胶中的应用
CN109365005B (zh) 高催化降解性能光触媒水溶胶及其生产工艺
Aritonang et al. Photocatalytic Bacterial Inactivation Using Bi-doped TiO2/Kaolinite Under Visible Light Irradiation
Hanifehpour Modified Y2O3-coated biosilica with Dysprosium nanomaterials: synthesis, characterization, optical study with enhanced catalytic activity
CN111617755A (zh) 基于原位裂解技术的纳米光触媒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant