CN114517158A - 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用 - Google Patents

一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用 Download PDF

Info

Publication number
CN114517158A
CN114517158A CN202210103186.8A CN202210103186A CN114517158A CN 114517158 A CN114517158 A CN 114517158A CN 202210103186 A CN202210103186 A CN 202210103186A CN 114517158 A CN114517158 A CN 114517158A
Authority
CN
China
Prior art keywords
chlamydomonas reinhardtii
mutant strain
gene
fax2
fax1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210103186.8A
Other languages
English (en)
Other versions
CN114517158B (zh
Inventor
孔凡涛
陈如
鲁晗
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210103186.8A priority Critical patent/CN114517158B/zh
Publication of CN114517158A publication Critical patent/CN114517158A/zh
Application granted granted Critical
Publication of CN114517158B publication Critical patent/CN114517158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用,属于基因工程技术领域。发明创造了一个过表达FAX1基因、FAX2基因和ABCA2基因的莱茵衣藻突变株(FAX1/FAX2‑ABCA2‑51)。所述莱茵衣藻突变株可以在正常条件下大量积累油脂,不仅在工程生产中操作方便,而且可以从根本上降低成本。且该藻种的其他生理指标正常,淀粉含量也有大量积累,性状十分良好。

Description

一种正常培养条件下高产油及淀粉的工程藻及其构建方法与 应用
技术领域
本发明提供了一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用,属于基因工程技术领域。
背景技术
微藻是一类能进行光合作用的单细胞真核生物,藻种类繁多且在环境中分布广泛,存在于从海洋到淡水和土壤等水生环境中,莱茵衣藻(Chlamydomonas reinhardtii)因具有生长速度快、培养方法简单、基因工程操作简便、已完成全基因组测序等优势,是微藻研究的重要模式生物之一[1,2]
微藻细胞内脂质代谢是生物体基本代谢之一,对脂质代谢途径的研究不仅具有理论意义,还具有广泛的应用价值,如用于生产高价值不饱和脂肪酸(如:ω-3,DHA, EPA)和生物燃料等[3,4]。尤其是近10年来,随着合成生物学技术的迅速发展,为解决人类面临的传统能源日益枯竭和环境污染等严峻问题,利用微藻油脂制备第三代安全、清洁的可再生能源—生物柴油,因具有重要的战略意义而受到世界各国的高度重视,但这一绿色生物能源的工业化生产仍面临生产成本比较高等难题[3,5,6]。为了降低生产成本和选育优良微藻富油品系,微藻脂质合成代谢调控机制的研究也更加引发关注,成为当今研究热点之一。野生型莱茵衣藻在正常的培养条件下产生油脂较少,只有在逆境条件下(例如,营养元素缺乏)才会大量积累油脂,但是逆境的胁迫会限制微藻生长和生物量的积累[3,7]。目前,报道的大部分高产油脂微藻突变株都是在严格的依赖于逆境胁迫,在正常培养条件下高产油脂,特别是同时高产油和淀粉的莱茵衣藻突变株相对较少[3]
[1]Keeling,P.J.The Endosymbiotic Origin,Diversification and Fate ofPlastids. Philosophical Transactions of the Royal Society B:BiologicalSciences.2010,365(1541), 729–748..
[2]Harris,E.H.CHLAMYDOMONAS AS A MODEL ORGANISM.Annual Review ofPlant Physiology and Plant Molecular Biology.2001,52,363–406..
[3]Kong,F.;Yamaoka,Y.;Ohama,T.;Lee,Y.;Li-Beisson,Y.Molecular GeneticTools and Emerging Synthetic Biology Strategies to Increase Cellular OilContent in Chlamydomonas Reinhardtii.Plant and Cell Physiology.2019,In Press,https://doi.org/10.1093/pcp/pcz022.
[4]Horn,P.J.;Benning,C.The Plant Lipidome in Human and EnvironmentalHealth. Science 2016,353(6305),1228–1232.
[5]陈百灵;白凤武;赵心清。微藻代谢工程改造研究进展及展望.中国科学:生命科学2017,47(05),554–562.
[6]李逸;王潮岗;胡章立。利用基因工程技术提高微藻油脂含量的研究进展.生物技术通报。2015,31(03),70–81.
[7]Kong,F.;Romero,I.T.;Warakanont,J.;Li-Beisson,Y.Lipid Catabolism inMicroalgae.New Phytologist.2018,218(4),1340–1348.
发明内容
本发明通过基因工程改造藻种,成功筛选出一种在正常条件下就可以大量积累油脂的藻种,且其淀粉等能量化合物的积累也有所增加,性状表现良好。从整体研究不同亚细胞定位的转运蛋白是否具有协同运输脂肪酸的功能,揭示提高脂肪酸转运水平对油脂合成的影响。这些研究将进一步完善微藻体内脂肪酸高效转运的调控网络,为进一步提高其它产油微藻及植物的油脂含量提供新策略,为高效生产生物燃油奠定理论基础。
本发明将莱茵衣藻脂质合成途径的两个转运蛋白同时过表达,其中包含编码叶绿体脂肪酸转运蛋白的两个同源基因FAX1/FAX2和内质网脂肪酸转运蛋白ABCA2,构建了过表达载体。通过转基因的方式,将FAX1/FAX2和ABCA2导入莱茵衣藻中,构建了过表达FAX1/FAX2-ABCA2的莱茵衣藻突变株(FAX1/FAX2-ABCA2-51)。
本发明提供了一种莱茵衣藻突变株,所述莱茵衣藻突变株中过表达FAX1基因、FAX2基因和ABCA2基因。
进一步地,上述技术方案中,所述FAX1基因的核苷酸序列如SEQ ID NO.1所示。
进一步地,上述技术方案中,所述FAX2基因的核苷酸序列如SEQ ID NO.2所示。
进一步地,上述技术方案中,所述ABCA2基因的核苷酸序列如SEQ ID NO.3所示。
进一步地,上述技术方案中,所述莱茵衣藻突变株的保藏编号为CGMCC22676。
本发明还提供了上述莱茵衣藻突变株的构建方法,包括如下步骤:
(1)分别构建包含编码叶绿体脂肪酸转运蛋白的两个同源基因FAX1和FAX2以及内质网脂肪酸转运蛋白编码基因ABCA2的表达载体;
(2)通过电击转化的转基因的方式,将含有FAX1-FAX2和ABCA2的表达载体转入莱茵衣藻中,获得莱茵衣藻突变株并命名为FAX1/FAX2-ABCA2-51。
本发明还提供了上述莱茵衣藻突变株的应用,在正常培养条件下高产油和淀粉。
进一步地,上述技术方案中,所述正常培养条件为在全温培养箱中使用TAP培养基培养,转速100-140rpm,优选为120rpm;持续光照光强为80-120μmol m-2s-1,优选为100μmolm-2s-1,培养温度为室温,优选为25℃。
进一步地,上述技术方案中,所述油包括中性脂三酰甘油(TAG)、膜脂和总脂肪酸。
在本发明中,对莱茵衣藻突变株的TAG检测发现,其在正常培养条件(TAP)下,莱茵衣藻突变株(FAX1/FAX2-ABCA2-51)的TAG含量比亲本(未转基因)提高 200%,达到0.321μg/106个细胞。FAX1/FAX2-ABCA2-51膜脂含量比亲本(未转基因)提高61%。除此外淀粉和叶绿素含量也有所提高:FAX1/FAX2-ABCA2-51淀粉含量比亲本(未转基因)提高53.4%,叶绿素含量提高38.4%。综上,经过转基因所获得的突变株,在正常培养条件下就可以大量积累油脂,并且淀粉和叶绿素含量也有所增加。
发明有益效果
本发明的藻种能够在无胁迫的正常培养情况下大量提高油脂产率,例如中性脂三酰甘油(TAG),总脂肪酸、膜脂含量,并且淀粉含量也会有所提高。以往提高产量的方法是通过对微藻进行逆境胁迫,但是逆境胁迫会影响生物量的积累,在工程化生产中进行胁迫过程比较繁杂,且生物量积累的降低会使生产成本更高,所以本研究创造了在正常培养条件下就可以大量积累油脂的藻种,该藻种不仅在工程生产中操作方便,而且可以从根本上降低成本。且该藻种的其他生理指标没有受到影响,淀粉含量还会有所积累,性状十分良好。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
(1)目的基因的克隆:
FAX1引物名称及序列:
SEQ ID NO.4:F1(c):5’-CCGGAATTCGCTGCTTCCCTGCTGCAACG-3’
SEQ ID NO.5:F1(d):5’-CGCGGATCCCTCGGCCTTGCCGGCGGC-3’
FAX1基因的核苷酸序列如SEQ ID NO.1所示,序列可在Phytozome (https://phytozome-next.jgi.doe.gov/)FAX1(Cre10.g421750)查找。
FAX2引物名称及序列:
SEQ ID NO.6:F2(c):5’-CGCGGATCCTATGACTTTTGCTTTTCGCCCATTT-3’
SEQ ID NO.7:F2(d):5’-GCTCTAGACCGTGCGCCTTGCCGTGC-3’
FAX2基因的核苷酸序列如SEQ ID NO.2所示,序列可在Phytozome (https://phytozome-next.jgi.doe.gov/)FAX2(Cre08.g366000)查找。
ABCA2引物名称及序列:
SEQ ID NO.8:ABCA2-F3:5’-AACCGCCATATGATGGCTCGACTTTCTTG-3’
SEQ ID NO.9:ABCA2-R3:5’-AACTAGGAATTCTCAGTTGCGGGAGTCCA-3’
ABCA2基因的核苷酸序列如SEQ ID NO.3所示,序列可在Phytozome (https://phytozome-next.jgi.doe.gov/)ABCA2(Cre14.g613950)查找。
将构建好的含有FAX1/FAX2和内质网脂肪酸转运蛋白编码基因ABCA2的表达载体,通过电穿孔法导入到莱茵衣藻中,构建FAX1/FAX2-ABCA2-51突变株。
(2)过表达载体的构建方法:
以亲本莱茵衣藻基因DNA和cDNA为模板使用上述引物,对目的基因FAX1(Cre10.g421750)、FAX2(Cre08.g366000)和ABCA2(Cre14.g613950)分别进行PCR扩增,获得预期大小的片段。然后将其连接在pGEM-T载体上,然后转入到大肠杆菌感受态细胞DH5α,挑选克隆PCR结果正确的单克隆质粒送到公司测序。
将测序正确的两个单克隆菌落进行质粒抽提,然后FAX1用EcoR I和BamH I进行双酶切并片段回收,FAX2用BamH I和Xba I进行双酶切并片段回收,对空载 pClamy_4用EcoRI和Xba I进行双酶切回收长片段,DNA连接转化大肠杆菌DH5α感受态,挑选克隆PCR结果正确的单克隆质粒送到公司测序,最终获得过表达 FAX1-FAX2的过表达载体。利用上述同样的策略,将测序验证正确的ABCA2片段,通过Nde I和Eco R I酶切连接的方法连接到pOt-clover-paro载体,最终构建ABCA2 过表达载体。
所述转基因方法采用的是电穿孔法,在每个转化实验中使用大约1.0μg限制性内切酶SspI处理后线性化质粒DNA,莱茵衣藻细胞在TAP培养基中生长至大约1.5×106个细胞/mL。通过离心收集指数生长的细胞(2.5×107个细胞)并悬浮在250μL 补充有40mM蔗糖的TAP培养基中。将细胞悬液置于预冷的一次性电穿孔比色皿中,在16℃下保持5分钟,间隔为4毫米(Bio-Rad)。电穿孔由BioRad Gene Pulser Xcell进行,设置如下(电压500V,容量50μF和电阻800Ω)。电穿孔后的细胞用 5.0mL的40mM蔗糖在TAP培养基中,在暗光(10μmolm-2s-1)下培养16小时,然后接种在含有抗生素(15μg/mL博来霉素zeocin和20μg/mL巴龙霉素),将平板在连续光照(50μmol m-2s-1)下于25℃培养。大约7天后可以看到具有抗生素抗性单克隆藻株。
对转基因后的阳性转化子进行进一步的微藻克隆PCR验证,并用半定量和实时荧光定量PCR进行表达水平检测,筛选出高表达FAX1/FAX2/ABCA2的莱茵衣藻突变株。
本发明获得了同时高产油脂和淀粉的莱茵衣藻突变株FAX1/FAX2-ABCA2-51。
所述莱茵衣藻突变株保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,邮编100101)。莱茵衣藻(Chlamydomonas reinhardtii)FAX1/FAX2-ABCA2-51菌种保藏号为 CGMCC No.22676,保藏日期为2022年01月05日,分类命名为莱茵衣藻(Chlamydomonas reinhardtii),名称为FAX1/FAX2-ABCA2-51。
实施例2
将实施例1获得的莱茵衣藻突变株进行脂质的提取和分析。
在正常培养条件下培养细胞,并在对数期离心收获细胞(60×106个细胞),并加入1.0mL溶于0.15M乙酸的1.0mM EDTA重悬细胞。加入3.0mL甲醇:氯仿 (2:1,v/v)混合物后,将混合物涡旋10分钟。然后,加入1mL氯仿和0.8mL 0.88% (w/v)KCl并涡旋,然后3000rpm离心5分钟。回收底层氯仿相。然后用正己烷再次提取细胞,并将上清液与先前的氯仿提取物合并。提取的脂质在氮气流下干燥,然后重新溶解在200μL氯仿中,用于通过薄层色谱(TLC)进行中性脂质或极性脂质分析。通过正己烷-二乙醚-乙酸(85:15:1,v/v/v)的溶剂混合物在TLC板上分离中性脂质(主要是TAG),使用氯仿-甲醇-乙酸-水(25:4:0.7:0.3,v/v/v/v)作为展开溶剂在 TLC板上分离极性脂质,通过用丙酮/水(80/20,v/v)中的0.05%(m/v)樱草碱喷雾,使板上分离的脂质可视化。回收含有二氧化硅的TAG或极性脂质,并将其甲基化为脂肪酸甲酯(FAME)。对于总脂肪酸分析,如前所述使用每种脂质的直接转甲基化方案FAME的定量是通过配备有Agilent DB-23(60m×0.25mm×0.25μm)色谱柱的火焰离子化检测器(GC-FID)的气相色谱法进行的,检测参数之前已描述。使用安捷伦化学工作站软件进行分析,并使用三十七酸甘油酯(TAG 51:0、17:0/17:0/17:0)作为内标来确定脂肪酸回收率以进行定量。对于每个处理,进行了三个生物学重复(独立培养)和三个技术重复(n=9)
实验结果表明:
亲本(未转基因)的TAG含量0.137μg/106个细胞,突变株 FAX1/FAX2-ABCA2-51的TAG含量0.321μg/106细胞;亲本(未转基因)总脂肪酸含量3.810μg/106个细胞,FAX1/FAX2-ABCA2-51总脂肪酸含量5.766μg/106个细胞。
本实施例所获得的FAX1/FAX2-ABCA2-51突变株的TAG含量比亲本(未转基因) 提高200%。
实施例3
实施例1获得的莱茵衣藻突变株中淀粉含量的提取及检测:
(1)藻细胞的获得:
藻液:取1—2mL的藻液放入2mL EP管,12000rpm离心3min,弃上清,藻泥冻入-80℃冰箱备用。
(2)加入80%(V/V)乙醇1mL,超声仪破碎细胞(功率400W,工作5s,间隔5s,超声5次),80℃水浴提取可溶性糖15min,10000rpm离心3min,弃上清液。
(3)沉淀于90℃水浴加热2min,使残余的乙醇蒸发,加入0.1M pH 4.4乙酸-乙酸钠缓冲液1.0mL,110℃高压加热15min(高压灭菌),使淀粉糊化。
(4)取出冷却至50℃(可用干浴),加入淀粉葡萄糖苷酶试剂1.5μl(约1.5U),55℃水浴1~1.5h(注意设无样品的对照,即1mL乙酸钠缓冲液加上述体积的淀粉葡萄糖苷酶试剂);12000rpm离心3min,分别收集上清液置于新的1.5mL的EP管中。
(5)配制浓度分别为0、0.02、0.04、0.06、0.08、0.1g/L葡萄糖标准溶液各1mL。
Figure BDA0003493099210000081
(6)分别取各浓度标准液300μL,加入1.5mL蒽酮试剂(1:5),沸水浴10min;以去离子水为空白调零,于621nm处测定吸光度,作“葡萄糖浓度-吸光度”标准曲线,得到回归方程。
(7)根据淀粉浓度适当稀释待测样品后分别取300μL,加入1.5mL蒽酮试剂,沸水浴10min;以去离子水为空白调零,于621nm处测定吸光度,根据“葡萄糖浓度-吸光度”标准曲线回归方程计算淀粉含量:
淀粉含量(%DW)=葡萄糖浓度(g/L)×稀释倍数×0.9/藻细胞浓度×100%
实验结果表明:
亲本(未转基因)淀粉含量5.871μg/106个细胞、FAX1-FAX2-ABCA2-OE突变株淀粉含量9.010μg/106个细胞,比亲本(未转基因)提高53.4%。
实施例4
实施例1获得的莱茵衣藻突变株中叶绿素含量的测定:
(1)取1ml培养液(包含5×106个莱茵衣藻突变株细胞)放入螺纹口微量离心管(每个培养瓶中的样品,三组平行)
(2)12000rpm离心3分钟,弃上清液,12000rpm离心重新1分钟,弃上清液(枪头吸出)。
(3)加入1ml甲醇提取叶绿素,充分旋涡震荡3分钟。
(4)-20℃放置提取物20分钟
(5)13000rpm离心5分钟
(6)取上清液进行分析
(7)以甲醇为空白试样,测量OD653,OD666和OD750下的吸光值。
(8)以每106细胞含叶绿素(Chl)
Chl ug/106个细胞=(A653-A750)×19.71+(A666-A750)×4.44
Chl aμg/106个细胞=-8.0962×(A653-A750)+16.5169×(A666-A750)
Chl bμg/106个细胞=27.44×(A653-A750)—12.1688×(A666-A750)
实验结果表明:
亲本(未转基因)叶绿素含量0.807μg/106个细胞,突变株FAX1/FAX2-ABCA2-51 叶绿素含量1.117μg/106个细胞,比亲本提高了38.4%。
SEQUENCE LISTING
<110> 大连理工大学
<120> 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用
<130> 2022
<160> 9
<170> PatentIn version 3.5
<210> 1
<211> 1041
<212> DNA
<213> 人工序列(FAX1)
<400> 1
atggctgctt ccctgctgca acgatccctt ccatcacgag tcgcgcagtg ctcgggcgtg 60
tgcccgcgtc tgctatcatt gagaccgaca ctgataatca atgcctctag caattcgaca 120
tccacatcta gggccagccg tggagcactg acctgccgcg catcggtaaa ctgtcgcttc 180
ctgtccaaaa tcgcgagcgt tacctaaaga catggcggta ctgttgggga tcggttgcgc 240
aggcctcggc gagccagcca agcgggtcag cgccggccgg ccccgcccgg cacgcggtgt 300
tgcacgattt ctgcatggtc atccccttcg gcggtgccgc ggtcctgggc gcggttgcac 360
tctttttctt caacctcacc aacatcgctg gcacagcatt gattgccggg gccacagcca 420
tcgcctctag cgtgctaagc ctccaggagt ggaaggcggg gggcagctcc accacctaca 480
cgcttacgtc tgcaggtaag agtgtagact gagtgcagag aggccttaca gctttcttct 540
gcagggtata tgccgtacca gatataggct ggaacgggag ggcatgtcat aagaacagag 600
cgcgtgtgta cctacgggcc ggcaggttgg gcttgggtgc cggctgggag tcgtagggct 660
gtggagctgc taaagctccc agcaggcaat gggtattcat cggtggcagg ccgccagcat 720
ggccccaaac tccaacacag cactgcagtt gccagcgctg attcaacgta atctctcata 780
ccctactctc ctgactctcc tctaacccta aagctgcccg ccttcccccc ccttcccctc 840
tccctccact gctccatagc ctgcgccgcc gccgtgtcgt acgtgacgta cagctccctg 900
gacctgctga aggggctgcc gtactgggtg gcggccgtgc tgtgcgtgct gggcggcgcc 960
tgctcgctct tctgcgccta caacgtggcg gcgggcggca acccgccccc caagaagaag 1020
gccgccggca aggccgagta g 1041
<210> 2
<211> 1043
<212> DNA
<213> 人工序列(FAX2)
<400> 2
atgtatgact tttgcttttc gcccatttac tcggtcttcc tggccctagc gggtgcctac 60
atctacttca ccaccggtag caaggcctcg ttcggtggtg ctgtcggagc ggctgtcatt 120
ctcggaggcc tggcttacgg ctcgctcaag tactacatca agcataaagc cgtctgcaag 180
ccgacggtgt tcctcagcct cggtaggcaa cgcggcatac cagctctcgc gcgtgcgtca 240
aggcgaagaa gtttgcgctc gggggttgag tccccacgcc ccccagctct tctctcgcgc 300
ctgcgtcgcc agggcagcgg ccgtcgcgga aagctcccag ccaaacacca gcctaccctt 360
accgatttac aacgcctgtt ccgacaatcc tatccatgtt tatctgccgc gcagtggtcg 420
ccgctggcct gaccagcatg atgtacaggc ggttcgagaa gacgcactcg gtacccgcgg 480
ccgccatcgg cgtggtcagg tgcgtcgcct gccaggcacg gcctgcccgc tcgggggctc 540
agcgtgcatt gtgtcagtgt gttggagttg ccatggggcc atcgtgggtt accatggggt 600
gcgaggggcg tgtcatggag ggtgccagac gtcctcttgg ttggcgtgga cgtgttgcgg 660
tcttcgtatg ttgcgccagt catacacagc tgggggtccg ggcagggggc ctgggtctgg 720
tggcacgcca cactgtctct gggcctggcc atcctgcccc ttgccccggt gccctcaccc 780
tgttccaacc catgcacagc tggggtttgc gtgcgagagc cgcgagactt gaatacactg 840
gtcgttggtt ggaaccgtgc catgtcttgt cacaaggcac acgacacatg gcgtctggct 900
cccagctagt tatttacgtg ttcgcttacg ccgcttgtgt catcctgttg ttgttgccct 960
gcagcggcgg catggcgctc ttctacgcct ggagcatctc gccgctgggc cccaagcccg 1020
ccgcgcacgg caaggcgcac tag 1043
<210> 3
<211> 3333
<212> DNA
<213> 人工序列(ABCA2)
<400> 3
atggctcgac tttcttgctt cgacccggtc ttggacttcc tctttcgatt caggcctgta 60
cagcaattta ttgtgctgta caagaagaat gccttggttg cgtggcgcaa ccgacgtgcc 120
acggcactgc gcatcatcgc gcccttcctc ttcctgcttc tggcgctgct aattgaccgc 180
gccctgcaag cgaatgacag caacaacacc gactttcaga acgtgccgaa ccccacggca 240
tcacccattg gcgggattcc gaaatgcacg gaggacatct tcatcggcaa ccgggcgtgc 300
atagaggtgc tgtatcagcc ctcgcccaac cccatgatcg acgccatcat gtccaacgtt 360
aagaaaaaca acccggtggc catcacggtc cagggcttcc ccaaccgcac cgccatccag 420
acctacctgt acgacaaccc cgacaccgtc atcagcgccg tacactttga gttcacaggc 480
agtacactgg agggtttcat cttgcagacc aacaccacga ccaagtactt caagggcacc 540
ttccagaacc ccaacacgtt cgtgcagctg ccgctgcagt cggcggtgca ccgcgagatc 600
gcgcgctacc agattgccaa cagcggggtc tccaacgcca ccggcctggc cgcggcgctc 660
aacctggaga cgtcgctcaa ggagtttgcg catcccacca tcgcgacggt gtcggtgctg 720
ggtcaggtgc tgggcccctt cgtgttcgcg gcctgcatgt tcagcttcgt catccagatc 780
agcaccgtgg tggcggagaa ggagctgggg ctcaagcagg ccctccgcac catgggcatg 840
tccgacaccg cctactggag cagctggggg ctgtgggaag tgacgctggc cttcgtggtg 900
gccaactcca tctgcatcta cggactcatc ctgcagttcg acctattcct gcacaacaac 960
tacggcctgc tgttcttcct gttcttcctg ttccagctgg ccatgtcctc gctggctctg 1020
ctgctggccg ccttcatccg ccgcacccag gtggccgtgt acctgggctt caccatcttc 1080
atcgtgggct ggatcatgca gacggtggtg ctgttcggcg tgccctacac gcccgactac 1140
tacaagaccg ccggcagcgc cgtcaccatc atcttctcgc tgctgccctg ggacctgctg 1200
gccaaggggt tccaggacct gggcgcagcc accgtgggca ccaacccggg cctggattgg 1260
acggaccgct cgcgctactg ccagaacatc gccaaccccg acgaccagcc gccgtacaac 1320
ccgcggcagg agtaccgcag ctacgagtgc gtgatgagcc tcaacaccat ctacggcatc 1380
ttcatcgcgc tgtggctcgg ctacttcgtt ctggccgtct actttgacaa catcgtgccc 1440
aacgagttcg gcgtcagcaa gcccttctac tacttcctgg accccggcta ctggttcgcg 1500
tcctggggcc gcaagcacaa cagcctcaag gctgtggaga ggagcctgca gcagcaggcc 1560
ggcggcggcc gcggcttcgg ctcggcccgc ctgccgccgc ccatcccacc cgggcagctg 1620
gatgaggacg tcaaggcgga ggaggacaag atccaggcgc tgctgcagca ccgcacgggc 1680
gcgggctcgg gcgccatggc cctccagtcg gtgggcaccg gcggcgcgcg gcccaacgct 1740
gtggaggtgt acggcctgac caagctgtac aagggcagca gcggctgctg cggctccact 1800
ctcaagtgct gctcctgctg cgactgctgc agctgcgaga agaccgatga cttctgggcc 1860
atcaagggct cctggttctc aatcgaacag ggccagctgt tctgcctgct gggccccaac 1920
ggcgccggca agaccaccac catcaactgc ctcaccggcg ccatcccgcc caccggcggc 1980
gaggcgctgg tgtacgagga gcccatcagc aacgccggcg ggctggaccg cattcgcgcg 2040
cagatgggcg tgtgccccca gtttgacatc ctgtggaacg agctcacggg cgccgagcac 2100
ctgtccatct acggccacgt caaggggctg ccctggcgca aggtggcgga ggaggaggag 2160
gcgctgctgg acaaggtcaa gctgacgtac gcggcgggcc agcgcgcggg ctcctacagc 2220
ggcggcatga agcggcggct gagtgtggcc attgcgctgc tgggcgaccc gcgcatcgtg 2280
tacctggacg agcccaccac cggcatggac cccatctccc gccgctacgt gtgggacatc 2340
atccaagagg ccaagcccgg ccgcgccatc gtgctcacca cccactccat ggaggaggcc 2400
gacatcctgg gcgaccgcat cgcaatcatg gcgcgcggca agctgcgctg cattggcacc 2460
tcactgcgcc tcaagcagcg cttcggatcc ggttacacgc tcgccgtgtc cgtcaccgcc 2520
gccgcctcgg gtcagtcggc ttacccagtc agccagtacg gcgccgacgg cgagcccagc 2580
acgcccgccg tgatcgagcg gcgcgtggcg ggcgtgaagc gcttcttcgc ggagcggctg 2640
ggcctggcgg caccggtgga ggagagcaag gcctacatgg tgtaccgcgt ggacagggac 2700
cgcgagccgc agctcaacgg cttcctcaag gagctggagg cccatcgcga cacgctgggc 2760
atcacagacg tgcagctgag cctgaccagc ctggaggagg tgttcctcaa catcgcgcgc 2820
gccgccgaag tggaggccgc cgccagcagc ggcaacaccg aggtcacgca cgtgctggac 2880
gacggcagcc gcctcaagat ccccgtgggc gccgagctgg tgggacaccc caccaccggc 2940
gccgcctacc gcgtgcgatg gggcaccgac gaggccggcc gcctgatcat catggactgc 3000
acggagctgc cgccaggctc ccccgaggcc gcaggcctgc aggctgccgc cgccgccgga 3060
gggcaggtga tgggcgtgcc ggcaggcggc gtgccgccga cgggcccggg cgcgtacgtg 3120
ccgccgatgc ccgtggcgcc accggtggcg ccgtcgccgg cgcttgcggc gggtcacttc 3180
cccggccacc cggcggtgcc catgagcggc gagcacggca tcggcggggc ggtgggaggc 3240
aacggcctgt cgccgggcgg tgcgcccagc cctggtggga cgccggccat gtacccgggc 3300
tacaacccca acccagtgga ctcccgcaac tga 3333
<210> 4
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ccggaattcg ctgcttccct gctgcaacg 29
<210> 5
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
cgcggatccc tcggccttgc cggcggc 27
<210> 6
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cgcggatcct atgacttttg cttttcgccc attt 34
<210> 7
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gctctagacc gtgcgccttg ccgtgc 26
<210> 8
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
aaccgccata tgatggctcg actttcttg 29
<210> 9
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
aactaggaat tctcagttgc gggagtcca 29

Claims (9)

1.一种莱茵衣藻突变株,其特征在于,所述莱茵衣藻突变株中过表达FAX1基因、FAX2基因和ABCA2基因。
2.根据权利要求1所述的莱茵衣藻突变株,其特征在于,所述FAX1基因的核苷酸序列如SEQ ID NO.1所示。
3.根据权利要求1所述的莱茵衣藻突变株,其特征在于,所述FAX2基因的核苷酸序列如SEQ ID NO.2所示。
4.根据权利要求1所述的莱茵衣藻突变株,其特征在于,所述ABCA2基因的核苷酸序列如SEQ ID NO.3所示。
5.根据权利要求1所述的莱茵衣藻突变株,其特征在于,所述莱茵衣藻突变株的保藏编号为CGMCC22676。
6.权利要求1-5中任一项所述莱茵衣藻突变株的构建方法,其特征在于,包括如下步骤:
(1)分别构建包含编码叶绿体脂肪酸转运蛋白的两个同源基因FAX1和FAX2以及内质网脂肪酸转运蛋白编码基因ABCA2的表达载体;
(2)通过电击转化的转基因的方式,将含有FAX1-FAX2和ABCA2的表达载体转入莱茵衣藻中,获得莱茵衣藻突变株并命名为FAX1/FAX2-ABCA2-51。
7.权利要求1-5中任一项所述的莱茵衣藻突变株的应用,其特征在于,在莱茵衣藻的正常培养条件下高产油和淀粉。
8.根据权利要求7所述的应用,其特征在于,所述正常培养条件为在全温培养箱中使用TAP培养基培养,转速100-140rpm,持续光照光强为80-120μmol m-2s-1,培养温度为室温。
9.根据权利要求7所述的应用,其特征在于,所述油包括中性脂三酰甘油、膜脂和总脂肪酸。
CN202210103186.8A 2022-01-27 2022-01-27 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用 Active CN114517158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210103186.8A CN114517158B (zh) 2022-01-27 2022-01-27 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210103186.8A CN114517158B (zh) 2022-01-27 2022-01-27 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN114517158A true CN114517158A (zh) 2022-05-20
CN114517158B CN114517158B (zh) 2024-02-13

Family

ID=81596489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210103186.8A Active CN114517158B (zh) 2022-01-27 2022-01-27 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN114517158B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838631A (zh) * 2022-11-08 2023-03-24 大连理工大学 一种高富集砷工程藻株及其构建方法与应用
GB2617381A (en) * 2022-04-07 2023-10-11 Phycobloom Ltd Engineered photosynthetic organisms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695445A (zh) * 2012-11-28 2014-04-02 天津工业生物技术研究所 莱茵衣藻的油脂代谢途径相关基因和蛋白以及基因突变藻株及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695445A (zh) * 2012-11-28 2014-04-02 天津工业生物技术研究所 莱茵衣藻的油脂代谢途径相关基因和蛋白以及基因突变藻株及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RU CHEN ET AL.: "Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions", BIOTECHNOL BIOFUELS BIOPROD, vol. 15, no. 1, 20 May 2022 (2022-05-20), pages 54 *
SUNGHOON JANG ET AL.: "CrABCA2 Facilitates Triacylglycerol Accumulation in Chlamydomonas reinhardtii under Nitrogen Starvation", MOL CELLS, vol. 43, no. 1, pages 48 - 49 *
