CN114555905A - 用于减少钻柱中的高频扭转振动的振动隔离联接器 - Google Patents

用于减少钻柱中的高频扭转振动的振动隔离联接器 Download PDF

Info

Publication number
CN114555905A
CN114555905A CN202080071164.7A CN202080071164A CN114555905A CN 114555905 A CN114555905 A CN 114555905A CN 202080071164 A CN202080071164 A CN 202080071164A CN 114555905 A CN114555905 A CN 114555905A
Authority
CN
China
Prior art keywords
coupling
coupler
vibration isolating
annular wall
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080071164.7A
Other languages
English (en)
Inventor
福尔克尔·彼得斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Baker Hughes Oilfield Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Oilfield Operations LLC filed Critical Baker Hughes Oilfield Operations LLC
Publication of CN114555905A publication Critical patent/CN114555905A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/07Telescoping joints for varying drill string lengths; Shock absorbers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/006Accessories for drilling pipes, e.g. cleaners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • E21B17/0423Threaded with plural threaded sections, e.g. with two-step threads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/07Telescoping joints for varying drill string lengths; Shock absorbers
    • E21B17/076Telescoping joints for varying drill string lengths; Shock absorbers between rod or pipe and drill bit
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/003Bearing, sealing, lubricating details
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/1216Torsional springs, e.g. torsion bar or torsionally-loaded coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • F16F15/167Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring
    • F16F15/173Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring provided within a closed housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/52Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics in case of change of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/18Suppression of vibrations in rotating systems by making use of members moving with the system using electric, magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/02Special physical effects, e.g. nature of damping effects temperature-related
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/02Rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/08Torsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/024Springs torsional

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Earth Drilling (AREA)
  • Vibration Prevention Devices (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Stringed Musical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明提供了一种用于隔离钻柱中的扭转振动的振动隔离联接器,该振动隔离联接器包括第一联接器部分和第二联接器部分,该第一联接器部分包括具有外表面和限定第一中心孔部分的内表面的第一环形壁,该第二联接器部分设置在第一中心孔部分内。该第二联接器部分包括具有外表面区段和限定第二中心孔部分的内表面区段的第二环形壁,并且多个连接元件从第一环形壁的内表面延伸穿过第二环形壁越过第二中心孔部分并与第二环形壁的内表面连接。

Description

用于减少钻柱中的高频扭转振动的振动隔离联接器
相关申请的交叉引用
本申请要求2019年9月12日提交的美国临时申请序列号62/899,354、2019年9月12日提交的美国临时申请序列号62/899,291、2019年9月12日提交的美国临时申请序列号62/899,331和2019年9月12日提交的美国临时申请序列号62/899,332的权益,这些美国临时申请的整个公开内容以引用方式并入本文。
背景技术
在地下深处钻出钻孔以用于许多应用,诸如二氧化碳封存、地热生产以及油气勘探和生产。在所有这些应用中,钻出钻孔,使得它们穿过位于地表下方的地层(例如,封存箱)中所包含的材料(例如,气体或流体)或允许触及该材料。可将不同类型的工具和仪器设置在钻孔中以执行各种任务和测量。
在操作中,井下部件可经受振动,这可影响操作效率。例如,钻柱和井底钻具组合中的剧烈振动可由钻头处的切削力或井下工具(诸如泥浆马达)中的质量不平衡引起。振动可采取粘滞/滑动振动和高频扭转振荡(HFTO)的形式。HFTO振动通常以高于50Hz的频率发生并且可位于钻柱的一小部分。通常,HFTO在钻头处具有高振幅。此类振动产生的影响可包括但不限于降低的钻进速率、降低的测量质量以及井下部件、工具和/或设备的过度疲劳和磨损。
发明内容
公开了一种用于隔离钻柱中的扭转振动的振动隔离联接器,该振动隔离联接器包括第一联接器部分和第二联接器部分,第一联接器部分包括具有外表面和限定第一中心孔部分的内表面的第一环形壁,第二联接器部分设置在第一中心孔部分内。第二联接器部分包括具有外表面区段和限定第二中心孔部分的内表面区段的第二环形壁,并且多个连接元件从第一环形壁的内表面延伸穿过第二环形壁越过第二中心孔部分并与第二环形壁的内表面连接。
还公开了一种通过振动隔离联接器来隔离来自钻柱的一部分的扭转振动的方法,该来自钻柱的一部分连接到钻柱的另一部分,该振动隔离联接器具有第一联接器部分,该第一联接器部分通过多个连接元件连接到第二联接器部分。该方法包括将扭转振动引入第一联接器部分,将扭转振动传递到从第二联接器部分的内表面区段延伸的多个连接器元件中,穿过第二联接器部分的环形壁至第一联接器部分的内表面,以及通过多个连接元件的弹性弯曲来隔离将扭转振动从第一联接器部分传递到第二联接器部分。
附图说明
以下描述不应被认为以任何方式进行限制。参考附图,相同元件以相同附图标记表示:
图1示出了根据一个示例性实施方案的一个方面的包括振动隔离联接器的资源探测和回收系统;
图2A示出了没有振动隔离联接器的井底钻具组合(BHA)几何形状;
图2B示出了没有振动隔离联接器的高频扭转振荡(HFTO)模态;
图3A示出了根据一个示例性方面的具有振动隔离联接器的BHA几何形状;
图3B示出了根据一个示例性实施方案的具有振动隔离联接器的HFTO模态;
图4示出了根据一个示例性方面的振动隔离联接器的平面玻璃视图;
图5示出了根据一个示例性实施方案的一个方面的沿线5-5截取的图4的振动隔离联接器的横截面视图;
图6示出了根据一个示例性方面的接合振动隔离联接器的第一联接器部分和第二联接器部分的多个连接器元件;
图7示出了根据一个示例性实施方案的一个方面的沿终点止动件处示出的线7-7截取的图4的振动隔离联接器的横截面端视图;并且
图8示出了根据一个示例性实施方案的另一方面的图4的振动隔离联接器的横截面端视图。
具体实施方式
本文所公开的设备和方法的一个或多个实施方案的详细描述以参照附图举例而非限制的方式呈现。
图1示出了用于执行井下操作的资源探测和回收系统的示意图。如图所示,资源探测和回收系统采取钻井系统10的形式。钻井系统10包括常规井架11,该常规井架竖立在底板12上,该底板支撑旋转台14,该旋转台由原动机(诸如电动马达(未示出))以期望的旋转速度旋转。钻井系统10还包括具有延伸穿过旋转台14的钻柱20和井下组件,并且包括延伸到具有延伸到地层28中的环形壁27的钻孔26中的钻孔管状物22,诸如钻管。钻柱20可以是定向钻柱,并且包括偏转装置、钻井马达和/或诸如29所示的转向单元。碎裂工具30诸如钻头附接到钻柱20的端部。碎裂工具30形成井底钻具组合(BHA)32的一部分。操作碎裂工具30在旋转时被操作为使地质地层碎裂,从而形成钻孔26。钻柱20联接到地面装备,诸如用于通过滑轮43经由方钻杆接头35、转环38和管线39来举升、旋转和/或推动(包括但不限于)绞车33的系统。在一些实施方案中,地面装备可以包括顶部驱动装置(未示出)。在钻井操作期间,操作绞车33以控制钻压,钻压影响钻进速率。绞车33的操作在本领域中是众所周知的,因此在本文不再详细描述。
在钻井操作期间,来自源或泥浆坑48的合适钻井液45(也称为“泥浆”)在压力下由泥浆泵50循环通过钻柱20和内孔(包括BHA的内孔)。钻井液41经由波动消除器56、流体管线58和方钻杆接头35进入钻柱20中。钻井液41在钻孔26的底部60处通过碎裂工具30中的开口排出。钻井液41通过钻柱20与钻孔26的环形壁27(钻孔壁)之间的环形空隙64沿井孔向上循环,并且经由回流管线68返回到泥浆坑48。流体管线58中的传感器S1提供关于流体流速的信息。地面扭矩传感器S2和与钻柱20相关联的传感器S3分别提供关于钻井管状物22的扭矩和旋转速度的信息。另外,使用与管线39相关联的一个或多个传感器(未示出)来提供钻柱20的钩负荷数据以及与钻孔26的钻井有关的其他期望参数。钻井系统10还可包括定位在钻柱20和/或BHA 32上的一个或多个井下传感器70。
在一些应用中,通过旋转钻井管状物22来旋转碎裂工具30。然而,在其他应用中,钻井马达(未示出)诸如泥浆马达可形成BHA 32的一部分并且可被操作为使碎裂工具30旋转和/或叠加或补充钻柱20的旋转。在任一种情况下,对于给定的地层和给定的钻井组件,碎裂工具30进入地层28的钻进速率(ROP)在很大程度上取决于钻压和钻头旋转速度。
地面控制单元80从井下传感器70和设备经由放置在流体管线58中的换能器83诸如压力换能器接收信号以及从传感器S1、S2、S3、钩负荷传感器、RPM传感器、扭矩传感器和任何其他传感器接收信号。地面控制单元80根据编程指令处理此类信号。地面控制单元80可在显示器/监视器85上显示由钻机现场的操作人员用来控制钻井操作的期望的钻井参数和其他信息。地面控制单元80包括:计算机;存储器,该存储器用于存储计算机中的处理器可访问的数据、计算机程序、模型和算法;记录器,诸如磁带单元、存储器单元等,该记录器用于记录数据;以及其他外围设备。地面控制单元80还可包括由计算机用来根据编程指令处理数据的仿真模型。地面控制单元80可响应通过合适的设备(诸如,键盘)输入的用户命令。地面控制单元80适于在出现某些不安全的或不期望的操作条件时激活警报87。
BHA 32还包括其他传感器和设备或工具,用于提供与地层28有关的多种测量结果以及用于沿着期望的路径钻出钻孔26。此类设备可包括用于测量在碎裂工具30近和/或前方的地层电阻率的设备、用于测量地层伽马射线强度的伽马射线设备以及用于确定钻井管状物22的倾斜度、方位角和位置的设备。可将其他设备诸如随钻测井(LWD)设备(一般性地用90指示,诸如用于测量地层孔隙率、渗透率、密度、岩石性质、流体性质等的设备)放置在BHA 32中的合适位置处,用于提供对于评估钻孔26的地层28有用的信息。此类设备可包括但不限于温度测量工具、压力测量工具、钻孔直径测量工具(例如,卡尺)、声学工具、核工具、核磁共振工具以及地层测试和采样工具。
上述设备将数据发射到井下遥测系统92,该井下遥测系统继而将所接收的数据沿井孔向上发射到地面控制单元80。井下遥测系统92还从地面控制单元80接收信号和数据并将此类所接收的信号和数据发射到适当的井下设备。在一个方面,可使用泥浆脉冲遥测系统在钻井操作期间在井下传感器(一般性地由94指示,布置在钻柱20上)和设备和地面装备之间传送数据。放置在流体管线58(例如,泥浆供应管线)中的换能器83响应于井下遥测系统92所发射的数据来检测泥浆脉冲。换能器83响应于泥浆压力变化而生成电信号并将此类信号经由导体96发射到地面控制单元80。
在其他方面,可使用任何其他合适的遥测系统用于在地面与BHA 32之间进行双向数据通信(例如,下行链路和上行链路),这些遥测系统包括但不限于声学遥测系统、电磁遥测系统、光学遥测系统、可在钻柱或钻孔中利用无线联接器或中继器的有线管遥测系统。可通过连接钻管段来构成有线管遥测系统,其中每个管段都包括沿着管延伸的数据通信链路(诸如电线)。管段之间的数据连接可通过任何合适的方法进行,这些方法包括但不限于硬电连接或光连接、感应、电容、共振联接(诸如电磁共振联接)或直接联接方法。在使用连续油管作为钻井管状物22的情况下,数据通信链路可沿着连续油管的侧面延伸。
钻井系统10涉及那些利用钻管将BHA 32输送到钻孔26中的钻井系统,其中通常通过控制绞车33的操作来从地面控制钻压。然而,大量当前钻井系统,特别是用于钻探高度偏斜钻孔和水平钻孔的钻井系统,都利用连续油管来将钻井组件输送到井下。在此类应用中,可在钻柱20中部署推进器(未单独标记)以在碎裂工具30上提供期望的力。另外,当采用连续油管时,并不通过旋转台来旋转油管,而是通过合适的注入器将油管注入钻孔中,同时井下马达诸如钻井马达(未示出)使碎裂工具30旋转。对于海上钻井,可使用海上钻机或船只来支撑钻井装备,包括钻柱。
仍然参考图1,可提供电阻率工具100,其包括例如多根天线,包括例如发射器104a或104b或和接收器108a或108b。电阻率可以是在作出钻井决定时感兴趣的一种地层性质。本领域技术人员将理解,其他地层性质工具可与电阻率工具100一起使用或代替该电阻率工具。
尾管钻井可以是用于提供碎裂设备的一种构造或操作,因为与常规钻井相比具有若干优点,因此在油气工业中变得越来越有吸引力。在标题为“用于在单程期间钻出钻孔、设置尾管并固结钻孔的装置和方法”(Apparatus and Method for Drilling a Borehole,Setting a Liner and Cementing the Borehole During a Single Trip)的共同拥有的美国专利号9,004,195中示出和描述了此类构造的一个示例,该专利全文以引用方式并入本文。重要的是,尽管钻进速率相对较低,但由于尾管在钻探钻孔的同时下钻,因此减少了将尾管对准目标的时间。这在膨胀的地层中可能是有益的,在这种地层中,钻井的收缩会阻碍尾管的安装。此外,在耗尽且不稳定的油层中使用尾管进行钻探,可最大程度地降低因钻孔塌陷而卡住管或钻柱的风险。
尽管图1是关于钻井操作示出和描述的,但是本领域技术人员将理解,尽管具有不同的部件,但是类似的构造可以用于执行不同的井下操作。例如,如本领域已知的,可使用完井、电缆、有线管、尾管钻井、扩眼、连续油管、再进入和/或其他构造。此外,可采用生产配置用于从地层提取材料和/或向地层中注入材料。因此,本公开不限于钻井操作,而是可用于任何适当或期望的一个或多个井下操作。
钻井操作期间钻柱和井底钻具组合中的剧烈振动可由钻头处的切削力或井下工具(诸如钻井马达)中的质量不平衡引起。此类振动可导致钻进速率降低、井孔质量降低、井底钻具组合的工具所进行的测量的质量降低,并且可导致井下部件磨损、疲劳和/或故障。如本领域技术人员所理解,存在不同振动,诸如横向振动、轴向振动和扭转振动。例如,整个钻井系统的粘滞/滑动和高频扭转振荡(“HFTO”)均是扭转振动的类型。术语“振动”、“振荡”以及“波动”以重复和/或周期性的运动或者平均值(诸如平均位置、平均速度和平均加速度)的周期性偏差的相同广泛含义使用。具体地讲,这些术语不意在限于谐波偏差,而是可包括所有种类的偏差,诸如但不限于周期性偏差、谐波偏差和统计偏差。
可通过因钻头或任何其他切削结构(诸如扩眼器钻头)与地层的相互作用而发生的自激发机制来激发扭转振动。粘滞/滑动与HFTO之间的主要差异是频率和典型模态振型:例如,与通常具有低于1Hz的频率的粘滞/滑动扭转振动相比,临界HFTO具有通常高于50Hz的频率。通常,临界HFTO可在介于50Hz和500Hz之间的范围内。标识临界HFTO模态的标准在Andreas Hohl等人在《声音与振动杂志》(Journal of Sound and Vibration,342(2015),290-302)中有所描述。临界HFTO模态、临界频率和临界模态振型也可被称为不期望HFTO模态、不期望频率和不期望模态振型。此外,粘滞/滑动的受激模态振型通常是整个钻井系统的第一模态振型,而HFTO的模态振型可为高阶的并且通常局限于钻井系统的更小部分且激发点处的振幅相对较高,该激发点可为钻头或任何其他切削结构(诸如扩眼器钻头)或者钻井系统与地层之间的任何接触(例如,由稳定器实现)。
由于振动的高频率,HFTO对应于沿着BHA或在BHA的仅一部分处的高加速度和扭矩值。本领域的技术人员将理解,对于扭转运动而言,加速度、力和扭矩中的一者始终伴随着加速度、力和扭矩中的另两者。在这种意义上,从这些之中的任何一者不会在没有另两者的情况下发生的意义上讲,加速度、力和扭矩是等效的。高频振动的负荷可对BHA的电子和机械部件的效率、可靠性和/或耐久性具有负面影响。本文提供的实施方案涉及提供振动隔离联接器140以减轻HFTO。振动隔离联接器140是可安装在BHA 32上方、下方或之内的各种位置处的模块化工具。例如,振动隔离联接器140可安装在钻头上方。在定向钻柱(定向BHA)中。在定向钻柱(定向BHA)中,转向单元29可位于钻头上方。转向单元29位于钻头附近,以便使钻头的钻井方向偏转。在具有转向单元的BHA中,希望将振动隔离联接器140定位在转向单元上方。在振动隔离联接器140上方,可放置一个或多个地层评估工具。
碎裂工具30表示HFTO的激发点。在没有在BHA中放置振动隔离联接器的情况下,碎裂工具30将沿整个BHA以不期望频率激发HFTO。振动隔离联接器140将BHA位于振动隔离联接器140上方的部分与BHA位于振动隔离BHA下方的部分中激发的HFTO的传播隔离。振动隔离联接器140将由钻头30处的切割力激发HFTO限制到振动隔离联接器140下方的BHA。由于振动隔离联接器140的设计,BHA的扭转动力学被修改为允许不期望HFTO模态振型仅在BHA位于振动隔离联接器140下方的部分中具有显著振幅。
BHA中的振动隔离联接器140通过隔离来自BHA位于振动隔离联接器上方的部分的振荡,允许BHA位于振动隔离联接器140下方的部分振荡(HFTO)。此外,振动隔离联接器140改变所激发的不期望HFTO模态的数量。在具有振动隔离联接器140的BHA中,较小数量的不期望HFTO模态被激发。振动隔离联接器140用作HFTO的机械低通滤波器并且包括隔离频率(自然频率或第一共振频率)。
隔离效果是由与在钻头处激发或在BHA中的任何其他切割结构处激发的HFTO频率相比振动隔离联接器的显著较小隔离频率引起的。较小的隔离频率可通过使用具有足够小扭转刚度的振动隔离联接器来实现。在针对高于隔离频率的频率的扭转自由度方面,振动隔离联接器的小扭转刚度将位于下方的质量与位于上方的质量隔离。以高于隔离频率的频率在钻头处激发的HFTO模态与BHA位于振动隔离联接器140上方的部分隔离。术语“小扭转刚度”是指弯曲刚度与扭转刚度之间的比率(弯曲刚度/扭转刚度(BST/TST))大于10、大于15、大于20、大于30、大于40或大于50。
在一个实施方案中,井下组件中的振动隔离联接器的期望隔离频率介于10Hz和200Hz之间。在另一个实施方案中,隔离频率可介于10Hz和100Hz之间。在又一个实施方案中,隔离频率可介于20Hz和50Hz之间。在又一个实施方案中,30Hz的隔离频率减少了不期望HFTO模态(例如,在介于50Hz和500Hz之间的范围内的HFTO模态)的隔离。
振动隔离联接器的隔离频率取决于振动隔离联接器的扭转弹簧常数(与扭转刚度成比例)和振动隔离联接器下方的振荡质量。在一个实施方案中,将振动隔离联接器140定位在转向单元29和碎裂工具30上方提供足够高的振荡质量(惯性质量)以实现约30Hz的隔离频率。较小的质量(例如仅钻头)导致隔离频率高于30Hz,例如100Hz至200Hz。位于碎裂工具30附近的BHA组件被设计成承受高水平的振动(轴向、横向和扭转)。
30Hz的隔离频率将不期望HFTO模态和相关联的扭矩负荷和作用在转向单元29和钻头30上的角加速度负荷限制到仅几个临界HFTO模态。如图2所示,在30Hz的隔离频率下或附近,也存在具有较高的发生可能性但不被认为是不期望的其他模态。较高的隔离频率将导致在BHA位于振动隔离联接器140下方的部分中激发更多不期望HFTO模态,从而可能导致转向单元29或碎裂工具30中的损坏。
在一个实施方案中,BHA的下部部分(例如,BHA位于振动隔离联接器140下方的部分)根据HFTO与BHA的上部部分(例如,BHA位于振动隔离联接器140上方的部分)解除联接(隔离)。在另选实施方案中,例如通过扩孔钻可能在BHA位于振动隔离联接器140的一部分中激发不期望HFTO模态。在这种情况下,振动隔离联接器140将BHA位于振动隔离联接器140下方的部分与不期望HFTO模态隔离。在具有如本文所述的振动隔离联接器的BHA中,振动隔离联接器140上方的不期望HFTO模态振型振幅(BHA的没有HFTO激发的部分)与振动隔离联接器140下方的HFTO模态振型振幅(BHA的具有HFTO激发的部分)相比相对较低。
图2A和图2B示出了没有振动隔离联接器的钻柱中的参考BHA(4.75"工具尺寸)的几何形状,示出了具有介于119.4Hz和357.6Hz之间的相应频率(f)的六个示例性不期望HFTO模态振型。参数Sc是发生HFTO模态振型的可能性的指示符。HFTO模态振型振幅指示在钻柱的BHA区段中出现扭转振动能量的位置。
图3A和图3B示出了根据一个示例性实施方案放置在碎裂工具30和转向单元29上方的具有振动隔离联接器的钻柱中的参考BHA的几何形状。结合振动隔离联接器140导致在50Hz至500Hz的频率范围内较少数量的不期望HFTO模态。在振动隔离联接器140的隔离频率(30Hz)处或附近还存在其具有高发生可能性的其他模态。然而,这些具有小频率(约30Hz)的HFTO模态由于其小频率和小振幅(与在没有振动隔离联接器的参考BHA(图2)中沿BHA出现的振幅相比)而被认为是不太期望的。
图3显示HFTO集中在碎裂工具30和转向单元29处。与振动隔离联接器140下方的相应模态振型振幅的幅度相比,振动隔离联接器140上方的HFTO模态振型振幅更小。在没有振动隔离联接器的参考BHA的上部部分中存在的HFTO模态振型由于变化的扭转动力学而不在具有振动隔离联接器的BHA中激发,或以显著较小的HFTO模态振型振幅出现。因此,FE工具或包括高度复杂电子器件(PCBA、包括多芯片模块(MCM)的陶瓷材料)的MWD工具、传感器、连接器、线材、液压装置和/或位于振动隔离联接器上方的机械装置暴露于减小的扭转动态负荷,从而导致更高质量的井下测量数据(特别是成像数据)和增强的井下工具可靠性。
优选的是,构建尽可能短的振动隔离联接器140以保持FE工具靠近钻头。在一个实施方案中,如本文所述的振动隔离联接器140可短于约10m。在另一个实施方案中,振动隔离联接器140可短于约5m。在又一个示例性实施方案中,振动隔离联接器140可短于约2m。在又一个示例性实施方案中,振动隔离联接器140可短于约1.5m。在又一个示例性实施方案中,振动隔离联接器140可短于约1.2m。在又一个示例性实施方案中,振动隔离联接器140可短于约1.1m。此外,在另一个示例性实施方案中,振动隔离联接器140可短于约1m。另外,在另一个示例中,振动隔离联接器140可短于约0.5m。
为了实现期望的隔离特性,振动隔离联接器140具有小扭转刚度(扭转柔软性)以隔离HFTO。同时,振动隔离联接器必须具有高弯曲刚度以有利于定向BHA(即转向单元)的转向行为。本文提出了用于振动隔离联接器的不同设计,以实现期望的机械特性,从而平衡扭转柔软度与弯曲刚度之间的折衷,同时保持机械应力低于可接受的限值。机械应力由轴向负荷(钻压(WOB))、地面装备(钻柱旋转)施加的扭矩、钻孔转弯的动态弯曲和振动(横向、轴向、扭转)引起。
振动隔离联接器优选地为仅一件式地一体形成,或者可由非常少的部件形成。在没有连接(诸如螺纹、焊接连接或以其他方式形成的连接)的情况下一体形成的振动隔离联接器不太容易出现工具故障。现代制造方法诸如增材制造有机会得到形成为具有复杂形状的一体部分的振动隔离联接器。
本文所述的振动隔离联接器的弯曲刚度不通过包括具有高弯曲刚度的壳体来实现。如本文所述的振动隔离联接器不包括轴承或具有相对于彼此移动的表面的其他元件。因此,振动隔离联接器不包括或利用摩擦力或摩擦表面。在这种情况下,摩擦也包括粘性摩擦(粘性力)。如本文所述的振动隔离联接器不使用摩擦表面或粘性摩擦来耗散旋转能量。振动隔离联接器不包括由于摩擦力引起的磨损。应当提及,振动隔离联接器仅隔离高频扭转振荡。旋转台施加的旋转(非振荡或连续旋转)从振动隔离联接器上方的BHA传递到振动隔离联接器下方的BHA。尽管振动隔离联接器将HFTO隔离,但振动隔离联接器上方和下方的BHA可旋转地联接。
根据图2至图5所示的示例性实施方案,振动隔离联接器140包括可采用内螺纹连接器146的形式的第一连接器144和可采用销螺纹连接器150的形式的第二连接器148。第一联接器部分154连接到第二连接器148,并且第二联接器部分156联接到第一连接器144。如本文将详细描述的,第二联接器部分在第一联接器部分154内延伸并与第一联接器部分同心。此外,第一联接器部分154通过多个连接元件操作地连接到第二联接器部分156,连接元件一般性地由159指示,如本文另外详细描述。连接元件159可与第一联接器部分154和第二联接器部分156一体形成。另选地,连接元件159可通过焊接接合到第一联接器部分154和第二联接器部分156。密封件160可布置在第一联接器部分154与第二联接器部分156之间。密封件160可由各种材料诸如橡胶、弹性体或金属形成。此外,密封件160可允许第一联接器部分154与第二联接器部分156之间的受控量的泄漏。
应当提及,连接元件159可具有如图4至图7中所示的不同形状。在示例性实施方案中,连接元件159可具有包括I形、8字形、圆形(椭圆形、圆形)的横截面或可包括中空轮廓。连接元件159可以不全部具有相同尺寸。此外,轴向方向上的延伸可从一个连接元件变化到另一个连接元件。径向方向上的延伸可从一个连接元件变化到另一个连接元件。如本文所用,轴向方向是指平行于振动隔离联接器140的纵向轴线A(图2)的方向,并且本文的径向方向R(图2)是指垂直于纵向轴线A的方向。周向方向C(图5)是指垂直于纵向轴线A的切向方向。角α(图5)是指围绕纵向轴线A的角度。
如图2和图3所示,第一连接器144可包括内螺纹连接器146,并且第二连接器148可包括销螺纹连接器150。第一连接器144和第二连接器148可分别通过螺柱焊接合到第一联接器部分154和第二联接器部分156。第一联接器部分154和第二联接器部分156通过多个连接元件159连接并且形成振动隔离联接器140的振动隔离部分151。因此,第一连接器144和第二连接器148可通过螺柱焊接合到振动隔离联接器140的振动隔离部分151。焊缝165指示内螺纹连接器146与第二联接器部分156之间的螺柱焊,并且焊缝167指示销螺纹连接器150与第一联接器部分154之间的螺柱焊。另选地,内螺纹连接器146和销螺纹连接器150可分别与第一联接器部分154和第二联接器部分156成一体,或通过不同技术诸如通过摩擦焊接、激光束焊接或电子束焊接接合。
根据一个示例性方面,第一联接器部分154包括具有第一环形壁164的第一管状部分162,该第一环形壁具有外表面166和限定第一中心孔170的内表面168。第一环形壁164包括第一端部172和相对的第二端部173。第二联接器部分156包括具有第二环形壁180的第二管状部分171,该第二环形壁包括外表面区段182和限定第二中心孔186的内表面区段184。在一个实施方案中,第二中心孔186可提供供钻井液流过钻柱20的通道。第二环形壁180包括第一端部部分187和相对的第二端部部分188。第一连接器144联接到第二联接器部分156的第一端部部分187,并且第二连接器148联接到第一联接器部分154的第二端部173。
第一环形壁164的内表面168与第二环形壁180的外表面182间隔开。在一个实施方案中,内表面168与外表面182间隔开约1mm的距离。在一个另选实施方案中,内表面168与外表面182间隔开约0.1mm至0.9mm的距离。在又一个示例性方面,内表面168与外表面182间隔开约1mm至2mm的距离。在又一个示例性方面,内表面168与外表面182间隔开约2mm至10mm的距离。在又一个示例性方面,内表面168与外表面182间隔开大于约10mm的距离。
根据一个示例性方面,第二联接器部分156包括第一多个轴向间隔开口190a和190b,其从外表面182延伸穿过第二环形壁180至流体地连接第一中心孔170和第二中心孔186的内表面184。应当理解,虽然示出为轴向间隔开的,但开口190a和190b可周向间隔开或者可既轴向间隔开也周向间隔开。第二联接器部分156还包括相对于轴向间隔开口190a和190b轴向和周向偏移的第二多个轴向间隔开口193a和193b、相对于开口190a/190b和193a/193b轴向和周向偏移的第三多个轴向间隔开口196a和196b,以及相对于开口190a/190b、193a/193b和196a/196b轴向和周向偏移的第四多个轴向间隔开口198a和198b。轴向间隔开口的数量和位置可变化。在一个实施方案中,第一多个轴向间隔开口、第二多个轴向间隔开口、第三多个轴向间隔开口和第四多个轴向间隔开口相对于彼此周向偏移90°。
进一步根据一个示例性实施方案,多个连接元件159包括第一多个连接元件207a和207b、第二多个连接元件209a和209b、第三多个连接元件212a和212b以及第四多个连接元件214a和214b。连接元件207a和207b从第一联接器部分154的内表面168延伸穿过第一多个轴向间隔开口190a和190b中的对应开口,并且与第二联接器部分156的内表面184接合。连接元件209a和209b从内表面168延伸穿过第二多个轴向间隔开口193a和193b中的对应开口,并且与内表面184接合。连接元件212a和212b从内表面168延伸穿过第三多个轴向间隔开口196a和196b中的对应开口,并且与内表面184接合。连接元件214a和214b从内表面168延伸穿过第四多个轴向间隔开口198a和198b中的对应开口,并且与内表面184接合。
在一个实施方案中,第一联接器部分154由第一材料形成,第二联接器部分156由第二材料形成,并且多个连接元件159由第三材料形成。在一个示例性方面,第一材料、第二材料、第三材料和第四材料基本上相同。在另一个示例性方面,第一联接器部分154、第二联接器部分156和多个连接元件159一体形成。也就是说,第一联接器部分154、第二联接器部分156和多个连接元件159诸如通过增材制造形成为单个整体部件。然而,应当理解,第一材料、第二材料和第三材料可不同并且可采用其他制造技术。例如,可通过焊接、钎焊、螺纹、夹持或其他接合方法来连接单个部件。其他制造方法可包括精密铸造。
用于形成振动隔离联接器140的材料可为钢、高强度钢、钛、钛合金、镍或镍合金(例如铬镍铁合金)。所用的材料可具有不同材料特性,诸如弹性模量、剪切模量、强度、密度。在又一个实施方案中,振动隔离联接器的不同部分可由不同材料形成以满足弹性或剪切模量要求或腐蚀性要求。现代增材制造技术能够在一个整体部件内组合不同材料。
还应当理解,连接元件159的弹性弯曲可在第一联接器部分154与第二联接器部分156之间提供选定量的弯曲柔韧性。此外,应当理解,定位在振动隔离联接器140井下的井下部件在旋转或振荡(振动)时具有惯性矩。振动隔离联接器140井下的井下部件的惯性矩与由连接元件159提供的弹性弯曲(弯曲柔韧性)一起建立从方程(1.1)导出的第一扭转共振:
Figure BDA0003588823600000131
其中,f=频率[1/s],I=惯性矩[kgm2],k=例如小于100Hz的扭转弹簧常数[Nm/rad]。应当理解,惯性矩还可包括源自振动隔离联接器的惯性矩的贡献。
因此,振动隔离联接器140隔离(解除联接)第一联接器部分154与第二联接器部分156之间的频率高于第一扭转共振的振动。
根据一个示例性方面,可通过第一连接器144将负荷引入振动隔离联接器140。负荷可表示扭转负荷、轴向负荷和或弯曲负荷。在一个实施方案中,可通过旋转台14和/或绞车33向第一连接器144赋予负荷。当将扭转负荷(钻井扭矩或钻头扭矩)施加在第一连接器144与销螺纹连接器150之间时,多个连接元件159在第一联接器部分154与第二联接器部分156之间形成扭转柔性联接。因此,多个连接元件159经受弯曲并允许第一联接器部分154相对于第二联接器部分156的角移动(角α(图5))。
当在第一连接器144与第二连接器148之间施加弯矩时,多个连接元件159经受推拉力,利用其具有均匀分布应力的整个横截面,并因此表示用于第一联接器部分154与第二联接器部分156之间的弯曲的相当刚性的联接。在轴向加载时,多个连接元件159沿其较大惯性矩弯曲,从而承受能与之相比的低应力和低变形。
进一步根据一个示例性方面,当在第一连接器144和第二连接器148上施加扭矩时,多个连接元件159可能变形。一旦达到预定扭矩水平,多个连接元件159中的一个或多个连接元件可与轴向间隔开口190a/190b、193a/193b、196a/196b和198a/198b中的对应开口的开口表面接触。在这种情况下,开口表面形成扭转终点止动件,如图5中224所指示。扭转终点止动件224限制多个连接元件159中的进一步偏转和应力。扭转终点止动件224可用于施加高静态扭矩,以例如释放卡在隔离器下方的孔部件中的情况。扭转终点止动件224可采取多种形式,诸如如图6所示,其中相同的参考标号表示单独视图中的对应部分。
