CN110853858A - 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法 - Google Patents

一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法 Download PDF

Info

Publication number
CN110853858A
CN110853858A CN201911105326.XA CN201911105326A CN110853858A CN 110853858 A CN110853858 A CN 110853858A CN 201911105326 A CN201911105326 A CN 201911105326A CN 110853858 A CN110853858 A CN 110853858A
Authority
CN
China
Prior art keywords
magnetic powder
powder core
powder
silicon
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911105326.XA
Other languages
English (en)
Inventor
骆艳华
裴晓东
王凡
鲍维东
徐春宇
曹浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Nanjing New Material Research Institute Co Ltd
Original Assignee
SINOSTEEL ANHUI TIANYUAN TECHNOLOGY Co Ltd
China Steel Group Nanjing New Material Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SINOSTEEL ANHUI TIANYUAN TECHNOLOGY Co Ltd, China Steel Group Nanjing New Material Research Institute Co Ltd filed Critical SINOSTEEL ANHUI TIANYUAN TECHNOLOGY Co Ltd
Priority to CN201911105326.XA priority Critical patent/CN110853858A/zh
Publication of CN110853858A publication Critical patent/CN110853858A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明属于软磁材料技术领域,尤其涉及一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法,通过选用粒度小于200目的铁硅铝镍磁粉,用SiO2粉末对铁硅铝镍粉末颗粒进行绝缘包覆处理,制备出了升压电感用有效磁导率为125的铁硅铝镍软磁粉心;本发明制备流程简单、容易操作,制备出的铁硅铝镍软磁粉心具有优良的直流偏置性能和频率稳定特性,在100Oe条件下的粉心直流偏置性能高于34%,在50kHz、100mT条件下的体积损耗Pcv低于340mW/cm3

Description

一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其 制备方法
技术领域
本发明属于软磁材料技术领域,尤其涉及一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法。
背景技术
金属软磁粉心具有高饱和磁感应强度、高有效磁导率、低损耗、良好的直流偏置性能和频率稳定性能。金属磁粉心的制备工艺通常采用模压成型的方法,可以将粉体材料压制成不同形状的产品,满足不同场景的需求。金属软磁粉心内部的分布式气隙,以及磁粉表面通过绝缘包覆工艺形成的绝缘层,能够很好的降低磁粉心的材料损耗,并且产品的性能参数容易调控,产品性能一致性、稳定性良好,广泛应用于各种电力电子器件中。
专利CN102623123B中公布了一种125μ铁硅铝磁粉心的制造方法,该专利方案中,选用质量比-100~+200目25%、-200目~+300目55%、-300目20%的铁硅铝粉进行粒度配比,在80℃~120℃加入酸溶液试剂对金属磁粉进行表面钝化绝缘,选用的酸溶液为磷酸、尿素和甘油的混合溶液;采用1950MPa~2150Mpa压制、600℃~800℃条件热处理30分钟,制备出有效磁导率为125的铁硅铝粉心;专利CN102938312B中公布了一种铁硅铝金属磁粉心的制造方法;方案中采用磷酸、硝酸锌水溶液对磁粉进行表面钝化,选用的绝缘粘结剂为硅酸钠和高岭土,制备出的125μ铁硅铝磁粉心在50Oe的直流偏置场性能为42%,在100kHz、100mT条件下的磁心损耗约为450mW/cm3;专利CN102982991B公布了一种磁导率为125的铁硅磁心的制备方法;该专利采用传统的磷酸钝化工艺,通过粉末粒度配比,制备出的125μ铁硅粉心在100Oe条件下的直流偏置性能约为33%,100kHz、50mT条件下的磁心损耗为350mW/cm3
在升压电感器件设计领域,采用高磁导率的粉心产品,可以进一步降低器件设计的体积。目前,工程技术人员广泛采用高磁导率的软磁粉心产品。随着高功率、高频率的电子电力器件发展趋势,传统的铁硅铝粉心的直流叠加性能偏低,而铁硅粉心损耗水平偏高,无法进一步满足未来电子器件的发展要求,因此,需要进一步开发具备优良软磁性能的粉心产品。
发明内容
本发明所要解决的技术问题是针对金属软磁粉心的技术现状,提供一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法。
具体而言,本发明一种有效磁导率为125的铁硅铝镍软磁粉心的制备方法,其特征在于,该方法包括如下步骤:
(1)选用铁硅铝镍磁粉:选用原粉粒度小于200目的铁硅铝镍磁粉,合金成分质量百分比分别为Si 3.5%~5.5%、Al 2.0%~4.5%、Ni 1.0%~3.5%,剩余为Fe;
(2)干燥绝缘包覆粉末的制备:以步骤(1)的铁硅铝镍金属磁粉质量作为比例基准,加入质量百分比为0.03%~0.08%的环氧树脂、0.05%~0.1%的SiO2粉末、1.0%~2.5%的丙酮以及6.0%~15.0%的水;常温下搅拌均匀,形成均匀的混合浆料;随后,加热至100℃~140℃,并继续保温搅拌;保温结束后,将干燥的绝缘粉末过筛得到绝缘包覆粉末;
(3)制备待成型磁粉:向步骤(2)的绝缘包覆粉末中加入占粉末质量0.2%~0.9%的粘结剂、0.3%~1.0%的脱模剂,混合均匀后,得到待成型的磁粉;
(4)压制成型:用压机将步骤(3)制备的待成型磁粉压制成粉心毛坯件,其中采用的压机压制压强为2300MPa~2800MPa;
(5)热处理:惰性气体保护下,将步骤(4)压制成型的粉心毛坯件在800℃~900℃进行保温,得到半成品磁粉心;
(6)绝缘喷涂:向步骤(5)的半成品磁粉心表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
优选的,步骤(2)所述常温下搅拌时间为15分钟~60分钟,优选20分钟~40分钟。
优选的,步骤(2)加热至100℃~140℃时,继续保温搅拌15分钟~60分钟,优选15分钟~35分钟。
优选的,步骤(3)所述粘结剂选自硅氧烷树脂、酚醛树脂、聚酰胺树脂中的一种或多种。
优选的,步骤(3)所述脱模剂选自硬脂酸锌、硬脂酸钙、滑石粉、云母粉中的一种或多种。
优选的,步骤(5)保温时间为30分钟~120分钟。
优选的,步骤(5)所述惰性气体为氩气、氮气等。
优选的,合金中Si质量百分比可选为3.5%、4.0%、4.5%、5.0%、5.5%;Al质量百分比可选为2.0%、2.5%、3.0%、3.5%、4.0%、4.5%;Ni质量百分比可选为1.0、1.5%、2.0%、2.5%、3.0%、3.5%。
优选的,环氧树脂质量百分比可选为0.04%、0.05%、0.06%、0.07%、0.08%;SiO2粉末质量百分比可选为0.05%、0.06%、0.07%、0.08%、0.09%、0.1%。
优选的,丙酮的质量百分比可选为1.0%~1.5%;水的质量百分比可选为9.0%~12.0%。
优选的,粘结剂的质量百分比可选为0.4%~0.7%。
优选的,脱模剂的质量百分比可选为0.5%~0.8%。
优选的,压机压制压强为2500MPa~2700MPa。
本发明还涉及上述任一项所述方法制备的有效磁导率为125的铁硅铝镍软磁粉心。
优选的,该铁硅铝镍软磁粉心100Oe条件下的粉心直流偏置性能高于34%,在50kHz、100mT条件下的体积损耗Pcv低于340mW/cm3
本发明还涉及上述任一项所述方法制备的有效磁导率为125的铁硅铝镍软磁粉心在制备升压电感用软磁粉心的用途。
本发明惊喜的发现调节环氧树脂、SiO2粉末的用量能够有效提高粉心的性能,并且,调节步骤(4)所述压机压制压强等条件也对产品性能有较大影响。此外,本发明制备方法简便,容易操作和控制,没有采用传统的酸钝化工艺,有效避免了酸性试剂对环境的危害。
附图说明
下面结合附图对本发明进一步说明。
图1为本发明实施例1中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图;
图2为本发明实施例1中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;
图3为本发明实施例2中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图;
图4为本发明实施例2中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;
图5为本发明实施例3中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图;
图6为本发明实施例3中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;
图7为本发明实施例4中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图;
图8为本发明实施例4中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;
图9为本发明实施例5中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图;
图10为本发明实施例5中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图。
具体实施方式
下面结合实施例对本发明作进一步的描述。所描述的实施例及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1
选用原粉粒度为-200目的市售合金成分质量百分比分别为Si 4.0%、Al 3.5%、Ni 2.0%,剩余为Fe的铁硅铝镍磁粉1000.0g;然后,加入0.3g的环氧树脂、1.0g的SiO2粉末、10.0g的丙酮以及90.0g的水,在常温下搅拌20分钟后,形成均匀的混合浆料;随后,将混合浆料加热至100℃,并保温搅拌35分钟,保温结束后,将干燥的铁硅铝镍绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入3.0g的聚酰胺树脂粘结剂和4.0g的滑石粉脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2300MPa将混合均匀的粉末压制成粉心毛坯件,其中,粉心毛坯件为外径33.02mm×内径19.94mm×高度10.67mm的环形粉心;采用氮气作为保护性气体,将压制成型的粉心毛坯件在800℃保温120分钟得到半成品磁粉心;最后,向半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
在铁硅铝镍金属软磁粉心上采用线径Φ1.12mm、线长0.9m的漆包线绕制32匝电感线圈,测量得到的粉心磁电性能如下:
(1)100kHz/1V条件下,电感L=132.64μH;
(2)100kHz/1V条件下,品质因数Q=75.73;
(3)100kHz条件下直流叠加性能:H=100Oe时,LH/L0=34.69%;H=200Oe时,LH/L0=15.29%;
(4)50kHz/100mT条件下,铁硅铝镍软磁粉心体积损耗:Pv=320.69mW/cm3
图1为实施例1中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图,随着直流偏置场强的增加,粉心的直流偏置性能逐渐降低;在100Oe条件下,铁硅铝镍粉心的直流偏置性能达到34.69%,直流偏置性能优异;图2为实施例1中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;随着测试频率的增加,铁硅铝镍软磁粉心的有效磁导率一直维持在125附近,具有优良的频率稳定特性。
实施例2
选用原粉粒度为-200目的市售合金成分质量百分比分别为Si 4.0%、Al 3.5%、Ni 2.0%,剩余为Fe的铁硅铝镍磁粉1000.0g;然后,加入0.8g的环氧树脂、0.5g的SiO2粉末、10.0g的丙酮以及90.0g的水,在常温下搅拌20分钟后,形成均匀的混合浆料;随后,将混合浆料加热至140℃,并保温搅拌15分钟,保温结束后,将干燥的铁硅铝镍绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入3.0g的酚醛树脂粘结剂和4.0g的云母粉脱模剂,并混合均匀,采用压制压强约为2500MPa将混合均匀的粉末压制成粉心毛坯件,其中,粉心毛坯件为外径33.02mm×内径19.94mm×高度10.67mm的环形粉心;采用氮气作为保护性气体,将压制成型的粉心毛坯件在850℃保温100分钟得到半成品磁粉心;最后,在半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
在铁硅铝镍金属软磁粉心上采用线径Φ1.12mm、线长0.9m的漆包线绕制32匝电感线圈,测量得到的粉心磁电性能如下:
(1)100kHz/1V条件下,电感L=135.24μH;
(2)100kHz/1V条件下,品质因数Q=70.55;
(3)100kHz条件下直流叠加性能:H=100Oe时,LH/L0=34.54%;H=200Oe时,LH/L0=15.33%;
(4)50kHz/100mT条件下,铁硅铝镍软磁粉心体积损耗:Pv=334.48mW/cm3
图3为实施例2中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图,随着直流偏置场强的增加,粉心的直流偏置性能逐渐降低;在100Oe条件下,铁硅铝镍粉心的直流偏置性能达到34.54%,直流偏置性能优异;图4为实施例2中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;随着测试频率的增加,铁硅铝镍软磁粉心的有效磁导率一直维持在125附近,具有优良的频率稳定特性。
实施例3
选用原粉粒度为-200目的市售合金成分质量百分比分别为Si 4%、Al 4.5%、Ni1.5%,剩余为Fe的铁硅铝镍磁粉1000.0g;然后,加入0.5g的环氧树脂、0.7g的SiO2粉末、10.0g的丙酮以及90.0g的水,在常温下搅拌20分钟后,形成均匀的混合浆料;随后,将混合浆料加热至120℃,并保温搅拌25分钟,保温结束后,将干燥的铁硅铝镍绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入3.0g的硅氧烷树脂粘结剂和4.0g的硬脂酸锌脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2800MPa将混合均匀的粉末压制成粉心毛坯件,其中,粉心毛坯件为外径33.02mm×内径19.94mm×高度10.67mm的环形粉心;采用氮气作为保护性气体,将压制成型的粉心毛坯件在900℃保温100分钟得到半成品磁粉心;最后,在半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
在铁硅铝镍金属软磁粉心上采用线径Φ1.12mm、线长0.9m的漆包线绕制32匝电感线圈,测量得到的粉心磁电性能如下:
(1)100kHz/1V条件下,电感L=129.36μH;
(2)100kHz/1V条件下,品质因数Q=85.77;
(3)100kHz条件下直流叠加性能:H=100Oe时,LH/L0=34.90%;H=200Oe时,LH/L0=15.50%;
(4)50kHz/100mT条件下,铁硅铝镍软磁粉心体积损耗:Pv=315.67mW/cm3
图5为实施例3中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图,随着直流偏置场强的增加,粉心的直流偏置性能逐渐降低;在100Oe条件下,铁硅铝镍粉心的直流偏置性能达到34.90%,直流偏置性能优异;图6为实施例3中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;随着测试频率的增加,铁硅铝镍软磁粉心的有效磁导率一直维持在125附近,具有优良的频率稳定特性。
实施例4
选用原粉粒度为-200目的市售合金成分质量百分比分别为Si 5.5%、Al 3.0%、Ni 1.0%,剩余为Fe的铁硅铝镍磁粉1000.0g;然后,加入0.6g的环氧树脂、0.7g的SiO2粉末、10.0g的丙酮以及150.0g的水,在常温下搅拌60分钟后,形成均匀的混合浆料;随后,将混合浆料加热至110℃,并保温搅拌15分钟,保温结束后,将干燥的铁硅铝镍绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入2.0g的硅氧烷树脂粘结剂和3.0g的硬脂酸钙脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2700MPa将混合均匀的粉末压制成粉心毛坯件,其中,粉心毛坯件为外径33.02mm×内径19.94mm×高度10.67mm的环形粉心;采用氩气作为保护性气体,将压制成型的粉心毛坯件在820℃保温120分钟得到半成品磁粉心;最后,在半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
在铁硅铝镍金属软磁粉心上采用线径Φ1.12mm、线长0.9m的漆包线绕制32匝电感线圈,测量得到的粉心磁电性能如下:
(1)100kHz/1V条件下,电感L=133.44μH;
(2)100kHz/1V条件下,品质因数Q=87.95;
(3)100kHz条件下直流叠加性能:H=100Oe时,LH/L0=34.84%;H=200Oe时,LH/L0=15.54%;
(4)50kHz/100mT条件下,铁硅铝镍软磁粉心体积损耗:Pv=320.85mW/cm3
图7为实施例4中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图,随着直流偏置场强的增加,粉心的直流偏置性能逐渐降低;在100Oe条件下,铁硅铝镍粉心的直流偏置性能达到34.84%,直流偏置性能优异;图8为实施例4中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;随着测试频率的增加,铁硅铝镍软磁粉心的有效磁导率一直维持在125附近,具有优良的频率稳定特性。
实施例5
选用原粉粒度为-200目的市售合金成分质量百分比分别为Si 3.5%、Al 2.0%、Ni 3.5%,剩余为Fe的铁硅铝镍磁粉1000.0g;然后,加入0.6g的环氧树脂、0.7g的SiO2粉末、25.0g的丙酮以及60.0g的水,在常温下搅拌60分钟后,形成均匀的混合浆料;随后,将混合浆料加热至100℃,并保温搅拌60分钟,保温结束后,将干燥的铁硅铝镍绝缘粉末用100目的筛网进行过筛;向过筛后的粉末中加入9.0g的酚醛树脂粘结剂和10.0g的硬脂酸锌脱模剂,并混合均匀,得到待成型的磁粉;采用压制压强约为2800MPa将混合均匀的粉末压制成粉心毛坯件,其中,粉心毛坯件为外径33.02mm×内径19.94mm×高度10.67mm的环形粉心;采用氩气作为保护性气体,将压制成型的粉心毛坯件在900℃保温30分钟得到半成品磁粉心;最后,在半成品磁粉表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
在铁硅铝镍金属软磁粉心上采用线径Φ1.12mm、线长0.9m的漆包线绕制32匝电感线圈,测量得到的粉心磁电性能如下:
(1)100kHz/1V条件下,电感L=130.36μH;
(2)100kHz/1V条件下,品质因数Q=82.77;
(3)100kHz条件下直流叠加性能:H=100Oe时,LH/L0=34.65%;H=200Oe时,LH/L0=15.49%;
(4)50kHz/100mT条件下,铁硅铝镍软磁粉心体积损耗:Pv=322.35mW/cm3
图9为实施例5中铁硅铝镍软磁粉心在0Oe~200Oe条件下的直流偏置性能变化图,随着直流偏置场强的增加,粉心的直流偏置性能逐渐降低;在100Oe条件下,铁硅铝镍粉心的直流偏置性能达到34.65%,直流偏置性能优异;图10为实施例5中铁硅铝镍软磁粉心在20Hz~2MHz条件下的有效磁导率变化图;随着测试频率的增加,铁硅铝镍软磁粉心的有效磁导率一直维持在125附近,具有优良的频率稳定特性。

Claims (8)

1.一种有效磁导率为125的铁硅铝镍软磁粉心的制备方法,其特征在于,该方法包括如下步骤:
(1)选用铁硅铝镍磁粉:选用原粉粒度小于200目的铁硅铝镍磁粉,合金成分质量百分比分别为Si 3.5%~5.5%、Al 2.0%~4.5%、Ni 1.0%~3.5%,剩余为Fe;
(2)干燥绝缘包覆粉末的制备:以步骤(1)的铁硅铝镍金属磁粉质量作为比例基准,加入质量百分比为0.03%~0.08%的环氧树脂、0.05%~0.1%的SiO2粉末、1.0%~2.5%的丙酮以及6.0%~15.0%的水;常温下搅拌均匀,形成均匀的混合浆料;随后,加热至100℃~140℃,并继续保温搅拌;保温结束后,将干燥的绝缘粉末过筛得到绝缘包覆粉末;
(3)制备待成型磁粉:向步骤(2)的绝缘包覆粉末中加入占粉末质量0.2%~0.9%的粘结剂、0.3%~1.0%的脱模剂,混合均匀后,得到待成型的磁粉;
(4)压制成型:用压机将步骤(3)制备的待成型磁粉压制成粉心毛坯件,其中采用的压机压制压强为2300MPa~2800MPa;
(5)热处理:惰性气体保护下,将步骤(4)压制成型的粉心毛坯件在800℃~900℃进行保温,得到半成品磁粉心;
(6)绝缘喷涂:向步骤(5)的半成品磁粉心表面喷涂一层绝缘、耐高温的环氧树脂涂层,获得金属软磁粉心成品。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述常温下搅拌时间为15分钟~60分钟,优选20分钟~40分钟。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)加热至100℃~140℃时,继续保温搅拌15分钟~60分钟,优选15分钟~35分钟。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述粘结剂选自硅氧烷树脂、酚醛树脂、聚酰胺树脂中的一种或多种。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述脱模剂选自硬脂酸锌、硬脂酸钙、滑石粉、云母粉中的一种或多种。
6.根据权利要求1所述的制备方法,其特征在于,步骤(5)保温时间为30分钟~120分钟。
7.一种权利要求1-6任一项所述方法制备的有效磁导率为125的铁硅铝镍软磁粉心。
8.根据权利要求7所述的铁硅铝镍软磁粉心,其特征在于:该铁硅铝镍软磁粉心100Oe条件下的粉心直流偏置性能高于34%,在50kHz、100mT条件下的体积损耗Pcv低于340mW/cm3
CN201911105326.XA 2019-11-13 2019-11-13 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法 Pending CN110853858A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911105326.XA CN110853858A (zh) 2019-11-13 2019-11-13 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911105326.XA CN110853858A (zh) 2019-11-13 2019-11-13 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法

Publications (1)

Publication Number Publication Date
CN110853858A true CN110853858A (zh) 2020-02-28

Family

ID=69600046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911105326.XA Pending CN110853858A (zh) 2019-11-13 2019-11-13 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法

Country Status (1)

Country Link
CN (1) CN110853858A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560570A (zh) * 2021-07-27 2021-10-29 安徽瑞德磁电科技有限公司 一种兼具高饱和磁极化强度和高直流偏置性能的铁硅铝镍粉芯的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967737A (zh) * 2006-10-19 2007-05-23 武汉欣达磁性材料有限公司 压制铁硅铝磁粉芯用粉末的制造方法
CN101236812A (zh) * 2007-12-14 2008-08-06 浙江大学 抗电磁波干扰铁硅铝镍合金的制备方法
CN104036902A (zh) * 2014-05-28 2014-09-10 浙江明贺钢管有限公司 一种金属磁粉芯的制备方法
US20150325351A1 (en) * 2012-12-04 2015-11-12 Eun-Young BAE High-permeability amorphous compressed powder core by means of high-temperature molding, and method for preparing same
CN107564655A (zh) * 2017-10-17 2018-01-09 青岛云路先进材料技术有限公司 一种制备仙台斯特合金磁粉芯的方法
CN107610873A (zh) * 2017-10-31 2018-01-19 国网江苏省电力公司电力科学研究院 一种面向pfc电感的磁导率等于125的复合软磁粉芯的制备方法
CN107919202A (zh) * 2017-10-20 2018-04-17 江苏瑞德磁性材料有限公司 一种高直流偏置高频率稳定性铁硅铝粉芯的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967737A (zh) * 2006-10-19 2007-05-23 武汉欣达磁性材料有限公司 压制铁硅铝磁粉芯用粉末的制造方法
CN101236812A (zh) * 2007-12-14 2008-08-06 浙江大学 抗电磁波干扰铁硅铝镍合金的制备方法
US20150325351A1 (en) * 2012-12-04 2015-11-12 Eun-Young BAE High-permeability amorphous compressed powder core by means of high-temperature molding, and method for preparing same
CN104036902A (zh) * 2014-05-28 2014-09-10 浙江明贺钢管有限公司 一种金属磁粉芯的制备方法
CN107564655A (zh) * 2017-10-17 2018-01-09 青岛云路先进材料技术有限公司 一种制备仙台斯特合金磁粉芯的方法
CN107919202A (zh) * 2017-10-20 2018-04-17 江苏瑞德磁性材料有限公司 一种高直流偏置高频率稳定性铁硅铝粉芯的制备方法
CN107610873A (zh) * 2017-10-31 2018-01-19 国网江苏省电力公司电力科学研究院 一种面向pfc电感的磁导率等于125的复合软磁粉芯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TATSUJI YAMAMOTO: "Fe-Si-Al-Ni系新高透磁率合金"Super Sendust"の磁気特性におよぼすNi含有量の影響", 《JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS》 *
周洁敏,赵修科,陶思钰: "《开关电源磁性元件理论及设计》", 31 December 2014 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560570A (zh) * 2021-07-27 2021-10-29 安徽瑞德磁电科技有限公司 一种兼具高饱和磁极化强度和高直流偏置性能的铁硅铝镍粉芯的制备方法
CN113560570B (zh) * 2021-07-27 2022-11-29 安徽瑞德磁电科技有限公司 一种兼具高饱和磁极化强度和高直流偏置性能的铁硅铝镍粉芯的制备方法

Similar Documents

Publication Publication Date Title
CN109273235B (zh) 一种金属软磁复合材料的双壳层绝缘包覆方法
CN103247403B (zh) 一种金属软磁粉芯的制备方法
JP6503058B2 (ja) 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器
CN102623121B (zh) 一种铁硅材料及μ90铁硅磁粉芯的制造方法
CN103666364B (zh) 金属软磁复合材料用有机绝缘粘结剂及制备金属软磁复合材料方法
CN106252013B (zh) 一种μ=60铁镍软磁磁粉芯的制备方法
CN111192757A (zh) 一种提高金属磁粉芯抗氧化性能的绝缘方法及其材料
CN104575911A (zh) 一种高磁导率铁镍钼磁粉芯的制备方法
CN109680210B (zh) 一种μ=150~250铁硅铝软磁磁粉芯的制备方法
CN107275032A (zh) 一种铁硅金属软磁粉芯的制备方法
TWI631223B (zh) 壓粉磁芯、該壓粉磁芯之製造方法、具備該壓粉磁芯之電感器及安裝有該電感器之電子・電氣機器
CN109461558A (zh) 一种低损耗铁硅铝磁粉芯复合包覆方法
CN109103010B (zh) 一种提高磁粉芯绝缘层致密度的材料及其方法
CN107119174B (zh) 一种提高铁硅铝软磁粉芯直流偏置性能的退火方法
JP2006287004A (ja) 高周波用磁心及びそれを用いたインダクタンス部品
CN113674979A (zh) 一种应用于超高频率下的金属软磁磁芯的制备方法及其材料
CN111696746A (zh) 一种破碎法铁硅铝软磁粉心及其制备方法
CN114005634A (zh) 一种软磁金属粉末双膜层复合包覆的方法
CN111696747A (zh) 一种低损耗铁硅铝软磁粉心及其制备方法
CN111370214A (zh) 一种合金复合粉制备磁粉芯的方法
CN110853858A (zh) 一种升压电感用有效磁导率为125的铁硅铝镍软磁粉心及其制备方法
CN110828092A (zh) 一种充电桩用磁导率为26的铁硅铝镍软磁粉心及其制备方法
CN111696744A (zh) 一种高直流偏置性能铁硅铝软磁粉心及其制备方法
CN110853860A (zh) 一种有效磁导率为60的铁硅铝镍软磁粉心及其制备方法
CN103700482A (zh) 一种高频电子变压器用Fe-Si-B-Cu-Nb-Al-Ni低成本纳米晶磁芯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210224

Address after: 211106 20 / F and 21 / F, building 34, headquarters base, 70 Phoenix Road, Jiangning District, Nanjing City, Jiangsu Province

Applicant after: SINOSTEEL GROUP NANJING NEW MATERIAL RESEARCH INSTITUTE Co.,Ltd.

Address before: 211106 20 / F and 21 / F, building 34, headquarters base, 70 Phoenix Road, Jiangning District, Nanjing City, Jiangsu Province

Applicant before: SINOSTEEL GROUP NANJING NEW MATERIAL RESEARCH INSTITUTE Co.,Ltd.

Applicant before: SINOSTEEL ANHUI TIANYUAN TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228

RJ01 Rejection of invention patent application after publication