张岩: "莱茵衣藻(Chlamydomonas reinhardtii)脂肪酸转运蛋白FAX(fatty acid export)的鉴定与功能分析", 中国优秀硕士学位论文全文数据库(工程科技I辑), pages 15 - 25 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617381A (en) * 2022-04-07 2023-10-11 Phycobloom Ltd Engineered photosynthetic organisms
CN115838631A (zh) * 2022-11-08 2023-03-24 大连理工大学 一种高富集砷工程藻株及其构建方法与应用
CN115838631B (zh) * 2022-11-08 2024-05-24 大连理工大学 一种高富集砷工程藻株及其构建方法与应用

Also Published As

Publication number Publication date
CN114517158B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN114517158B (zh) 一种正常培养条件下高产油及淀粉的工程藻及其构建方法与应用
Deng et al. The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii
Chatsungnoen et al. Optimization of oil extraction from Nannochloropsis salina biomass paste
Tanadul et al. EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp.
US10889841B2 (en) Oleaginous yeast variant, method for obtaining thereof and use thereof for lipid production
BR112013011817B1 (pt) Cepa de saccharomyces cerevisiae e uso de uma cepa
CN107937297B (zh) 一株多抑制物胁迫耐受性酿酒酵母及制备方法、应用
Kang et al. Use of conditioned medium for efficient transformation and cost-effective cultivation of Nannochloropsis salina
CN107889502A (zh) 适应于异养培养条件的微藻
CN117210508B (zh) 一种制备高产二十碳五烯酸裂殖壶菌的方法
Chen et al. A novel native bioenergy green alga can stably grow on waste molasses under variable temperature conditions
Deng et al. Effects of selective medium on lipid accumulation of chlorellas and screening of high lipid mutants through ultraviolet mutagenesis
Sahabudin et al. Isolation and characterization of acid-tolerant Stichococcus-like Microalga (Tetratostichococcus sp. P1) from a tropical peatland in Malaysia
Soós et al. Biomolecule composition and draft genome of a novel, high-lipid producing Scenedesmaceae microalga
CN114107079B (zh) 一种耐油酿酒酵母基因工程菌及其构建方法
CN102321642A (zh) 莱茵衣藻油脂代谢基因CrDGAT2-5及其编码蛋白与应用
CN111876350B (zh) 一种高产碳水化合物的纤细鞘丝藻及其应用
CN103589737B (zh) 一种微藻三酰甘油合成调控基因及其应用
Cai et al. Transformation of coccolithophorid Emiliania huxleyi harboring a marine virus (Coccolithoviruses) serine palmitoyltransferase (SPT) gene by electroporation
CN108330114B (zh) 一种利用epa的甘油二酯酰基转移酶及其应用
CN107400673B (zh) 一种集胞藻pcc6803的突变株及其应用
Xu et al. Isolation, identification and growth optimisation of freshwater microalgae
CN112725206A (zh) 一种改善生态养殖优良海洋红酵母及其制备方法
CN114164115B (zh) 一种新的淡水产油微藻物种及其培养方法和应用
Singh et al. Development of continuous cultivation process for oil production through bioconversion of minimally treated waste streams from second‐generation bioethanol production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant