CN114551021A - 一种低损耗铁硅铝基复合软磁粉心的制备方法 - Google Patents

一种低损耗铁硅铝基复合软磁粉心的制备方法 Download PDF

Info

Publication number
CN114551021A
CN114551021A CN202210363236.6A CN202210363236A CN114551021A CN 114551021 A CN114551021 A CN 114551021A CN 202210363236 A CN202210363236 A CN 202210363236A CN 114551021 A CN114551021 A CN 114551021A
Authority
CN
China
Prior art keywords
magnetic powder
powder
silicon
iron
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210363236.6A
Other languages
English (en)
Inventor
汤凤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Lingchuangxin Material Technology Co ltd
Original Assignee
Yangzhou Lingchuangxin Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Lingchuangxin Material Technology Co ltd filed Critical Yangzhou Lingchuangxin Material Technology Co ltd
Priority to CN202210363236.6A priority Critical patent/CN114551021A/zh
Publication of CN114551021A publication Critical patent/CN114551021A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • H01F1/14758Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种低损耗铁硅铝基复合软磁粉心的制备方法,通过选用400目气雾化铁硅铝磁粉和200目铁镍磁粉,并且按照合金成分质量百分比55%:45%,制备出低损耗60μ铁硅铝基复合软磁粉心,兼具低损耗和高直流偏置性能的优点,在100Oe条件下的粉心直流偏置性能高于70%,在50kHz、100mT条件下的体积损耗Pcv低于100mW/cm3

Description

一种低损耗铁硅铝基复合软磁粉心的制备方法
技术领域
本发明属于软磁材料技术领域,尤其涉及一种低损耗铁硅铝基复合软磁粉心的制备方法。
背景技术
金属软磁粉心作为制作各种滤波电感、电抗器等电力电子器件的核心元件,正朝着小型化、高频化、高功率化的方向发展。尤其是随着应用频率的提升,对软磁粉心的损耗提出了进一步的要求,即要求低损耗的粉心产品。随着快充技术的快速发展,尤其是大功率充电桩等基础设施的建设普及,要求软磁粉心具备优良的直流偏置性能。
专利CN103594218B中公布了一种高叠加低损耗金属磁粉心的制备方法,方案中对铁硅铝磁粉采用磷酸丙酮溶液进行表面钝化,对铁镍磁粉采用铬酸水溶液进行表面成膜以及包覆液进行表面包覆的二次绝缘工艺,然后将绝缘后的铁硅铝和铁镍磁粉混合后经过压制、热处理等工序制备出高叠加低损耗金属磁粉心。通过性能测试,在100Oe条件下的60μ粉心直流偏置性能为64~68%,在100mT、100kHz条件下的粉心损耗为480~520mW/cm3。专利CN110085385A中公布了一种高磁导率复合材料粉末及其制备方法。方案中,采用-250目的气雾化铁硅铝粉、-400目的铁硅粉和+400目的铁镍粉按照配比得到混合粉末,然后采用单一的液体硅树脂对混合粉末进行表面绝缘包覆处理。通过性能测试,该方案制备出的125μ粉心在100Oe条件下的直流偏置性能不低于28%,在100mT、100kHz条件下的粉心损耗低于250mW/cm3
发明内容
针对电子电力器件领域对软磁粉心性能提升需求,结合现有的产品指标以及专利方案分析,市场迫切需要一种兼具低损耗、高直流偏置特性的软磁粉心产品。现有专利的软磁粉心产品性能还需要进一步的提升,才能很好满足下游器件技术发展的需求。因此,本发明提供了一种低损耗铁硅铝基复合软磁粉心的制备方法,在铁硅铝粉心低损耗特性的基础上,大幅提升粉心的直流偏置性能,能够很好的满足未来市场的发展需求。
本发明低损耗铁硅铝基复合软磁粉心的制备方法,包括如下步骤:
步骤1:将气雾化铁硅铝磁粉和铁镍磁粉复配并并混合搅拌均匀;向复配磁粉中加入水性有机硅树脂、纳米SiO2粉末和水,常温下搅拌均匀,形成均匀的混合浆料;
步骤2:将步骤1获得的混合浆料加热至60℃~90℃,并继续保温搅拌;保温结束后,将干燥的粉末过筛得到绝缘包覆粉末;
步骤3:向步骤2获得的绝缘包覆粉末中加入粘结剂和脱模剂,混合均匀后得到待成型的磁粉;
步骤4:用压机将步骤3制备的待成型磁粉压制成粉心毛坯件;
步骤5:惰性或还原性气体保护下,将步骤4压制成型的粉心毛坯件在640℃~680℃进行保温,得到半成品磁粉心;
步骤6:向步骤5的半成品磁粉心表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
步骤1中,所述气雾化铁硅铝磁粉的原粉粒度≤400目,其成分按质量百分比构成为:Si 8.0%~11.0%,Al 4.0%~8.0%,余量为Fe。所述铁镍磁粉的原粉粒度≤200目,其成分按质量百分比构成为:Ni 49.0%~51.0%,余量为Fe。所述气雾化铁硅铝磁粉与所述铁镍磁粉的质量比为55%:45%。纳米SiO2粉末的粒度D50为10nm~50nm。
步骤1中,水性有机硅树脂的添加质量为气雾化铁硅铝磁粉质量的1.5%~2.5%,纳米SiO2粉末的添加质量为气雾化铁硅铝磁粉质量的2.0%~4.0%,水的添加质量为气雾化铁硅铝磁粉质量的10.0%~20.0%。
步骤1中,常温下搅拌时间为20分钟~60分钟,优选30分钟~45分钟。
步骤2中,加热至60℃~90℃时,继续保温搅拌40分钟~100分钟,优选50分钟~80分钟。
步骤3中,粘结剂的添加质量为复配磁粉质量的0.2%~0.6%,脱模剂的添加质量为复配磁粉质量的0.4%~0.8%。
步骤3中,所述粘结剂选自硅氧烷树脂、酚醛树脂、聚酰胺树脂中的一种或多种;所述脱模剂选自硬脂酸锌、硬脂酸钙、滑石粉、云母粉中的一种或多种。
步骤4中,压制压强为1800MPa~2500MPa。
步骤5中,保温时间为100分钟~180分钟,优选120分钟~150分钟。
步骤5中,所述惰性或还原性气体为氩气、氢气、氮气等。
本发明制备的低损耗铁硅铝铁硅铝基复合软磁粉心的有效磁导率为60。该铁硅铝软磁粉心在100Oe条件下的粉心直流偏置性能高于70%,并且在50kHz、100mT条件下的体积损耗Pcv低于100mW/cm3,具有优良的频率稳定特性。
本发明的有益效果体现在:
(1)本发明采用铁硅铝和铁镍的复合软磁粉末制备出的铁硅铝基复合软磁粉心,兼备铁硅铝低损耗特性和铁镍高直流偏置特性的优点,从而为下游器件厂商提供一种新型优良性能的粉心产品,能够满足电力电子器件对金属软磁粉心的性能要求。
(2)本发明采用水性有机硅树脂对铁硅铝和铁镍软磁粉末表面进行物理改性,采用纳米SiO2粉末对金属磁粉表面进行绝缘包覆。本方案属于一种无损包覆方法,对金属磁粉表面没有产生化学腐蚀等破坏作用,从而能够最大化保留软磁粉末的本征软磁性能。
(3)本发明方案中采用纳米SiO2粉末对金属软磁粉末将进行包覆处理,具有高热稳定性,经过后续工艺尤其是热处理工艺,仍能够保持绝缘层的稳定性,有效隔绝软磁粉末颗粒之间的涡流损耗,从而提升复合软磁粉心的损耗性能。
(4)本发明公布的制备方法简便,采用一步法加入水性有机硅树脂、纳米SiO2粉末和溶剂水,容易操作控制。相较于其他方案中对铁硅铝和铁镍粉分步绝缘包覆,本方案对铁硅铝粉末、铁镍粉末实现一步法绝缘包覆,大大简化操作程序,能够明显降低方案成本,容易后续的生产推广。
具体实施方式
下面结合实施例对本发明作进一步的描述。所描述的实施例及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1:
选用400目的气雾化铁硅铝磁粉550.0g,200目铁镍磁粉450.0g;加入15.0g的水性有机硅树脂、40.0g的纳米SiO2粉末、200.0g的水,在常温下搅拌60分钟后,形成均匀的混合浆料;随后,将混合浆料加热至60℃,并保温搅拌100分钟,保温结束后,将干燥的绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入6.0g的酚醛树脂粘结剂和8.0g的硬脂酸锌脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2500MPa将混合均匀的待成型的磁粉压制成粉心毛坯件,其中,粉心毛坯件为外径27.00mm×内径14.80mm×高度11.18mm的环形粉心;采用氩气作为保护性气体,将压制成型的粉心毛坯件在640℃保温180分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,干燥获得金属软磁粉心成品。
对比例1:
选用400目的气雾化铁硅铝磁粉550.0g,200目铁镍磁粉450.0g;加入15.0g的水性有机硅树脂、40.0g的纳米SiO2粉末、200.0g的水,在常温下搅拌60分钟后,形成均匀的混合浆料;随后,将混合浆料加热至60℃,并保温搅拌100分钟,保温结束后,将干燥的绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入6.0g的酚醛树脂粘结剂和8.0g的硬脂酸锌脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2800MPa将混合均匀的待成型的磁粉压制成粉心毛坯件,其中,粉心毛坯件为外径27.00mm×内径14.80mm×高度11.18mm的环形粉心;采用氩气作为保护性气体,将压制成型的粉心毛坯件在630℃保温180分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,干燥获得金属软磁粉心成品。
在铁硅铝基复合软磁粉心上采用线径Φ1.00mm、线长0.9m的漆包线绕制25匝电感线圈,测量得到的粉心磁电性能如下。
Figure BDA0003584757510000041
实施例1中制备的低损耗60μ铁硅铝基复合软磁粉心在100Oe条件下的直流偏置性能为为71.85%,50kHz、100mT下的体积损耗仅为89.2mW/cm3,具有优良的损耗性能和直流偏置特性。
在对比例1中,通过提升成型压制强度,降低热处理温度后,发现制备的60μ铁硅铝基复合软磁粉心Q值出现明显下降,说明粉心内部损耗出现偏高现象。对比例1的直流偏置性能低于实施例1的性能。通过直接的损耗性能测试数据可以明显发现,对比例1的铁硅铝基复合软磁粉心损耗出现明显恶化现象。
通过实施例1和对比例1可以看出,本发明参数存在内在的密切联系,尤其是压制成型参数和热处理参数之间存在密切联系。
实施例2:
选用400目的气雾化铁硅铝磁粉550.0g,200目铁镍磁粉450.0g;加入25.0g的水性有机硅树脂、20.0g的纳米SiO2粉末、100.0g的水,在常温下搅拌20分钟后,形成均匀的混合浆料;随后,将混合浆料加热至90℃,并保温搅拌40分钟,保温结束后,将干燥的绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入2.0g的聚酰胺树脂粘结剂和4.0g的云母粉脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为1800MPa将混合均匀的待成型的磁粉压制成粉心毛坯件,其中,粉心毛坯件为外径27.00mm×内径14.80mm×高度11.18mm的环形粉心;采用氢气作为保护性气体,将压制成型的粉心毛坯件在680℃保温100分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,干燥获得金属软磁粉心成品。
对比例2:
选用400目的气雾化铁硅铝磁粉550.0g,200目铁镍磁粉450.0g;加入10.0g的水性有机硅树脂、55.0g的纳米SiO2粉末、100.0g的水,在常温下搅拌20分钟后,形成均匀的混合浆料;随后,将混合浆料加热至90℃,并保温搅拌40分钟,保温结束后,将干燥的绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入2.0g的聚酰胺树脂粘结剂和4.0g的云母粉脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为1800MPa将混合均匀的待成型的磁粉压制成粉心毛坯件,其中,粉心毛坯件为外径27.00mm×内径14.80mm×高度11.18mm的环形粉心;采用氢气作为保护性气体,将压制成型的粉心毛坯件在680℃保温100分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,干燥获得金属软磁粉心成品。
在铁硅铝基复合软磁粉心上采用线径Φ1.00mm、线长0.9m的漆包线绕制25匝电感线圈,测量得到的粉心磁电性能如下。
Figure BDA0003584757510000051
实施例2中制备的低损耗60μ铁硅铝基复合软磁粉心在100Oe条件下的直流偏置性能为为70.25%,50kHz、100mT下的体积损耗为78.2mW/cm3,具有优良的损耗性能和直流偏置特性。
在对比例2中,降低了水性有机硅树脂用量、增加了纳米SiO2粉末用量,发现制备的60μ铁硅铝基复合软磁粉心Q值出现明显下降,直流偏置性能接近实施例1的性能,但是损耗出现明显恶化现象。
水性有机硅树脂作为一种粉末表面改性试剂,能够增强金属软磁粉末与纳米SiO2粉末的连接性,实现对金属软磁粉末表面的有效绝缘包覆。对比例2中,通过调整试剂用量,虽然也制备出60μ铁硅铝基复合软磁粉心,但是粉心的磁电性能出现明显恶化。通过对比例的实验数据对比可以发现,本发明技术方案参数是经过优化后的参数。
实施例3:
选用400目的气雾化铁硅铝磁粉550.0g,200目铁镍磁粉450.0g;加入20.0g的水性有机硅树脂、30.0g的纳米SiO2粉末、150.0g的水,在常温下搅拌40分钟后,形成均匀的混合浆料;随后,将混合浆料加热至80℃,并保温搅拌60分钟,保温结束后,将干燥的绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入4.0g的硅氧烷树脂粘结剂和6.0g的滑石粉脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2000MPa将混合均匀的待成型的磁粉压制成粉心毛坯件,其中,粉心毛坯件为外径27.00mm×内径14.80mm×高度11.18mm的环形粉心;采用氮气作为保护性气体,将压制成型的粉心毛坯件在650℃保温130分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,干燥获得金属软磁粉心成品。
对比例3:
选用400目的气雾化铁硅铝磁粉1000.0g;加入20.0g的水性有机硅树脂、25.0g的纳米SiO2粉末、150.0g的水,在常温下搅拌40分钟后,形成均匀的混合浆料;随后,将混合浆料加热至80℃,并保温搅拌60分钟,保温结束后,将干燥的绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入4.0g的硅氧烷树脂粘结剂和6.0g的滑石粉脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2000MPa将混合均匀的待成型的磁粉压制成粉心毛坯件,其中,粉心毛坯件为外径27.00mm×内径14.80mm×高度11.18mm的环形粉心;采用氮气作为保护性气体,将压制成型的粉心毛坯件在650℃保温130分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,干燥获得金属软磁粉心成品。
在铁硅铝基复合软磁粉心上采用线径Φ1.00mm、线长0.9m的漆包线绕制25匝电感线圈,测量得到的粉心磁电性能如下。
Figure BDA0003584757510000061
Figure BDA0003584757510000071
从测试数据中可以看出,实施例3中制备出的60μ低损耗铁硅铝基复合软磁粉心在100Oe条件下的直流偏置性能达到72.55%,50kHz、100mT下的体积损耗为80.6mW/cm3,具有优良的损耗性能和直流偏置特性。
在对比例3中,采用单一铁硅铝软磁粉末制备出了60μ铁硅铝粉心。与实施例3性能对比发现,100Oe条件下的直流偏置性能仅为57.80%,明显劣于实施例3,说明通过单一铁硅铝粉末很难获得高直流偏置性能。因此,本发明方案中采用铁硅铝和铁镍的混合粉末制备出的铁硅铝基复合软磁粉心是一种合理可靠的技术方案,能够兼具优良的损耗性能和直流偏置特性。

Claims (10)

1.一种低损耗铁硅铝基复合软磁粉心的制备方法,其特征在于包括如下步骤:
步骤1:将气雾化铁硅铝磁粉和铁镍磁粉复配并并混合搅拌均匀;向复配磁粉中加入水性有机硅树脂、纳米SiO2粉末和水,常温下搅拌均匀,形成均匀的混合浆料;
步骤2:将步骤1获得的混合浆料加热并保温搅拌;保温结束后,将干燥的粉末过筛得到绝缘包覆粉末;
步骤3:向步骤2获得的绝缘包覆粉末中加入粘结剂和脱模剂,混合均匀后得到待成型的磁粉;
步骤4:用压机将步骤3制备的待成型磁粉压制成粉心毛坯件;
步骤5:惰性或还原性气体保护下,将步骤4压制成型的粉心毛坯件在640℃~680℃进行保温,得到半成品磁粉心;
步骤6:向步骤5的半成品磁粉心表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
2.根据权利要求1所述的制备方法,其特征在于:
步骤1中,所述气雾化铁硅铝磁粉的原粉粒度≤400目,其成分按质量百分比构成为:Si8.0%~11.0%,Al 4.0%~8.0%,余量为Fe;所述铁镍磁粉的原粉粒度≤200目,其成分按质量百分比构成为:Ni 49.0%~51.0%,余量为Fe;纳米SiO2粉末的粒度D50为10nm~50nm。
3.根据权利要求2所述的制备方法,其特征在于:
所述气雾化铁硅铝磁粉与所述铁镍磁粉的质量比为55%:45%。
4.根据权利要求1所述的制备方法,其特征在于:
步骤1中,水性有机硅树脂的添加质量为气雾化铁硅铝磁粉质量的1.5%~2.5%,纳米SiO2粉末的添加质量为气雾化铁硅铝磁粉质量的2.0%~4.0%,水的添加质量为气雾化铁硅铝磁粉质量的10.0%~20.0%。
5.根据权利要求1所述的制备方法,其特征在于:
步骤2中,加热至60℃~90℃,保温搅拌40分钟~100分钟。
6.根据权利要求1所述的制备方法,其特征在于:
步骤3中,粘结剂的添加质量为复配磁粉质量的0.2%~0.6%,脱模剂的添加质量为复配磁粉质量的0.4%~0.8%;
步骤3中,所述粘结剂选自硅氧烷树脂、酚醛树脂、聚酰胺树脂中的一种或多种;所述脱模剂选自硬脂酸锌、硬脂酸钙、滑石粉、云母粉中的一种或多种。
7.根据权利要求1所述的制备方法,其特征在于:
步骤4中,压制压强为1800MPa~2500MPa。
8.根据权利要求1所述的制备方法,其特征在于:
步骤5中,保温时间为100分钟~180分钟。
9.根据权利要求1所述的制备方法,其特征在于:
制备的低损耗铁硅铝铁硅铝基复合软磁粉心的有效磁导率为60。
10.根据权利要求9所述的制备方法,其特征在于:
所述铁硅铝软磁粉心在100Oe条件下的粉心直流偏置性能高于70%,并且在50kHz、100mT条件下的体积损耗Pcv低于100mW/cm3
CN202210363236.6A 2022-04-07 2022-04-07 一种低损耗铁硅铝基复合软磁粉心的制备方法 Withdrawn CN114551021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210363236.6A CN114551021A (zh) 2022-04-07 2022-04-07 一种低损耗铁硅铝基复合软磁粉心的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210363236.6A CN114551021A (zh) 2022-04-07 2022-04-07 一种低损耗铁硅铝基复合软磁粉心的制备方法

Publications (1)

Publication Number Publication Date
CN114551021A true CN114551021A (zh) 2022-05-27

Family

ID=81666562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210363236.6A Withdrawn CN114551021A (zh) 2022-04-07 2022-04-07 一种低损耗铁硅铝基复合软磁粉心的制备方法

Country Status (1)

Country Link
CN (1) CN114551021A (zh)

Similar Documents

Publication Publication Date Title
CN102623121B (zh) 一种铁硅材料及μ90铁硅磁粉芯的制造方法
WO2019029146A1 (zh) 一种耐高温热处理的金属软磁粉芯的制备方法
CN111192757A (zh) 一种提高金属磁粉芯抗氧化性能的绝缘方法及其材料
CN110246679B (zh) 一种基于有机/无机复合绝缘工艺的金属软磁粉芯制备方法
US11482356B2 (en) Powder core, electric or electronic component including the powder core and electric or electronic device having the electric or electronic component mounted therein
CN111029126B (zh) 一种铁基金属软磁复合材料全无机耐高温绝缘粘结方法
CN111696746A (zh) 一种破碎法铁硅铝软磁粉心及其制备方法
CN107119174B (zh) 一种提高铁硅铝软磁粉芯直流偏置性能的退火方法
CN113470916A (zh) 铁硅铝软磁粉芯及其制备方法
CN112435821B (zh) 高效能磁粉芯及其制备方法
CN111383810A (zh) 一种非晶合金磁粉芯的制备方法
CN110828092A (zh) 一种充电桩用磁导率为26的铁硅铝镍软磁粉心及其制备方法
CN114038643A (zh) 一种提高软磁金属粉末绝缘阻抗的方法
CN114551021A (zh) 一种低损耗铁硅铝基复合软磁粉心的制备方法
CN110853860A (zh) 一种有效磁导率为60的铁硅铝镍软磁粉心及其制备方法
CN114496544B (zh) 一种低功耗铁镍钼磁粉心的制作方法
KR102687851B1 (ko) 일체형 동시소성 인덕터 및 그 제조방법
CN114078631B (zh) 一种软磁复合材料的制备方法及一种金属磁粉芯
CN113380487B (zh) 一种一体成型电感用磁芯粉末及其制备方法
CN115106522A (zh) 一种高出粉率低损耗26μ铁硅软磁粉心的制备方法
CN113410020B (zh) 一种FeSiCr磁粉芯及其制备方法
CN110853907A (zh) 一种开关电源用有效磁导率为90的铁硅铝镍软磁粉心及其制备方法
CN111696745A (zh) 一种复合铁硅铝软磁粉心及其制备方法
CN104036903A (zh) 一种铁硅镍磁粉芯的制备方法
CN110853858A (zh) 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220527

WW01 Invention patent application withdrawn after publication