在图8中,扭转终点止动件224与多个连接元件159分离。扭转终点止动件224与连接元件159的分离防止当撞击开口表面(例如,扭转终点止动件224)时多个连接元件159的潜在损坏。在连接元件159撞击扭转终点止动件224的开口表面(未单独标记)之前,扭转终点止动件224可在振动隔离联接器140的扭转下接合(停止)。将扭转终点止动件224与连接元件159分离的另一个原因是功能的分离。
多个连接元件159的功能是隔离HFTO。当由于从例如表面施加的扭矩(钻井扭矩)而导致多个连接元件159弯曲并与例如开口190a/190b、193a/193b、196a/196b的表面接触时,不可能由于HFTO而导致进一步弯曲并且振动隔离联接器140将失去隔离功能。扭转终点止动件224在多个连接元件撞击开口190a/190b、193a/193b、196a/196b的表面之前接合,以维持振动隔离联接器140的功能,同时限制其由高扭矩导致的最大扭转角。
由表面扭矩(钻井扭矩)导致的振动隔离联接器140的典型扭转可以是约10°的扭转角。由HFTO导致的振动隔离联接器140的典型扭转可以是约15°的扭转角。扭转角是指如图7所示的角α。扭转角是指第一联接器部分154相对于第二联接器部分156的旋转。在另选实施方案中,由于钻井扭矩导致的扭转角可介于约5°和约30°之间。在另一个实施方案中,扭转角可介于约7°和约20°之间。在又一个示例性实施方案中,扭转角可介于约8°和约15°之间。由于HFTO导致的扭转角也可介于约5°和约50°之间;介于约8°和约30°之间,以及介于约10°和约20°之间。
由旋转台施加的钻井扭矩通过振动隔离联接器140传递到钻头。多个连接元件159弯曲,但不撞击开口190a/190b、193a/193b、196a/196b的表面。由于钻井过程和作用在碎裂工具30上的切割力,HFTO可叠加在由旋转台施加在碎裂工具30的位置处的旋转上并沿BHA传播。多个连接元件159的振荡弯曲在垂直于振动隔离联接器140的纵向轴线A的方向上发生。对于具有处于和高于振动隔离联接器140的第一共振频率的频率的HFTO模态,多个连接元件159的弯曲沿从第二连接器148到第一连接器144的纵向轴线A减小。
如果振动隔离联接器140完全隔离HFTO,则没有HFTO被传递到第一连接器144。第二连接器148与第一连接器144之间的HFTO的隔离通过振动隔离部分140的扭转柔软性来实现,这允许第二联接器部分148相对于第一联接器部分146旋转。在另选实施方案中,HFTO的输入可发生在第一连接器144处。当例如通过位于振动隔离联接器140上方的扩孔钻产生更靠近第一连接器144而不是第二连接器148的HFTO时,可能发生这种情况。本公开中的沿井孔向上是振动隔离联接器140的位于更靠近地面的端部。
振动隔离联接器140的期望长度短于1m。第一壁164和第二壁180的合适厚度可为10mm。在实施方案中,壁厚可介于约5mm和约9mm之间。在另一个示例性方面,壁厚可介于约11mm和约20mm之间。在又一个示例性方面,壁厚可介于约20mm和约50mm之间。第一环形壁164的壁厚可与第二环形壁180的壁厚不同。形状和尺寸在多个连接元件159之间可以不同。应当提及,本公开中的术语“长度”是指沿振动隔离联接器的纵向轴线A的延伸部,术语“宽度”和“高度”是指沿2个径向方向的延伸部,其中两个径向方向彼此垂直。连接元件的数量不限于图4至图7中所示的八个。
多个连接元件的第一部分平行取向。多个连接元件的第二部分可垂直于多个连接元件159的第一部分取向。在另选方案中,设想了多个连接元件159的部分之间的非90°的角度。例如,多个连接元件的第一部分可相对于多个连接元件的第二部分处于约1°至约120°之间的角度。在另一个示例性方面,多个连接元件的第一部分可相对于多个连接元件的第二部分处于约10°至约90°之间的角度。在另一个示例性方面,多个连接元件的第一部分可相对于多个连接元件的第二部分处于约10°至约45°之间的角度。在又一个示例性方面,多个连接元件的第一部分可相对于多个连接元件的第二部分处于约45°至约90°之间的角度。
在一个示例性方面,应当理解,可使用仅两个连接元件。在另一个实施方案中,可使用3个与50个之间的连接元件。在又一个实施方案中,可使用显著更大数量的连接元件。例如,振动隔离联接器140可形成有多于1000个连接元件。在这种情况下,连接元件159将在第一联接器部分的内表面168与第二联接器部分的内表面184之间取向,从而形成辐条状图案。在辐条状图案配置的情况下,相邻连接元件之间的角度可为5°或更小。
此时,应当理解,振动隔离联接器隔离来自例如碎裂装置沿井孔向上传递的振动。碎裂装置30位于振动隔离联接器140下方并且更靠近第二连接器148而不是第一连接器144。振动可通过多个连接元件159解除联接(隔离),使得振动隔离联接器140上方的振幅可显著小于振动隔离联接器140下方的振幅。在一个示例性实施方案中,频率高于简化替代机械系统的第一自然频率的扭转振动将被阻止,第一自然频率由低于振动隔离联接器140的BHA区段250(包括碎裂装置)的惯性矩和多个连接元件159的扭转弹簧常数(与扭转刚度成比例)表示。BHA区段250可包括钻头30和转向单元29。简化替代机械系统的第一自然频率可通过如等式1.1中给出的式计算:
与机械低通滤波器相比,振动隔离联接器140的振动隔离由与HFTO的临界激发频率相比显著较小(第一)自然频率(例如30Hz)、截止频率造成。所述机械系统的截止频率的典型值可为10Hz、50Hz、100Hz或200Hz,根据在BHA内激发的预期不期望HFTO频率进行选择。截止频率可通过连接元件的扭转刚度(或振动隔离联接器的扭转弹簧常数)或放置在振动隔离联接器140下方的部件的惯性矩来调整,例如通过在联接器下方添加或移除BHA区段,诸如钻管、重型钻管或柔性管道。
除了减少振动之外,振动隔离联接器还可用作钻井液的导管。通常,钻井液在工具中心的压力高于在环中的压力。工具流体通道的中心连接到钻柱的内孔和BHA的内孔,而环是钻井液朝向地面返回途径。孔压力至少受到碎裂装置中的喷嘴造成的压力损失和/或流经隔离联接器下方的井下工具(BHA区段)及其周围的流体的动态压力下降的影响而增大。如图2至图5所示,在孔流体与环之间的密封件160处可能存在(小)流动通道。通过在密封件160处提供间隙并适当地设定其大小(例如0.1mm),通过这些间隙的流体泄漏可具有受控且可容忍的流动。允许流体流的受控泄漏则不需要在旋转和/或振荡下进行密封的昂贵且精细的密封件。此处未明确详述的其他选项可包括迷宫式密封件、弹性体密封件、间隙密封件、磁性密封件、波纹管密封件或其他密封元件(在图3和图4中统称为160)。
振动隔离联接器140还可通过提供用于导体(如图2中的260所示)的通道来容纳控制信号的通过。导体260的此类通道允许通过振动隔离联接器140送入电导体或光学导体、线材或电缆,用于通过振动隔离联接器140将电力和/或通信(如电源线总线)从井下部件上方传输到井下部件下方,并且反之亦然。电导体可例如延伸穿过第一连接器144、第二环形壁180、多个连接元件159中的一个或多个连接元件、第一环形壁164,并且过渡到第二连接器148中。导体260的通路可终止于模块化电连接器中,该模块化电连接器继而可采取电触点的形式,诸如放置在环形凹陷部270中的接触环、滑动接触件、电感连接或定位在连接器150和146处的共振电磁联接装置。
应当理解,其他连接器类型也是可能的。此外,应当理解,导体200可终止于位于第一连接器144和第二连接器148的中心孔(未单独标记)中的中心连接器(未示出)中。中心孔(也称为内孔)流体连接到BHA的内孔和钻柱,并且为钻井液提供通道。
多个连接元件159的弯曲在振动隔离联接器140的部分中引起机械应力。这些应力主要位于具有尖锐边缘的位置处,例如在连接元件附接到第一环形壁164的内表面168和附接到第二环形壁180的内表面184的区域中。为了减少这些区域中的机械应力,在制造过程期间形成了具有限定半径的过渡部,例如在图7中由280一般性地示例性指示。
在另选实施方案中,可形成三中心曲线而不是单个半径。类似的策略可用于位于第二环形壁180的第一端部部分187处的第一负荷传递环285和/或位于第一环形壁164的第二端部部分173处的第二负荷传递环287。可在第二环形壁180与第一负荷传递环285之间的过渡部处形成半径拐角290。可在第一环形壁164与第二负荷传递环287之间的过渡部处形成对应的半径拐角。负荷传递环285/287从第一连接器144和第二连接器148传递负荷以及将负荷传递到第一连接器和第二连接器,诸如轴向负荷、弯曲负荷、扭转负荷。在另选实施方案中,可形成三中心曲线而不是单个半径。可使用有限元模拟(FE模拟,FE建模)对振动隔离联接器进行建模,其中振动隔离联接器140的不同部分具有不同的材料特性和尺寸(例如,多个连接元件159的数量和尺寸,振动隔离部分151的长度),以尽可能优化和微调弯曲刚度与扭转刚度(BST/TST)的比率,例如大于15的比率。
下面示出了前述公开的一些实施方案:
实施方案1.一种用于隔离钻柱中的扭转振动的振动隔离联接器,包括:第一联接器部分,该第一联接器部分包括具有外表面和限定第一中心孔部分的内表面的第一环形壁;第二联接器部分,第二联接器部分设置在第一中心孔部分内,该第二联接器部分包括具有外表面区段和限定第二中心孔部分的内表面区段的第二环形壁;以及多个连接元件,该多个连接元件从第一环形壁的内表面延伸穿过第二环形壁越过第二中心孔部分并与第二环形壁的内表面连接。
实施方案2.根据任一前述实施方案所述的振动隔离联接器,其中第二联接器部分包括多个轴向间隔开口,该多个轴向间隔开口从第二环形壁的外表面区段延伸穿过第二环形壁至第二环形壁的内表面区段。
实施方案3.根据任一前述实施方案所述的振动隔离联接器,其中多个轴向间隔开口包括第一多个轴向间隔开口、相对于第一多个轴向间隔开口周向偏移的第二多个轴向间隔开口、从第一多个轴向间隔开口和第二多个轴向间隔开口周向偏移的第三多个轴向间隔开口。
实施方案4.根据任一前述实施方案所述的振动隔离联接器,还包括:延伸穿过多个连接元件中的至少一个连接元件的导体。
实施方案5.根据任一前述实施方案所述的振动隔离联接器,其中第二环形壁的外表面与第一环形壁的内表面间隔开。
实施方案6.根据任一前述实施方案所述的振动隔离联接器,还包括:布置在第一联接器部分与第二联接器部分之间的密封件。
实施方案7.根据任一前述实施方案所述的振动隔离联接器,其中第一联接器部分包括第一管状部分并且第二联接器部分包括第二管状部分,第一管状部分、第二管状部分和多个连接元件由相同材料形成。
实施方案8.根据任一前述实施方案所述的振动隔离联接器,其中第一联接器部分包括第一管状部分并且第二联接器部分包括第二管状部分,第一管状部分和第二管状部分由第一材料形成,并且多个连接元件由不同于第一材料的第二材料形成。
实施方案9.根据任一前述实施方案所述的振动隔离联接器,其中多个连接元件与第一联接器部分和第二联接器部分一体形成。
实施方案10.根据任一前述实施方案所述的振动隔离联接器,其中第二联接器部分与第一联接器部分同心。
实施方案11.根据任一前述实施方案所述的振动隔离联接器,其中第一环形壁包括第一端部和第二端部,并且第二环形壁包括第一端部部分和第二端部部分,第二环形壁的第一端部部分支撑第一连接器,并且第一环形壁的第二端部支撑第二连接器。
实施方案12.根据任一前述实施方案所述的振动隔离联接器,其中第一连接器包括内螺纹连接器并且第二连接器包括销连接器。
实施方案13.根据任一前述实施方案所述的振动隔离联接器,还包括第一连接器和第二连接器,其中第一连接器通过焊接连接到第二环形壁并且第二连接器通过焊接连接到第一环形壁。
实施方案14.根据任一前述实施方案所述的振动隔离联接器,其中振动隔离联接器包括扭转弹簧常数,该扭转弹簧常数限定小于100Hz的扭转共振频率,由此隔离第一联接器部分和第二联接器部分之间的频率高于约扭转共振频率的振动。
实施方案15.根据任一前述实施方案所述的振动隔离联接器,其中振动隔离联接器通过多个连接元件的弹性弯曲来隔离扭转振动。
实施方案16.一种通过振动隔离联接器来隔离来自钻柱的一部分的扭转振动的方法,该来自钻柱的一部分连接到钻柱的另一部分,该振动隔离联接器具有第一联接器部分,该第一联接器部分通过多个连接元件连接到第二联接器部分,该方法包括:将扭转振动引入第一联接器部分;将扭转振动传递到从第二联接器部分的内表面区段延伸的多个连接器元件中,穿过第二联接器部分的环形壁至第一联接器部分的内表面;以及通过多个连接元件的弹性弯曲来隔离将扭转振动从第一联接器部分传递到第二联接器部分。
实施方案17.根据任一前述实施方案所述的方法,其中隔离扭转振动包括在垂直于振动隔离联接器的纵向轴线的方向上弹性弯曲多个连接元件。
实施方案18.根据任一前述实施方案所述的方法,还包括:通过至少一个扭转终点止动件限制第二连接器部分相对于第一连接器部分的扭转角度。
实施方案19.根据任一前述实施方案所述的方法,还包括:使钻井液流过振动隔离联接器。
实施方案20.根据任一前述实施方案所述的方法,还包括:将振动隔离联接器的扭转刚度选择成具有小于100Hz的振动隔离联接器的扭转共振频率;以及将定位在振动隔离联接器下方的钻柱区段的惯性矩选择成具有振动隔离联接器的扭转共振频率的惯性矩;以及隔离第一联接器部分和第二联接器部分之间的频率高于约扭转共振频率的的扭转振动。
术语“约”和“基本上”旨在包括,基于在提交申请时可用的设备,与特定数量的测量相关联的误差度。例如,“约”和/或“基本上”可包括给定值的±8%或5%、或2%的范围。
在描述本发明的上下文中(特别是在所附权利要求的上下文中),术语“一个”、“一种”和“该”以及类似指代的使用应被解释为涵盖单数和复数,除非在本文另外指明或与上下文明显地矛盾。此外,应当指出的是,本文的术语“第一”、“第二”等并不表示任何顺序、数量或重要性,而是用来将一个元素与另一个元素区分开。
本公开的教导内容可用于多种井操作。这些操作可涉及使用一种或多种处理剂来处理地层、地层中驻留的流体、井筒、和/或井筒中的设备,诸如生产管材。处理剂可以是液体、气体、固体、半固体、以及它们的混合物的形式。例示性的处理剂包括但不限于压裂液、酸、蒸汽、水、盐水、防腐剂、粘固剂、渗透性调节剂、钻井泥浆、乳化剂、破乳剂、示踪剂、流动性改进剂等。例示性的井操作包括但不限于水力压裂、增产、示踪剂注入、清洁、酸化、蒸汽注入、注水、固井等。
虽然已参考一个或多个示例性实施方案描述了本发明,但本领域的技术人员将理解,在不脱离本发明的范围的情况下,可作出各种改变并且可用等同物代替其元件。另外,在不脱离本发明的基本范围的情况下,可作出许多修改以使特定情形或材料适应本发明的教导内容。因此,预期的是,本发明不限于作为设想用于实现本发明的最佳模式而公开的特定实施方案,而是本发明将包括落入权利要求书的范围内的所有实施方案。另外,在附图和具体实施方式中,已公开了本发明的示例性实施方案,并且尽管已采用了特定术语,但除非另外指明,否则它们仅以一般性和描述性意义使用,而非出于限制的目的,否则本发明的范围因此并不限于此。

Claims (15)

1.一种用于隔离钻柱(20)中的扭转振动(342)的振动隔离联接器(140),包括:
第一联接器部分(146),所述第一联接器部分包括具有外表面(166)和限定第一中心孔(170)部分的内表面(168)的第一环形壁(164);
第二联接器部分(148),所述第二联接器部分设置在所述第一中心孔(170)部分内,所述第二联接器部分(148)包括具有外表面区段(182)和限定第二中心孔(186)部分的内表面区段(184)的第二环形壁(180);和
多个连接元件(159),所述多个连接元件从所述第一环形壁(164)的所述内表面(168)延伸穿过所述第二环形壁(180)越过所述第二中心孔(186)部分并与所述第二环形壁(180)的所述内表面(168)连接。
2.根据权利要求1所述的振动隔离联接器(140),其中所述第二联接器部分(148)包括多个轴向间隔开口(190a),所述多个轴向间隔开口从所述第二环形壁(180)的所述外表面区段(182)延伸穿过所述第二环形壁(180)至所述第二环形壁(180)的所述内表面区段(184)。
3.根据权利要求2所述的振动隔离联接器(140),其中所述多个轴向间隔开口(190a)包括第一多个轴向间隔开口(190a)、相对于所述第一多个轴向间隔开口(190a)周向偏移的第二多个轴向间隔开口(190a)、从所述第一多个轴向间隔开口(190a)和所述第二多个轴向间隔开口(190a)周向偏移的第三多个轴向间隔开口(190a)。
4.根据权利要求2所述的振动隔离联接器(140),还包括:延伸穿过所述多个连接元件(159)中的至少一个连接元件的导体(96)。
5.根据权利要求1所述的振动隔离联接器(140),其中所述第二环形壁(180)的所述外表面(166)与所述第一环形壁(164)的所述内表面(168)间隔开。
6.根据权利要求1所述的振动隔离联接器(140),还包括:
布置在所述第一联接器部分(146)与所述第二联接器部分(148)之间的密封件(160)。
7.根据权利要求1所述的振动隔离联接器(140),其中所述第一联接器部分(146)包括第一管状部分(162),并且所述第二联接器部分(148)包括第二管状部分(171),所述第一管状部分(162)、所述第二管状部分(171)和所述多个连接元件(159)由相同材料形成。
8.根据权利要求1所述的振动隔离联接器(140),其中所述第一联接器部分(146)包括第一管状部分(162)并且所述第二联接器部分(148)包括第二管状部分(171),所述第一管状部分(162)和所述第二管状部分(171)由第一材料形成,并且所述多个连接元件(159)由不同于所述第一材料的第二材料形成。
9.根据权利要求1所述的振动隔离联接器(140),其中所述多个连接元件(159)与所述第一联接器部分(146)和所述第二联接器部分(148)一体形成。
10.根据权利要求1所述的振动隔离联接器(140),其中所述第二联接器部分(148)与所述第一联接器部分(146)同心。
11.根据权利要求1所述的振动隔离联接器(140),还包括第一连接器(144)和第二连接器(148),其中所述第一连接器(144)通过焊接连接到所述第二环形壁(180)并且所述第二连接器(148)通过焊接连接到所述第一环形壁(164)。
12.根据权利要求1所述的振动隔离联接器(140),其中所述振动隔离联接器(140)包括扭转弹簧常数,所述扭转弹簧常数限定小于100Hz的扭转共振频率,由此隔离所述第一联接器部分和所述第二联接器部分(148)之间的频率高于约所述扭转共振频率的振动。
13.根据权利要求1所述的振动隔离联接器(140),其中所述振动隔离联接器(140)通过所述多个连接元件(159)的弹性弯曲来隔离扭转振动(342)。
14.一种通过振动隔离联接器(140)来隔离来自钻柱(20)的一部分的扭转振动的方法,所述来自钻柱的一部分连接到所述钻柱(20)的另一部分,所述振动隔离联接器具有第一联接器部分(146),所述第一联接器部分通过多个连接元件(159)连接到第二联接器部分(148),所述方法包括:
将所述扭转振动引入所述第一联接器部分(146);
将所述扭转振动(342)传递到从所述第二联接器部分(148)的所述内表面区段(184)延伸的所述多个连接器元件中,穿过所述第二联接器部分(148)的环形壁(27)至所述第一联接器部分(146)的内表面(168);以及
通过所述多个连接元件(159)的弹性弯曲来隔离将所述扭转振动从所述第一联接器部分(146)传递到所述第二联接器部分(148)。
15.根据权利要求14所述的方法,其中隔离扭转振动包括在垂直于所述振动隔离联接器(140)的纵向轴线的方向上弹性弯曲所述多个连接元件(159)。
CN202080071164.7A 2019-09-12 2020-09-11 用于减少钻柱中的高频扭转振动的振动隔离联接器 Pending CN114555905A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201962899291P 2019-09-12 2019-09-12
US201962899331P 2019-09-12 2019-09-12
US201962899332P 2019-09-12 2019-09-12
US201962899354P 2019-09-12 2019-09-12
US62/899,291 2019-09-12
US62/899,332 2019-09-12
US62/899,331 2019-09-12
US62/899,354 2019-09-12
PCT/US2020/050475 WO2021050930A1 (en) 2019-09-12 2020-09-11 Vibration isolating coupler for reducing high frequency torsional vibrations in a drill string

Publications (1)

Publication Number Publication Date
CN114555905A true CN114555905A (zh) 2022-05-27

Family

ID=74866469

Family Applications (4)

Application Number Title Priority Date Filing Date
CN202080070329.9A Pending CN114502817A (zh) 2019-09-12 2020-09-11 通过模态振型调谐优化振动阻尼器工具的放置
CN202080071164.7A Pending CN114555905A (zh) 2019-09-12 2020-09-11 用于减少钻柱中的高频扭转振动的振动隔离联接器
CN202080071190.XA Pending CN114555906A (zh) 2019-09-12 2020-09-11 用于减少钻柱中的振动的振动隔离联接器
CN202080069494.2A Pending CN114531894A (zh) 2019-09-12 2020-09-11 扭转振荡的粘性振动阻尼

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202080070329.9A Pending CN114502817A (zh) 2019-09-12 2020-09-11 通过模态振型调谐优化振动阻尼器工具的放置

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202080071190.XA Pending CN114555906A (zh) 2019-09-12 2020-09-11 用于减少钻柱中的振动的振动隔离联接器
CN202080069494.2A Pending CN114531894A (zh) 2019-09-12 2020-09-11 扭转振荡的粘性振动阻尼

Country Status (6)

Country Link
US (3) US20210079976A1 (zh)
CN (4) CN114502817A (zh)
BR (4) BR112022004637A2 (zh)
GB (4) GB2603674B (zh)
NO (3) NO20220404A1 (zh)
WO (4) WO2021050888A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448015B2 (en) * 2018-03-15 2022-09-20 Baker Hughes, A Ge Company, Llc Dampers for mitigation of downhole tool vibrations
US11519227B2 (en) 2019-09-12 2022-12-06 Baker Hughes Oilfield Operations Llc Vibration isolating coupler for reducing high frequency torsional vibrations in a drill string
US20210079976A1 (en) 2019-09-12 2021-03-18 Baker Hughes Oilfield Operations Llc Viscous vibration damping of torsional oscillation
CN115667666A (zh) * 2020-03-30 2023-01-31 斯伦贝谢技术有限公司 惯性阻尼系统和方法
GB2623270A (en) * 2021-07-12 2024-04-10 Baker Hughes Oilfield Operations Llc Shock-based damping systems and mechanisms for vibration damping in downhole applications
US20230106255A1 (en) * 2021-10-06 2023-04-06 Horschel Brothers Precision Llc Nested Inertia Ring for Torsional Vibration Damper
US11654506B2 (en) * 2021-10-22 2023-05-23 Halliburton Energy Services, Inc. Processing route to design and manufacture highly configurable non-magnetic down-hole sensor collars
WO2023239860A1 (en) * 2022-06-10 2023-12-14 Baker Hughes Oilfield Operations Llc Flexible coupler for reducing torsional oscillations

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2585382A (en) 1948-06-25 1952-02-12 Gen Motors Corp Torsional vibration damper
GB699265A (en) * 1951-05-16 1953-11-04 Soundrill Corp Improvements in or relating to earth boring apparatus
US2834225A (en) * 1954-12-08 1958-05-13 Caterpillar Tractor Co Cork faced vibration damper
GB763714A (en) * 1955-01-31 1956-12-12 Caterpillar Tractor Co Improvements in or relating to torsional vibration dampers
US2953351A (en) 1957-08-26 1960-09-20 Bodine Mass vibration absorber for sonic oil well drill
US3099918A (en) 1961-08-09 1963-08-06 Drilco Oil Tools Inc Resilient rotary drive fluid conduit
US3121347A (en) * 1961-01-19 1964-02-18 Houdaiile Ind Inc Viscous torsional vibration damper
US3323326A (en) 1965-08-02 1967-06-06 John A Vertson Well drilling shock absorber
US3610347A (en) 1969-06-02 1971-10-05 Nick D Diamantides Vibratory drill apparatus
US3552230A (en) * 1970-03-11 1971-01-05 Houdaille Industries Inc Optimumly tuned and efficient viscous dampers
US3848931A (en) 1972-10-10 1974-11-19 Int Tool Sales Tool bit for vibration attenuation
DE2531817A1 (de) * 1975-07-16 1977-02-03 Hasse & Wrede Gmbh Drehschwingungsdaempfer
US4428443A (en) 1981-09-21 1984-01-31 Stability Drilling Systems, Inc. Shock absorbing tool for connection to a drill column
US4502552A (en) * 1982-03-22 1985-03-05 Martini Leo A Vibratory rotary drilling tool
GB2138100B (en) 1983-03-18 1987-02-11 Steven Odobasic Laminated tubular link
US4522271A (en) * 1983-10-17 1985-06-11 Bodine Albert G Method and apparatus for damping vibrations in drill collar strings
SE459514B (sv) 1984-09-06 1989-07-10 Secoroc Ab Skarvfoerband i skarvborrutrustning foer slagborrning
US4674356A (en) * 1985-05-01 1987-06-23 Kilgore Ronald B Dynamic rotational counterbalance structure
US4905776A (en) * 1989-01-17 1990-03-06 Amoco Corporation Self-balancing drilling assembly and apparatus
US5372548A (en) 1990-03-23 1994-12-13 Wohlfeld; William I. Longitudinal and rotary shock absorber for rotary and percussion drill bits
US5313829A (en) 1992-01-03 1994-05-24 Atlantic Richfield Company Method of determining drillstring bottom hole assembly vibrations
US5845542A (en) * 1992-05-21 1998-12-08 Eti Technologies Inc. Dynamic balancing method and apparatus
CA2069120C (en) * 1992-05-21 2005-04-26 Anton Gasafi Weight compensating method and apparatus
JPH06221361A (ja) * 1993-01-26 1994-08-09 Original Botsukusu:Kk 油圧緩衝器
DE4331790C2 (de) 1993-09-18 1996-02-08 Daimler Benz Aerospace Ag Einrichtung zur Vermeidung von Quietschgeräuschen durch eine Dichtung an einer Fensterscheibe
US5510582A (en) * 1995-03-06 1996-04-23 Halliburton Company Acoustic attenuator, well logging apparatus and method of well logging
US5743362A (en) * 1996-06-28 1998-04-28 Enidine Incorporated Temperature compensated viscous damper
GB2327957A (en) * 1997-08-09 1999-02-10 Anadrill Int Sa Method and apparatus for suppressing drillstring vibrations
JPH1182631A (ja) * 1997-09-12 1999-03-26 Nok Corp 磁気カップリングの振動低減方法とこれに使用するダンパ
US6327539B1 (en) 1998-09-09 2001-12-04 Shell Oil Company Method of determining drill string stiffness
US6098726A (en) 1998-09-22 2000-08-08 Camco International (Uk) Limited Torque transmitting device for rotary drill bits
US6158529A (en) 1998-12-11 2000-12-12 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing sliding sleeve
DE19941993C1 (de) 1999-09-02 2000-12-14 Benteler Werke Ag Verfahren zur Herstellung eines biegesteifen torsionsweichen Rohrprofils als Querträger für eine Verbundlenkerhinterachse eines Personenkraftwagens
US8401831B2 (en) 2000-03-13 2013-03-19 Smith International, Inc. Methods for designing secondary cutting structures for a bottom hole assembly
US6785641B1 (en) 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
US7251590B2 (en) 2000-03-13 2007-07-31 Smith International, Inc. Dynamic vibrational control
US6808455B1 (en) 2000-05-03 2004-10-26 Michael Solorenko Torsional shock absorber for a drill string
SE522081C2 (sv) 2000-12-06 2004-01-13 Sandvik Ab Verktyg för bearbetning i metalliska material
CA2357883C (en) 2001-09-28 2010-06-15 Noetic Engineering Inc. Slotting geometry for metal pipe and method of use of the same
JP2004053008A (ja) * 2002-05-31 2004-02-19 Fukoku Co Ltd ビスカスダンパ
US7036611B2 (en) 2002-07-30 2006-05-02 Baker Hughes Incorporated Expandable reamer apparatus for enlarging boreholes while drilling and methods of use
CA2525425C (en) 2003-05-30 2009-02-03 Strataloc Technology Products Llc Drilling string torsional energy control assembly and method
US7036612B1 (en) 2003-06-18 2006-05-02 Sandia Corporation Controllable magneto-rheological fluid-based dampers for drilling
GB2424018B (en) 2003-11-07 2008-05-28 Aps Technology Inc System and method for damping vibration in a drill string
US7708086B2 (en) 2004-11-19 2010-05-04 Baker Hughes Incorporated Modular drilling apparatus with power and/or data transmission
US20060278442A1 (en) 2005-06-13 2006-12-14 Kristensen Henry L Drill bit
US8875810B2 (en) 2006-03-02 2014-11-04 Baker Hughes Incorporated Hole enlargement drilling device and methods for using same
US7748474B2 (en) 2006-06-20 2010-07-06 Baker Hughes Incorporated Active vibration control for subterranean drilling operations
US20080060849A1 (en) * 2006-09-12 2008-03-13 Entchev Pavlin B Shape memory alloy vibration isolation device
US7828082B2 (en) 2006-09-20 2010-11-09 Schlumberger Technology Corporation Methods and apparatus for attenuating drillstring vibrations
CA2674233C (en) 2007-02-02 2016-02-09 Exxonmobil Upstream Research Company Modeling and designing of well drilling system that accounts for vibrations
US8757294B2 (en) 2007-08-15 2014-06-24 Schlumberger Technology Corporation System and method for controlling a drilling system for drilling a borehole in an earth formation
WO2009030925A2 (en) 2007-09-04 2009-03-12 Stephen John Mcloughlin A downhole assembly
CA2735967C (en) * 2007-09-04 2017-01-03 George Swietlik A downhole device
US7779933B2 (en) 2008-04-30 2010-08-24 Schlumberger Technology Corporation Apparatus and method for steering a drill bit
US8589136B2 (en) 2008-06-17 2013-11-19 Exxonmobil Upstream Research Company Methods and systems for mitigating drilling vibrations
US20100025118A1 (en) 2008-08-01 2010-02-04 TPT Precision Engineering Pty Ltd Apparatus
GB2462675B (en) * 2008-08-20 2013-05-01 Thomas William Grant BHA vibration suppressing system
DE102009042156A1 (de) * 2008-10-09 2010-05-06 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fliehkraftpendeleinrichtung
EA032474B1 (ru) 2008-11-21 2019-06-28 Эксонмобил Апстрим Рисерч Компани Способ моделирования бурового оборудования для представления вибрационной характеристики бурового оборудования
EP2843186B1 (en) 2008-12-02 2019-09-04 National Oilwell Varco, L.P. Method and apparatus for reducing stick-slip
PL2364397T3 (pl) 2008-12-02 2013-06-28 Nat Oilwell Varco Lp Sposób i urządzenie do zmniejszenia zjawiska drgań ciernych
CN102575516B (zh) 2009-08-07 2014-12-31 埃克森美孚上游研究公司 根据地面测量估计井下钻探振动振幅的方法
EA201270259A1 (ru) 2009-08-07 2012-09-28 Эксонмобил Апстрим Рисерч Компани Спобобы оценки показателей вибраций на забое при бурении по результатам измерений на поверхности
US8453764B2 (en) 2010-02-01 2013-06-04 Aps Technology, Inc. System and method for monitoring and controlling underground drilling
US7975392B1 (en) * 2010-03-10 2011-07-12 National Oilwell Varco, L.P. Downhole tool
US8342821B2 (en) * 2010-10-21 2013-01-01 Baker Hughes Incorporated Tuned bearing
US9458679B2 (en) * 2011-03-07 2016-10-04 Aps Technology, Inc. Apparatus and method for damping vibration in a drill string
CN102401086A (zh) * 2011-06-29 2012-04-04 青岛地恩地材料科技有限公司 扭转振动减振器
EP2766568B1 (en) 2011-10-14 2018-08-29 Precision Energy Services, Inc. Analysis of drillstring dynamics using a angular rate sensor
US9273522B2 (en) * 2011-10-14 2016-03-01 Baker Hughes Incorporated Steering head with integrated drilling dynamics control
NL2007656C2 (en) 2011-10-25 2013-05-01 Cofely Experts B V A method of and a device and an electronic controller for mitigating stick-slip oscillations in borehole equipment.
WO2013076184A2 (en) 2011-11-25 2013-05-30 Shell Internationale Research Maatschappij B.V. Method and system for controlling vibrations in a drilling system
US9004195B2 (en) 2012-08-22 2015-04-14 Baker Hughes Incorporated Apparatus and method for drilling a wellbore, setting a liner and cementing the wellbore during a single trip
CA2890729C (en) 2012-11-13 2016-05-17 Exxonmobil Upstream Research Company Method to detect drilling dysfunctions
US9476261B2 (en) * 2012-12-03 2016-10-25 Baker Hughes Incorporated Mitigation of rotational vibration using a torsional tuned mass damper
US9097068B2 (en) 2012-12-19 2015-08-04 Baker Hughes Incorporated Pressure compensation device for thread connections
US9121233B2 (en) * 2013-02-26 2015-09-01 Baker Hughes Incorporated Mitigation of downhole component vibration using electromagnetic vibration reduction
CN103147696B (zh) * 2013-03-19 2014-12-17 长安大学 一种用于吸收钻杆冲击振动的钻杆保护器
US9920612B2 (en) 2013-03-21 2018-03-20 Shell Oil Company Method and system for damping vibrations in a tool string system
GB2512895B (en) 2013-04-10 2020-01-08 Reeves Wireline Tech Ltd A shock absorber, related methods and apparatuses
US20140323231A1 (en) 2013-04-26 2014-10-30 Kenneth Perry Flexible shaft assembly
WO2015005907A1 (en) 2013-07-09 2015-01-15 Halliburton Energy Services, Inc. Methods and apparatus for mitigating downhole torsional vibration
RU2536302C1 (ru) * 2013-07-23 2014-12-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Динамический виброгаситель крутильных колебаний (варианты)
US20150050083A1 (en) 2013-08-15 2015-02-19 Smith International, Inc. Locking ring with stabilizing blades
US20150083493A1 (en) 2013-09-25 2015-03-26 Mark Ellsworth Wassell Drilling System and Associated System and Method for Monitoring, Controlling, and Predicting Vibration in an Underground Drilling Operation
US9976405B2 (en) 2013-11-01 2018-05-22 Baker Hughes, A Ge Company, Llc Method to mitigate bit induced vibrations by intentionally modifying mode shapes of drill strings by mass or stiffness changes
US9249632B2 (en) 2013-12-04 2016-02-02 Halliburton Energy Services, Inc. Vibration damper
RU2642734C2 (ru) * 2013-12-23 2018-01-25 Халлибертон Энерджи Сервисез Инк. Встроенный механизм ослабления крутильных колебаний для бурового снаряда нефтяного месторождения
CN103939092B (zh) * 2014-04-25 2017-07-07 中国科学院声学研究所 振动隔离装置
AU2015259870B2 (en) 2014-05-16 2019-05-02 Epiroc Drilling Tools Aktiebolag Joint and joint parts for drill string components
RU2550992C1 (ru) 2014-06-02 2015-05-20 Ривенер Мусавирович Габдуллин Разъемное соединение длинномерной гибкой трубы
US9988859B2 (en) 2014-07-07 2018-06-05 Klx Energy Services Llc Impact dampening apparatus
US20170167205A1 (en) 2014-07-09 2017-06-15 Ahmed Saeed Drill string axial vibration attenuator
US9689250B2 (en) 2014-11-17 2017-06-27 Tesco Corporation System and method for mitigating stick-slip
CN104565198B (zh) * 2014-12-23 2017-09-05 潍柴动力股份有限公司 一种发动机及其减振器
US9970236B2 (en) 2014-12-29 2018-05-15 Halliburton Energy Services, Inc. Mitigating stick-slip effects in rotary steerable tools
RU2667366C1 (ru) 2015-01-28 2018-09-19 Халлибертон Энерджи Сервисез, Инк. Предохранительное устройство передачи вала двигателя
KR101714208B1 (ko) * 2015-09-03 2017-03-08 현대자동차주식회사 개별 회전 관성질량을 갖춘 토셔널 댐퍼와 이를 적용한 크랭크샤프트
US10407999B2 (en) * 2016-05-11 2019-09-10 Extensive Energy Technologies Partnership Vibration dampener
NO346314B1 (en) * 2016-07-14 2022-05-30 Halliburton Energy Services Inc Alignment sub With deformable sleeve
WO2018049530A1 (en) * 2016-09-16 2018-03-22 Lo-Rez Vibration Control Ltd. High energy dissipation torsional viscous damper
US10683710B2 (en) 2016-10-07 2020-06-16 Cathedral Energy Services Ltd. Device for isolating a tool from axial vibration while maintaining conductor connectivity
DE102017004126B4 (de) 2017-04-27 2023-09-21 Man Truck & Bus Se Drehschwingungsdämpfer
US10822939B2 (en) * 2017-06-23 2020-11-03 Baker Hughes, A Ge Company, Llc Normalized status variables for vibration management of drill strings
US10782197B2 (en) 2017-12-19 2020-09-22 Schlumberger Technology Corporation Method for measuring surface torque oscillation performance index
US11199242B2 (en) 2018-03-15 2021-12-14 Baker Hughes, A Ge Company, Llc Bit support assembly incorporating damper for high frequency torsional oscillation
AR123395A1 (es) 2018-03-15 2022-11-30 Baker Hughes A Ge Co Llc Amortiguadores para mitigar vibraciones de herramientas de fondo de pozo y dispositivo de aislamiento de vibración para arreglo de fondo de pozo
US11448015B2 (en) 2018-03-15 2022-09-20 Baker Hughes, A Ge Company, Llc Dampers for mitigation of downhole tool vibrations
CN112088240B (zh) * 2018-03-15 2023-05-12 贝克休斯控股有限责任公司 用于减轻井下工具振动的阻尼器及用于井下井底钻具组合的振动隔离设备
WO2019232006A1 (en) 2018-05-30 2019-12-05 Knjb, Inc. Downhole ratchet mechanism and method
CN109236198B (zh) * 2018-11-13 2019-11-08 东北大学 可调式钻柱轴向-扭转耦合振动抑制装置
BR112022000405A2 (pt) 2019-07-11 2022-03-03 Baker Hughes Oilfield Operations Llc Acoplamento anti-rotação para uso em um conjunto de fundo de poço
US20210079976A1 (en) 2019-09-12 2021-03-18 Baker Hughes Oilfield Operations Llc Viscous vibration damping of torsional oscillation
US11519227B2 (en) 2019-09-12 2022-12-06 Baker Hughes Oilfield Operations Llc Vibration isolating coupler for reducing high frequency torsional vibrations in a drill string

Also Published As

Publication number Publication date
GB2603677B (en) 2023-06-07
GB2603673B (en) 2024-03-20
NO20220337A1 (en) 2022-03-21
GB202204793D0 (en) 2022-05-18
NO20220404A1 (en) 2022-04-01
US20210079736A1 (en) 2021-03-18
US11692404B2 (en) 2023-07-04
WO2021050888A1 (en) 2021-03-18
GB2603674A (en) 2022-08-10
NO20220383A1 (zh) 2022-03-29
GB2603677A (en) 2022-08-10
GB202204788D0 (en) 2022-05-18
BR112022004682A2 (pt) 2022-06-14
GB2603676A (en) 2022-08-10
US20210079738A1 (en) 2021-03-18
US20210079976A1 (en) 2021-03-18
US11603714B2 (en) 2023-03-14
WO2021050884A1 (en) 2021-03-18
GB2603674B (en) 2023-06-28
CN114531894A (zh) 2022-05-24
GB202204808D0 (en) 2022-05-18
WO2021050930A1 (en) 2021-03-18
GB2603676B (en) 2023-05-10
BR112022004637A2 (pt) 2022-05-31
GB202204805D0 (en) 2022-05-18
CN114502817A (zh) 2022-05-13
BR112022004705A2 (pt) 2022-06-14
CN114555906A (zh) 2022-05-27
BR112022004696A2 (pt) 2022-06-14
WO2021050892A1 (en) 2021-03-18
GB2603673A (en) 2022-08-10

Similar Documents

Publication Publication Date Title
CN114555905A (zh) 用于减少钻柱中的高频扭转振动的振动隔离联接器
US10416024B2 (en) System and method for monitoring and controlling underground drilling
US8564179B2 (en) Apparatus and method for downhole energy conversion
US11519227B2 (en) Vibration isolating coupler for reducing high frequency torsional vibrations in a drill string
US20090120689A1 (en) Apparatus and method for communicating information between a wellbore and surface
US6382332B1 (en) Drill bit apparatus for receiving seismic sound signals
US20130308424A1 (en) Method of Generating and Characterizing a Seismic Signal in a Drill Bit
US11208853B2 (en) Dampers for mitigation of downhole tool vibrations and vibration isolation device for downhole bottom hole assembly
US20200116005A1 (en) Downhole tool dynamic and motion measurement with multiple ultrasound transducer
US20180179828A1 (en) Oil and gas well drill pipe electrical and communication assembly
US11149536B2 (en) Measurement of torque with shear stress sensors
RU2794053C1 (ru) ВИБРОИЗОЛИРУЮЩИЙ СОЕДИНИТЕЛЬНЫЙ ЭЛЕМЕНТ (варианты) И СПОСОБ ИЗОЛИРОВАНИЯ КРУТИЛЬНЫХ ВИБРАЦИЙ В БУРИЛЬНОЙ КОЛОННЕ (варианты)
RU2792052C1 (ru) Виброизолирующая муфта и способ снижения высокочастотных крутильных колебаний в бурильной колонне
EP3071780B1 (en) Drillstring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Texas, USA

Applicant after: Baker Hughes oilfield operations Co.,Ltd.

Address before: Texas, USA

Applicant before: Baker Hughes oilfield operations Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination