CN114539776B - 介电弹性体金属化材料及制备方法 - Google Patents

介电弹性体金属化材料及制备方法 Download PDF

Info

Publication number
CN114539776B
CN114539776B CN202111641734.4A CN202111641734A CN114539776B CN 114539776 B CN114539776 B CN 114539776B CN 202111641734 A CN202111641734 A CN 202111641734A CN 114539776 B CN114539776 B CN 114539776B
Authority
CN
China
Prior art keywords
dielectric elastomer
metal layer
solution
dielectric
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111641734.4A
Other languages
English (en)
Other versions
CN114539776A (zh
Inventor
冯雪
王志建
陈颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Institute of Flexible Electronics Technology of THU Zhejiang
Original Assignee
Tsinghua University
Institute of Flexible Electronics Technology of THU Zhejiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Institute of Flexible Electronics Technology of THU Zhejiang filed Critical Tsinghua University
Priority to CN202111641734.4A priority Critical patent/CN114539776B/zh
Publication of CN114539776A publication Critical patent/CN114539776A/zh
Application granted granted Critical
Publication of CN114539776B publication Critical patent/CN114539776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

介电弹性体金属化材料及制备方法,该方法包括如下步骤:在无机非金属颗粒外包覆多巴胺活性层;配置形成介电弹性体薄膜的介电弹性体材料溶液,将包覆有所述多巴胺活性层的无机非金属颗粒分散于所述介电弹性体材料溶液内,并对所述介电弹性体材料溶液进行固化,形成介电弹性体薄膜;对所述介电弹性体薄膜的表面进行亲水化处理;采用磁控溅射的方式,在经过亲水化处理的所述介电弹性体薄膜的表面形成第一金属层;采用电镀工艺在所述第一金属层的表面形成第二金属层。由该该介电弹性体金属化材料的制备方法制作而成的介电弹性体金属化材料,其介电常数较高,介电损耗较小,金属层与介电弹性材料之间的结合力较大。

Description

介电弹性体金属化材料及制备方法
技术领域
本发明涉及介电材料技术领域,尤其是一种介电弹性体金属化材料及制备方法。
背景技术
介电弹性体材料具有优异的弯曲和拉伸特性可广泛应用于柔性电子领域,但作为通讯介质基板,现有的介电弹性体材料的介电常数较低(约为2.7),不利于器件的小型化。这会增加器件体积,影响器件使用,产生较大的介质损耗(约为0.02),增加器件损耗,不利于器件性能的提高。制备高介电常数和低介电损耗的介电弹性体材料是解决这一问题的重要途径。
另外作为通讯器件的介质材料,介电弹性体材料表面必须进行金属化,需要金属层材料具有一定的厚度以完成导热和信号传输,还需要金属层被做成响应的金属图案以实现响应的功能。由于线图图案向精细和高密度方向发展,需要金属层与介质基板具有较高的结合力以提高器件的可靠性和加工性。因此提高金属层与介电弹性体材料的结合力,是提高器件可靠性和性能稳定的重要途径。
发明内容
有鉴于此,本发明提供了一种介电弹性体金属化材料及该介电弹性体金属化材料的制备方法,由该该介电弹性体金属化材料的制备方法制作而成的介电弹性体金属化材料,其介电常数较高,介电损耗较小,金属层与介电弹性材料之间的结合力较大。
本发明提供了一种介电弹性体金属化材料的制备方法,包括如下步骤:
S1:在无机非金属颗粒外包覆多巴胺活性层;
S2:配置形成介电弹性体薄膜的介电弹性体材料溶液,将包覆有所述多巴胺活性层的无机非金属颗粒分散于所述介电弹性体材料溶液内,并对所述介电弹性体材料溶液进行固化,形成介电弹性体薄膜;
S3:对所述介电弹性体薄膜的表面进行亲水化处理;
S4:采用磁控溅射的方式,在经过亲水化处理的所述介电弹性体薄膜的表面形成第一金属层;
S5:采用电镀工艺在所述第一金属层的表面形成第二金属层。
进一步地,在所述无机非金属颗粒外包覆多巴胺活性层时,该方法还包括如下步骤:
配置多巴胺溶液;
将所述无机非金属颗粒分散于所述多巴胺溶液内;
将混合有所述无机非金属颗粒的多巴胺溶液经过过滤、烘干、水洗、再烘干后,以在所述无机非金属颗粒外包覆所述多巴胺活性层。
进一步地,所述多巴胺溶液的浓度为0.1-0.5g/mL。
进一步地,所述无机非金属颗粒包括钛酸锶、二氧化钛和钛酸钙等中的一种或多种。
进一步地,所述无机非金属颗粒的尺寸为0.1-1μm,所述多巴胺活性层的厚度为2-20nm。
进一步地,所述介电弹性体材料溶液为PDMS溶液或TPU溶液。
进一步地,在S2步骤中,对所述介电弹性体材料溶液进行加热固化,固化温度为60-120℃。
进一步地,所述第一金属层的厚度为50-100nm,所述第二金属层的厚度为9-18μm。
进一步地,所述第一金属层及第二金属层的材料为Cu、Ni、Cr、Au、Ag、Al、Ti及Pt中的一种或多种。
本发明还提供了一种介电弹性体金属化材料,所述介电弹性体金属化材料由上述的介电弹性体金属化材料的制备方法制作而成。
综上所述,在本发明中,通过在介电弹性体薄膜内添加无机非金属颗粒,能够提高介电弹性体薄膜的介电常数,降低介电损耗;通过在无机非金属颗粒外包覆多巴胺活性层,多巴胺活性层上的羟基等活性基团一方面能够较好地吸附于无机非金属颗粒的表面上,另一方面还可以与介电弹性体薄膜具有较好的相容性,降低异质材料之间的差异,弱化界面效应,进一步地降低介电弹性层的介电损耗,提高微波介电性能。
进一步地,通过在介电弹性体薄膜上先利用磁控溅射的方法,形成一层较薄的第一金属层,然后利用电镀工艺形成较厚的第二金属层,这一方面能够使金属层的厚度达到需要,另一方面还能够保证金属层与介电弹性体薄膜之间结合的紧密。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1所示为本发明实施例提供的介电弹性体金属化材料的制备方法各步骤的流程示意图。
图2所示为本发明实施例提供的介电弹性体金属化材料的结构示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,详细说明如下。
本发明提供了一种介电弹性体金属化材料及该介电弹性体金属化材料的制备方法,由该该介电弹性体金属化材料的制备方法制作而成的介电弹性体金属化材料,其介电常数较高,介电损耗较小,金属层与介电弹性材料之间的结合力较大。
图1所示为本发明实施例提供的介电弹性体金属化材料的制备方法各步骤的流程示意图。如图1所示,本发明实施例提供的介电弹性体金属化材料包括如下步骤:
S1:在无机非金属颗粒10外包覆多巴胺活性层20;
在本实施例中,无机非金属颗粒10可以为钛酸锶、二氧化钛和钛酸钙等中的一种或多种。该无机非金属颗粒10的尺寸为0.1-1μm。包覆层的厚度为2-20nm。
在将多巴胺活性层20包覆于无机非金属颗粒10外时,该方法包括如下步骤:
配置多巴胺溶液,优选地,该多巴胺溶液的浓度为0.1-0.5g/mL;
将无机非金属颗粒10分散于多巴胺溶液内;
将混合有无机非金属颗粒10的多巴胺溶液经过过滤、烘干、水洗、再次烘干后,形成多巴胺活性层20包覆的无机非金属颗粒10。
S2:配置形成介电弹性体薄膜30的介电弹性体材料溶液,将包覆有多巴胺活性层20的无机非金属颗粒10分散于该介电弹性体材料溶液内,并对该溶液进行固化,以形成介电弹性体薄膜30,此时,包覆有多巴胺活性层20的无机非金属颗粒10分散于介电弹性体薄膜30内;
在本实施例中,介电弹性体材料溶液可以为PDMS(聚二甲基硅氧烷;Polydimethylsiloxane)溶液,或TPU(热塑性聚氨酯弹性体;Thermoplasticpolyurethanes)溶液。
在配置PDMS溶液时,可以将PDMS预聚体及固化剂按照质量比10:1-20:1的比例均匀混合,以形成PDMS溶液。
在配置TPU溶液时,可以将1KPa-1MPa模量的TPU颗粒用DMF(N,N-二甲基甲酰胺;N,N-Dimethylformamide)溶液熔融,以形成TPU溶液。
在将包覆有多巴胺活性层20的无机非金属颗粒10分散于介电弹性体材料溶液内时,可以通过真空搅拌、超声搅拌等方式以增加均匀性。
在进行固化时,其固化温度可以为60-120℃。
在该步骤的处理后,介电弹性体薄膜30的介电常数为10-30,介电损耗≤0.02。
S3:对S2步骤中的介电弹性体薄膜30的表面进行亲水化处理;
在本实施例中,在进行亲水化处理时,可以将该介电弹性体薄膜30置于真空腔室进行等离子体处理,处理的气体为Ar、O2、N2和/或它们的混合气体。处理电压为1000~2000V,电流为0.1~1A,处理时间为30s~1min,使得薄膜表面具有一定的亲水性。在进行亲水化处理后,介电弹性体薄膜30的表面的表面张力≥60达因。
S4:采用磁控溅射方式,在亲水化处理后的介电弹性体薄膜30表面形成第一金属层40;
在本实施例中,第一金属层40的厚度可以为50-100nm。第一金属层40的材料可以为Cu、Ni、Cr、Au、Ag、Al、Ti及Pt中的一种或多种。
S5:采用电镀工艺在第一金属层40表面形成第二金属层50。
在本实施例中,第二金属层50的厚度为9-18μm。第二金属层50的材料可以为Cu、Ni、Cr、Au、Ag、Al、Ti及Pt中的一种或多种。在第二金属层50成型后,第二金属层50与介电弹性体薄膜30之间的结合力为5B(采用百格法测试)。
在本实施例中,通过在介电弹性体薄膜30内添加无机非金属颗粒10,能够提高介电弹性体薄膜30的介电常数,降低介电损耗;通过在无机非金属颗粒10外包覆多巴胺活性层20,多巴胺活性层20上的羟基等活性基团一方面能够较好地吸附于无机非金属颗粒10的表面上,另一方面还可以与介电弹性体薄膜30具有较好的相容性,降低异质材料之间的差异,弱化界面效应,进一步地降低介电弹性层的介电损耗,提高微波介电性能。
进一步地,通过在介电弹性体薄膜30上先利用磁控溅射的方法,形成一层较薄的第一金属层40,然后利用电镀工艺形成较厚的第二金属层50,这一方面能够使金属层的厚度达到需要,另一方面还能够保证金属层与介电弹性体薄膜30之间结合的紧密。
以下以具体的实施例来对上述方法进行说明:
实施例1
将20g PDMS预聚体与固化剂分别按照10:1混合,形成PDMS溶液。将2g粒径为0.1μm的二氧化钛颗粒在0.1g/mL的多巴胺溶液中分散均匀,烘干后形成多巴胺包覆的二氧化钛颗粒。将该颗粒加入PDMS溶液充分搅拌均匀,并将该混合溶液置于模具内成型,在60℃烘箱内保温4小时固化成型。将成型后的介电弹性体薄膜30置于真空腔室,采用等离子体清洗,使得薄膜表面的表面张力为60达因,等离子体清洗的工艺参数为:Ar气,1000V电压,0.1A电流,处理时间为30秒。再采用磁控溅射在薄膜表面沉积一定厚度的Cu薄膜,以形成第一金属层40,其厚度为50nm,再采用电镀工艺,电镀铜金属厚度为9微米,形成第二金属层50。经过介电性能测试,该薄膜的微波介电常数为10,介电损耗为0.02,第一金属层40与第二金属层50形成的整体金属层与聚合物薄膜的结合力为5B。
实施例2
将20g模量为1KPa的TPU颗粒用DMF溶液充分溶解,形成TPU溶液。将6g粒径为1μm的钛酸锶颗粒在0.5g/mL的多巴胺溶液中分散均匀,烘干后形成多巴胺包覆的钛酸锶颗粒。将该颗粒加入TPU溶液充分搅拌均匀,并将该混合溶液置于模具内成型,在100℃烘箱内保温3小时固化成型。将成型后的介电弹性体薄膜30置于真空腔室,采用等离子体清洗,使得薄膜表面的表面张力为80达因,等离子体清洗的工艺参数为:O2气,2000V电压,1A电流,处理时间为1min秒。再采用磁控溅射在薄膜表面沉积一定厚度的Ag薄膜,以形成第一金属层40,其厚度为100nm,再采用电镀工艺,电镀铜金属厚度为18微米,形成第二金属层50。经过介电性能测试,该薄膜的微波介电常数为30,介电损耗为0.015,第一金属层40与第二金属层50形成的整体金属层与聚合物薄膜的结合力为5B。
本发明还提供了一种介电弹性体金属化材料,该介电弹性体金属化材料由上述的介电弹性体金属化材料的制备方法制作而成,关于该介电弹性体金属化材料的其它技术特征,请参见现有技术,在此不再赘述。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种介电弹性体金属化材料的制备方法,其特征在于:包括如下步骤:
S1:在无机非金属颗粒外包覆多巴胺活性层,所述无机非金属颗粒包括钛酸锶、二氧化钛和钛酸钙中的一种或多种;
S2:配置形成介电弹性体薄膜的介电弹性体材料溶液,将包覆有所述多巴胺活性层的无机非金属颗粒分散于所述介电弹性体材料溶液内,并对所述介电弹性体材料溶液进行固化,形成介电弹性体薄膜;
S3:对所述介电弹性体薄膜的表面进行亲水化处理;
S4:采用磁控溅射的方式,在经过亲水化处理的所述介电弹性体薄膜的表面形成第一金属层;
S5:采用电镀工艺在所述第一金属层的表面形成第二金属层,所述第一金属层的厚度为50-100nm,所述第二金属层的厚度为9-18μm。
2.根据权利要求1所述的介电弹性体金属化材料的制备方法,其特征在于:在所述无机非金属颗粒外包覆多巴胺活性层时,该方法还包括如下步骤:
配置多巴胺溶液;
将所述无机非金属颗粒分散于所述多巴胺溶液内;
将混合有所述无机非金属颗粒的多巴胺溶液经过过滤、烘干、水洗、再烘干后,以在所述无机非金属颗粒外包覆所述多巴胺活性层。
3.根据权利要求2所述的介电弹性体金属化材料的制备方法,其特征在于:所述多巴胺溶液的浓度为0.1-0.5g/mL。
4.根据权利要求1所述的介电弹性体金属化材料的制备方法,其特征在于:所述无机非金属颗粒的尺寸为0.1-1μm,所述多巴胺活性层的厚度为2-20nm。
5.根据权利要求1所述的介电弹性体金属化材料的制备方法,其特征在于:所述介电弹性体材料溶液为PDMS溶液或TPU溶液。
6.根据权利要求1所述的介电弹性体金属化材料的制备方法,其特征在于:在S2步骤中,对所述介电弹性体材料溶液进行加热固化,固化温度为60-120℃。
7.根据权利要求1所述的介电弹性体金属化材料的制备方法,其特征在于:所述第一金属层及第二金属层的材料为Cu、Ni、Cr、Au、Ag、Al、Ti及Pt中的一种或多种。
8.一种介电弹性体金属化材料,其特征在于:所述介电弹性体金属化材料由权利要求1至权利要求7中任意一项所述的介电弹性体金属化材料的制备方法制作而成。
CN202111641734.4A 2021-12-29 2021-12-29 介电弹性体金属化材料及制备方法 Active CN114539776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111641734.4A CN114539776B (zh) 2021-12-29 2021-12-29 介电弹性体金属化材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111641734.4A CN114539776B (zh) 2021-12-29 2021-12-29 介电弹性体金属化材料及制备方法

Publications (2)

Publication Number Publication Date
CN114539776A CN114539776A (zh) 2022-05-27
CN114539776B true CN114539776B (zh) 2023-07-25

Family

ID=81670594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111641734.4A Active CN114539776B (zh) 2021-12-29 2021-12-29 介电弹性体金属化材料及制备方法

Country Status (1)

Country Link
CN (1) CN114539776B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775483B1 (de) * 2013-03-06 2016-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch leitendes Material und dessen Verwendung als Elektrode in einem dielektrischen Elastomerkomposit oder als elektrisch leitende, dehnbare Faser
CN107915998B (zh) * 2017-12-08 2021-03-19 扬州大学 一种具有预置结构的介电弹性体材料及其制备方法
KR102129527B1 (ko) * 2018-12-14 2020-07-02 한국과학기술연구원 고유전 탄성구조체 및 그의 제조방법
KR20200142137A (ko) * 2019-06-11 2020-12-22 주식회사 포엠비 저유전율을 가지는 불소계 기판 및 그의 제조 방법

Also Published As

Publication number Publication date
CN114539776A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
KR101464322B1 (ko) 전자파 차단 구조 및 이를 제조하는 방법
CN109265762B (zh) 一种核壳结构银基导热橡胶复合材料及其制备方法
KR100828867B1 (ko) 고유전율 복합 재료와 이를 이용한 다층 배선판
KR20050001338A (ko) 촉매 조성물 및 침착 방법
Liang et al. Barium titanate/epoxy composite dielectric materials for integrated thin film capacitors
EP1780731A1 (en) Method for fabricating conductive particle and anisotropic conductive film using the same
KR100732787B1 (ko) 분산성 및 밀착성이 우수한 도전성 무전해 도금분체의제조방법
CN114539776B (zh) 介电弹性体金属化材料及制备方法
WO2016098680A1 (ja) めっき用プライマー組成物、被めっき基材、絶縁性基材と金属層との複合体及びこれらの製造方法
EP1098361A2 (en) Particle material, anisotropic conductive connection and anisotropic conductive connection material
WO2005080074A1 (ja) 薄膜複合材料およびその製造方法、ならびに当該薄膜複合材料を用いた多層配線板および電子部品
KR20210022548A (ko) 프린트 배선판의 제조 방법
US20150235764A1 (en) Body with magnetic film attached and manufacturing method thereof
CN108485133B (zh) 一种高储能密度复合材料及其制备方法
JP7149346B2 (ja) 複合部材およびその製造方法
JPH0236289A (ja) 一液型接着剤
CN110698705A (zh) 一种基于铌钽酸钾/P(VDF-TrFE-CTFE)复合介电材料的制备方法
JP4200639B2 (ja) Pzt系結晶膜素子の実装方法
JP4329231B2 (ja) Pzt系結晶膜およびその製造方法
KR20030065548A (ko) 적층 유전체 나노포러스 물질 및 그 제조방법
KR20080109123A (ko) 환경친화적 도전성 입자 및 그 제조방법과 상기 도전성입자를 포함하는 이방 도전성 접착재료
WO2011162218A1 (ja) セラミック系絶縁層と金属層との積層体及び当該積層体の製造方法
KR20120030066A (ko) 세라믹계 절연층과 금속층의 적층체 및 그 제조 방법
JP7260065B2 (ja) セミアディティブ工法用積層体及びそれを用いたプリント配線板
JP7371778B2 (ja) セミアディティブ工法用積層体及びそれを用いたプリント配線板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant