CN114502762A - 在其中心区域处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法 - Google Patents

在其中心区域处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法 Download PDF

Info

Publication number
CN114502762A
CN114502762A CN202080068574.6A CN202080068574A CN114502762A CN 114502762 A CN114502762 A CN 114502762A CN 202080068574 A CN202080068574 A CN 202080068574A CN 114502762 A CN114502762 A CN 114502762A
Authority
CN
China
Prior art keywords
central region
less
impact toughness
excellent low
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080068574.6A
Other languages
English (en)
Inventor
李学哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN114502762A publication Critical patent/CN114502762A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明的一个方面是提供在其中心处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法。本发明的一个实施方案提供了在其中心处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法,所述钢以重量%计包含:0.02%至0.06%的C、1.8%至2.2%的Mn、0.7%至1.1%的Ni、0.2%至0.5%的Mo、0.005%至0.03%的Nb、0.005%至0.018%的Ti、80ppm或更少的P、20ppm或更少的S、以及剩余部分的Fe和其他不可避免的杂质,其中如在厚度(t)方向上的3/8t至5/8t范围通过EBSD测量的具有15度或更大的大晶界角的晶粒的平均晶粒尺寸为15μm或更小。

Description

在其中心区域处具有优异的低温应变时效冲击韧性的高强度 超厚钢和用于制造其的方法
技术领域
本公开涉及在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材和用于制造其的方法。
背景技术
近来,在诸如国内外船舶的结构的设计中需要开发超厚高强度钢材,并且当在设计结构中使用高强度钢材时,由于结构形式的重量减轻,可以获得经济效益,并且还可以减小板的厚度,使得可以同时确保加工和焊接工作的容易性。此外,为了提高船舶的运输效率,已经尝试运行极地航线,并且在这种情况下,预期对可以保证在-60℃下的冲击韧性的保证低温韧性的高强度超厚材料,而不是保证在-40℃下的冲击韧性的一般钢材,的需求可能增加。
然而,通常,在高强度钢材的情况下,由于在超厚材料的制造期间,由于总压下率的降低,在整个组织中可能未发生足够的变形,因此组织可能变粗,并且特别地,在中心区域的情况下,可能形成粗的奥氏体组织,使得淬透性可能增加,并且可能难以保证中心区域的冲击韧性。
此外,当制造船舶时,对于钢材,可以不按原样使用原始板材形式,并且可以通过变形将钢材加工成船体形式。当将这样的变形施加至钢材时,由于变形,冲击韧性可能降低。此外,诸如碳和氮的元素可能在转变之后随时间而进入由转变产生的位错,并且由于强度的增加,冲击韧性可能进一步劣化。为了保证该现象,在钢材被开发之后并经各船级社认证时,在基础材料的试验项目中可以包括测量在5%的应变之后在250℃下热处理1小时之后的冲击韧性的应变时效冲击试验。因此,在可以保证低温韧性的船舶用超厚高强度钢材的情况下,可能需要保证基本冲击韧性和变形时效冲击特性,而为了保证超厚材料的甚至中心区域的变形时效冲击,可能需要显著改善中心区域的显微组织,这可能是成问题的。
因此,在500MPa或更大的高强度钢材中,可能需要通过控制1/4t和1/2t区域基础材料的冲击韧性以及中心区域的显微组织来改善中心区域的变形时效冲击韧性。
发明内容
技术问题
本公开的一个方面是提供在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材和用于制造其的方法。
技术方案
本公开的一个实施方案提供了在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材,所述高强度超厚钢材以重量%计包含:0.02%至0.06%的C、1.8%至2.2%的Mn、0.7%至1.1%的Ni、0.2%至0.5%的Mo、0.005%至0.03%的Nb、0.005%至0.018%的Ti、80ppm或更少的P、20ppm或更少的S、以及余量的Fe和不可避免的杂质,其中在厚度(t)方向上的3/8t至5/8t区域中通过EBSD测量的具有15度或更大的大晶界角的晶粒的平均晶粒尺寸为15μm或更小。
本公开的另一个实施方案提供了用于制造在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材的方法,所述方法包括:将钢坯再加热至1000℃至1080℃的温度,所述钢坯以重量%计包含:0.02%至0.06%的C、1.8%至2.2%的Mn、0.7%至1.1%的Ni、0.2%至0.5%的Mo、0.005%至0.03%的Nb、0.005%至0.018%的Ti、80ppm或更少的P、20ppm或更少的S、以及余量的Fe和不可避免的杂质;通过在850℃至1050℃的温度下对经再加热的钢坯进行粗轧来获得棒材;通过在700℃至800℃的温度下以大于60%的总压下率对棒材进行精轧来获得热轧钢材;以及以3℃/秒或更大的冷却速率将热轧钢材冷却至500℃或更低的温度。
有益效果
根据本公开的一个方面,提供了在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材和用于制造其的方法,所述高强度超厚钢材可以具有500MPa或更大的屈服强度,并且在厚度的中心区域的应变时效冲击试验期间可以具有-60℃或更低的转变温度。
具体实施方式
在下文中,将描述本公开的钢材的一个实施方案。首先,将描述本公开的合金组成。除非另有说明,否则以下描述的合金组成的单位可以为重量%。
C:0.02%至0.06%
C可以是本公开中用于确保基本强度的最重要元素,因此,C可能需要以适当范围内包含在钢中。然而,当C的含量超过0.06%时,在应变时效冲击试验期间大量的C可能被固定至位错,并且强度可能增加,使得应变时效冲击韧性可能降低,而当含量小于0.02%时,强度可能降低。因此,C的含量可以优选在0.02%至0.06%的范围。C的下限可以更优选为0.024%,甚至更优选为0.028%,并且最优选为0.3%。C的上限可以更优选为0.058%,甚至更优选为0.054%,并且最优选为0.05%。
Mn:1.8%至2.2%
Mn可以是用于通过固溶强化和淬透性改善来改善强度的有用元素,并因此,可能需要添加1.8%或更多的Mn以满足本公开中获得的500MPa或更大的屈服强度。然而,当含量超过2.2%时,淬透性可能过度增加,使得可能促进粗的上贝氏体和马氏体的形成,使得中心区域的应变时效冲击韧性可能大大劣化。因此,Mn含量可以优选在1.8%至2.2%的范围。Mn的下限可以更优选为1.83%,甚至更优选为1.86%,并且最优选为1.9%。Mn的上限可以更优选为2.17%,甚至更优选为2.14%,并且最优选为2.1%。
Ni:0.7%至1.1%
Ni可以促进位错的交叉滑移并且可以改善冲击韧性和淬透性,并因此,Ni可以是改善强度的重要元素。为了改善屈服强度为500MPa或更大的高强度钢中的中心区域的应变时效冲击韧性,可以以0.7%或更多添加Ni。然而,当含量超过1.1%时,淬透性可能过度增加,并且可能形成大量的低温转变相,使得韧性可能降低,并且制造成本可能增加,这可能是成问题的。因此,Ni含量可以优选在0.7%至1.1%的范围。Mn含量可以优选在1.8%至2.2%的范围。Ni的下限可以更优选为0.73%,甚至更优选为0.76%,并且最优选为0.8%。Ni的上限可以更优选为1.07%,甚至更优选为1.03%,并且最优选为1%。
Mo:0.2%至0.5%
Mo可以是用于通过改善淬透性来改善强度的重要元素,并且可以是与强度改善相比韧性降低较少的合金元素,优选地,可以添加0.2%或更多的Mo以确保高强度钢的屈服强度为500MPa或更大。然而,当含量超过0.5%时,淬透性可能过度增加,并且可能形成大量的低温转变相,使得韧性可能降低。因此,Mo含量可以优选在0.2%至0.5%的范围。Mo的下限可以更优选为0.23%,甚至更优选为0.26%,并且最优选为0.3%。Mo的上限可以更优选为0.48%,甚至更优选为0.44%,并且最优选为0.4%。
Nb:0.005%至0.03%
Nb可以以NbC或NbCN的形式析出,并且可以改善基础材料的强度。此外,在再加热至高温期间溶解的Nb在轧制期间可以以NbC的形式非常细地析出,可以防止奥氏体的再结晶,并且可以使组织细化。为了获得上述效果,优选地,可以添加0.005%或更多的Nb。然而,当Nb超过0.03%时,可能在钢材的角部中产生脆性裂纹,并且可能存在由于形成过多的析出物以及形成大量的马氏体而导致韧性劣化的问题。因此,Nb含量可以优选在0.005%至0.03%的范围。Nb的下限可以更优选为0.008%,甚至更优选为0.011%,并且最优选为0.015%。Nb的上限可以更优选为0.028%,甚至更优选为0.026%,并且最优选为0.025%。
Ti:0.005%至0.018%
Ti在再加热期间可以以TiN析出,并且可以防止基础材料和焊接热影响区中的晶粒的生长,使得低温韧性可以大大改善,并且可以以0.005%或更多添加Ti以有效地析出TiN。然而,当含量超过0.018%时,可能发生粗TiN结晶,使得低温韧性可能劣化,这可能是成问题的。因此,Ti含量可以优选在0.005%至0.018%的范围。Ti的下限可以更优选为0.006%,甚至更优选为0.008%,并且最优选为0.01%。Ti的上限可以更优选为0.017%,甚至更优选为0.016%,并且最优选为0.015%。
P:80ppm或更少
P可以是可以在晶界处引起脆性或者可以形成可能导致脆性的粗夹杂物的元素,并且为了改善脆性裂纹扩展抗力,可以优选将其含量限制为80ppm或更少。
S:20ppm或更少
S可以是可以在晶界处引起脆性或者可以形成可能导致脆性的粗夹杂物的元素。为了改善脆性裂纹扩展抗力,可以优选将其含量限制为20ppm或更少。
本公开的剩余部分可以为铁(Fe)。然而,在一般制造过程中,可能不可避免地添加有来自原材料或周围环境的不可避免的杂质,并因此,可能无法排除杂质。一般制造过程的本领域技术人员可以知道这些杂质,并因此,在本公开中可以不提供杂质的描述。
在本公开的钢材中,在厚度(t)方向上的3/8t至5/8t区域中通过EBSD测量的具有15度或更大的大晶界角的晶粒的平均晶粒尺寸可以优选为15μm或更小。当通过EBSD测量的在厚度(t)方向上的3/8t至5/8t区域中的具有15度或更大的大晶界角的晶粒的平均晶粒尺寸超过15μm时,由于晶粒尺寸粗化,有效晶粒尺寸可能增大,使得冲击转变温度可能升高,并且变形时效冲击韧性可能劣化,这可能是成问题的。
同时,本公开的钢材的显微组织可以为包括针状铁素体、粒状贝氏体、上贝氏体的混合组织。
本公开的钢材的厚度可以为5mm至90mm。
如上所述提供的本公开的钢材的屈服强度可以为500MPa或更大。此外,在5%的应变和在250℃下进行热处理1小时之后,在应变时效冲击试验中的转变温度可以为-60℃或更低。
在下文中,将描述根据本公开的一个实施方案的用于制造钢材的方法。
首先,可以将钢坯再加热至1000℃至1080℃的温度。在本公开的钢材的再加热中,加热温度可以优选为1000℃或更高,以使在铸造期间形成的Ti和/或Nb的碳氮化物成为固体溶质。此外,为了充分地使Ti和/或Nb的碳氮化物成为固体溶质,可以在1030℃或更高下进行加热。然而,当进行再加热至过高的温度时,中心区域中的奥氏体可能粗化,并因此再加热温度可以优选为1080℃或更低,并且更优选为1070℃或更低。
可以将经再加热的钢坯在850℃至1050℃的温度下粗轧,从而获得棒材。可以对如上的经再加热的板坯进行粗轧以调节其形状。通过粗轧,可以获得在铸造期间形成的铸造组织(例如枝晶)的破坏以及通过粗奥氏体的再结晶使晶粒尺寸减小的效果。同时,为了通过充分的再结晶使组织细化,粗轧期间的总压下率可以优选为40%或更大。
可以将棒材在700℃至800℃的温度下以大于60%的总压下率精轧,从而获得热轧钢材。在本公开中,可以进行精轧以使棒材的奥氏体组织扁平化并获得位错。精轧可以优选在700℃至800℃的温度下进行,使得可以尽可能地保持施加至中心区域的变形。当精轧温度低于700℃时,在变形期间铁素体可能析出,并且强度和韧性二者均可能降低,这可能是不利的。当温度超过800℃时,颗粒尺寸可能增大,使得冲击韧性可能劣化并且可能无法确保足够的强度,这可能是不利的。精轧温度的下限可以更优选为720℃,甚至更优选为740℃。精轧温度的上限可以更优选为780℃,甚至更优选为760℃。在本公开中,为了在精轧期间使中心区域的颗粒尺寸细化,可以优选应用大于60%的总压下率。精轧期间的总压下率可以更优选为61%或更大,甚至更优选为62%。
可以以3℃/秒或更大的冷却速率将热轧钢材冷却至500℃或更低的温度。当冷却速率低于3℃/秒或者冷却停止温度高于500℃时,在本公开中可能无法适当地形成细晶粒,使得可能屈服强度可能为500MPa或更小。
发明实施方式
在下文中,将通过实施例更详细地描述本公开。然而,需要注意的是,以下实施例仅用于通过示例描述本公开,而不用于限制本公开的范围。这是因为本公开的范围由权利要求中描述的事项和由其合理推断的事项确定。
(实施例)
制备具有400mm的厚度和下表1中列出的合金组成的钢坯,将其再加热至1040℃至1070℃的温度,在930℃至1020℃的温度范围粗轧,从而获得棒材。将该棒材在表2中列出的条件下精轧,并获得热轧钢材,并且以3.8℃/秒至5.4℃/秒的冷却速率将钢材冷却至491℃至342℃的温度。测量厚度、在厚度(t)方向上的3/8t至5/8t区域中通过EBSD测量的具有15度或更大的大晶界角的晶粒的平均晶粒尺寸、屈服强度和中心区域(3/8t至5/8t)的应变时效冲击转变温度并列于表3中。
在这种情况下,中心区域应变时效冲击试验通过如下来进行:从钢材的中心区域取样,在5%的变形之后在250℃下进行热处理1小时,进行冲击试验,并测量转变温度。
[表1]
Figure BDA0003572295180000081
[表2]
Figure BDA0003572295180000091
[表3]
Figure BDA0003572295180000101
在满足本公开中建议的合金组成和制造条件的发明例1至5的情况下,3/8t至5/8t区域的晶粒的平均晶粒尺寸为15μm或更小,并因此,屈服强度为500MPa或更大,以及应变时效冲击转变温度为-60℃或更低。
在比较例1和2的情况下,满足本公开中建议的合金组成,但精轧期间的总压下率低,使得中心区域未施加足够的变形,并且未充分形成可以大大影响晶粒尺寸细化的针状铁素体,并且形成大量的粗贝氏体。因此,表明随着晶粒尺寸粗化,3/8t至5/8t区域的晶粒的平均晶粒尺寸超过15μm,并且中心区域的应变时效冲击转变温度超过-60℃。
在比较例3的情况下,由于具有高于本公开中建议的C的上限的值,由于高淬透性而形成大量的粗贝氏体相,使得表现出非常高的屈服强度,并且虽然3/8t至5/8t区域的晶粒的平均晶粒尺寸为15μm或更小,但是在应变时效冲击试验期间,大量的C被固定至位错,使得应变时效冲击转变温度超过-60℃。
在比较例4的情况下,由于具有高于本公开中建议的Mn的上限的值,由于高淬透性而形成大量的粗贝氏体相,使得表现出非常高的屈服强度,但是3/8t至5/8t区域的晶粒的平均晶粒尺寸超过15μm,并且应变时效冲击转变温度超过-60℃。
在比较例5的情况下,由于具有低于本公开中建议的C和Mn的下限的值,在中心区域中形成大量的软相例如多边形铁素体,并因此,屈服强度低于500Mpa。
在比较例6的情况下,由于具有低于本公开中建议的Ni的上限的值,虽然3/8t至5/8t区域的晶粒的平均晶粒尺寸为15μm或更小,但是由于韧性因低Ni含量而降低,应变时效冲击转变温度超过-60℃。
在比较例7的情况下,由于具有高于本公开中建议的Mo的上限的值,由于高淬透性而形成大量的粗贝氏体相,使得表现出非常高的屈服强度,但3/8t至5/8t晶粒的平均晶粒尺寸超过15μm,并且应变时效冲击转变温度超过-60℃。
在比较例8的情况下,由于具有高于本公开中建议的Ti和Nb的上限的值,强度由于过度的淬透性和析出物的形成而增加,并且由于因析出强化而导致韧性降低,应变时效冲击转变温度超过-60℃。

Claims (7)

1.一种在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材,所述钢材以重量%计包含:
0.02%至0.06%的C、1.8%至2.2%的Mn、0.7%至1.1%的Ni、0.2%至0.5%的Mo、0.005%至0.03%的Nb、0.005%至0.018%的Ti、80ppm或更少的P、20ppm或更少的S、以及余量的Fe和不可避免的杂质,
其中在厚度(t)方向上的3/8t至5/8t区域中通过EBSD测量的具有15度或更大的大晶界角的晶粒的平均晶粒尺寸为15μm或更小。
2.根据权利要求1所述的在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材,其中所述钢材具有包括针状铁素体、粒状贝氏体和上贝氏体的显微组织。
3.根据权利要求1所述的在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材,其中所述钢材的厚度为5mm至90mm。
4.根据权利要求1所述的在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材,其中所述钢材的屈服强度为500MPa或更大。
5.根据权利要求1所述的在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材,其中,在5%的变形之后在250℃下在对所述钢材进行热处理1小时之后,在应变时效冲击试验中的转变温度为-60℃或更低。
6.一种用于制造在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材的方法,所述方法包括:
将钢坯再加热至1000℃至1080℃的温度,所述钢坯以重量%计包含:0.02%至0.06%的C、1.8%至2.2%的Mn、0.7%至1.1%的Ni、0.2%至0.5%的Mo、0.005%至0.03%的Nb、0.005%至0.018%的Ti、80ppm或更少的P、20ppm或更少的S、以及余量的Fe和不可避免的杂质;
通过在850℃至1050℃的温度下对经再加热的钢坯进行粗轧来获得棒材;
通过在700℃至800℃温度下以大于60%的总压下率对所述棒材进行精轧来获得热轧钢材;以及
以3℃/秒或更大的冷却速率将所述热轧钢材冷却至500℃或更低的温度。
7.根据权利要求6所述的用于制造在其中心区域中具有优异的低温应变时效冲击韧性的高强度超厚钢材的方法,其中所述粗轧期间的总压下率为40%或更大。
CN202080068574.6A 2019-10-01 2020-09-25 在其中心区域处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法 Pending CN114502762A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190121723A KR102237486B1 (ko) 2019-10-01 2019-10-01 중심부 극저온 변형시효충격인성이 우수한 고강도 극후물 강재 및 그 제조방법
KR10-2019-0121723 2019-10-01
PCT/KR2020/013062 WO2021066402A1 (ko) 2019-10-01 2020-09-25 중심부 극저온 변형시효충격인성이 우수한 고강도 극후물 강재 및 그 제조방법

Publications (1)

Publication Number Publication Date
CN114502762A true CN114502762A (zh) 2022-05-13

Family

ID=75338297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080068574.6A Pending CN114502762A (zh) 2019-10-01 2020-09-25 在其中心区域处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法

Country Status (6)

Country Link
US (1) US20220325395A1 (zh)
EP (1) EP4039844A4 (zh)
JP (1) JP7404520B2 (zh)
KR (1) KR102237486B1 (zh)
CN (1) CN114502762A (zh)
WO (1) WO2021066402A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064903B2 (ja) * 1985-04-09 1994-01-19 新日本製鐵株式会社 脆性き裂伝播停止特性の優れた厚鋼板およびその製造法
JP2006257499A (ja) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd 高張力鋼板、溶接鋼管及びそれらの製造方法
KR20090070484A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 후물 고강도 고인성 강판 및 그 제조방법
KR20140023787A (ko) * 2012-08-17 2014-02-27 포항공과대학교 산학협력단 저온 인성이 우수한 저탄소 고강도 강판 및 그 제조방법
KR20140098900A (ko) * 2013-01-31 2014-08-11 현대제철 주식회사 고강도 극후물 강판 및 그 제조 방법
US20180363081A1 (en) * 2015-12-04 2018-12-20 Posco High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
WO2006106591A1 (ja) * 2005-04-04 2006-10-12 Nippon Steel Corporation 延性破壊特性に優れた高強度鋼板及び高強度溶接鋼管並びにそれらの製造方法
JP4975304B2 (ja) * 2005-11-28 2012-07-11 新日本製鐵株式会社 耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法
KR100851189B1 (ko) * 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
JP5532800B2 (ja) * 2009-09-30 2014-06-25 Jfeスチール株式会社 耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法
JP4897126B2 (ja) * 2010-05-27 2012-03-14 新日本製鐵株式会社 厚鋼板の製造方法
JP6004903B2 (ja) * 2011-11-14 2016-10-12 山九株式会社 大型の円環形状物品の輸送用トレーラ
US10036079B2 (en) * 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
EP3239330B1 (en) * 2014-12-24 2020-12-02 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
JP6475837B2 (ja) * 2014-12-24 2019-02-27 ポスコPosco 脆性亀裂伝播抵抗性に優れた高強度鋼材及びその製造方法
JP6354790B2 (ja) * 2015-05-29 2018-07-11 Jfeスチール株式会社 高強度高靭性鋼管用鋼板の製造方法及び高強度高靭性鋼管用鋼板
JP6682967B2 (ja) * 2016-04-06 2020-04-15 日本製鉄株式会社 厚鋼板およびその製造方法
JP6665659B2 (ja) * 2016-04-21 2020-03-13 日本製鉄株式会社 厚鋼板およびその製造方法
KR101819356B1 (ko) * 2016-08-08 2018-01-17 주식회사 포스코 취성균열전파 저항성이 우수한 극후물 강재 및 그 제조방법
KR101917456B1 (ko) * 2016-12-22 2018-11-09 주식회사 포스코 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
KR101908819B1 (ko) * 2016-12-23 2018-10-16 주식회사 포스코 저온에서의 파괴 개시 및 전파 저항성이 우수한 고강도 강재 및 그 제조방법
KR102045641B1 (ko) * 2017-12-22 2019-11-15 주식회사 포스코 저온에서의 내파괴 특성이 우수한 극지 환경용 고강도 강재 및 그 제조방법
KR102031451B1 (ko) * 2017-12-24 2019-10-11 주식회사 포스코 저온인성이 우수한 저항복비 고강도 강관용 강재 및 그 제조방법
KR101999022B1 (ko) * 2017-12-26 2019-07-10 주식회사 포스코 피로균열 전파 억제 특성이 우수한 구조용 고강도 강재 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064903B2 (ja) * 1985-04-09 1994-01-19 新日本製鐵株式会社 脆性き裂伝播停止特性の優れた厚鋼板およびその製造法
JP2006257499A (ja) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd 高張力鋼板、溶接鋼管及びそれらの製造方法
KR20090070484A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 후물 고강도 고인성 강판 및 그 제조방법
KR20140023787A (ko) * 2012-08-17 2014-02-27 포항공과대학교 산학협력단 저온 인성이 우수한 저탄소 고강도 강판 및 그 제조방법
KR20140098900A (ko) * 2013-01-31 2014-08-11 현대제철 주식회사 고강도 극후물 강판 및 그 제조 방법
US20180363081A1 (en) * 2015-12-04 2018-12-20 Posco High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor

Also Published As

Publication number Publication date
EP4039844A1 (en) 2022-08-10
JP2022550795A (ja) 2022-12-05
EP4039844A4 (en) 2023-09-13
JP7404520B2 (ja) 2023-12-25
WO2021066402A1 (ko) 2021-04-08
KR102237486B1 (ko) 2021-04-08
US20220325395A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP5820889B2 (ja) 極低温靭性に優れた高強度鋼材及びその製造方法
CA2962472C (en) High-toughness hot-rolled high-strength steel with yield strength of grade 800 mpa and preparation method thereof
CN110088334B (zh) 具有优异的低温冲击韧性的厚钢板及其制造方法
CN108431272B (zh) 对pwht具有优异抗性的低温压力容器用钢板及其制造方法
CN108660389B (zh) 一种具有优异止裂性的高强厚钢板及其制造方法
CN110669914B (zh) 一种冷冲压用高强汽车桥壳用钢及其生产方法
CN110088335B (zh) 具有优异的表面部分nrl-dwt特性的超厚钢材及其制造方法
CN111218620A (zh) 一种高屈强比冷轧双相钢及其制造方法
CN111172466A (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN114807772B (zh) 一种时效强化的高强韧轻质钢及其制造方法
CN114592153A (zh) 一种具有优良耐候性能的高强度钢材及其制造方法
CN108950392B (zh) 一种超高延性低密度钢及其制备方法
JP6858858B2 (ja) 表面部nrl−落重試験物性に優れた極厚鋼材及びその製造方法
CN110331344B (zh) 一种强度性能稳定的Rm≥600MPa汽车大梁钢及生产方法
JP2008013812A (ja) 高靭性高張力厚鋼板およびその製造方法
KR101518588B1 (ko) 항복강도 및 항복비가 우수한 석출강화형 강판 및 그 제조방법
CN115537658A (zh) 一种具有良好耐磨性能高锰钢及生产方法
KR20160079165A (ko) 중심부 물성이 우수한 고강도 극후물 구조용 강재 및 그 제조방법
CN112226701B (zh) 一种高铝含量细晶粒低密度全高温铁素体钢及制备方法
CN114502762A (zh) 在其中心区域处具有优异的低温应变时效冲击韧性的高强度超厚钢和用于制造其的方法
KR101205122B1 (ko) 상자 소둔 방식을 적용한 440MPa급 고장력 강판 및 그 제조 방법
KR20150075304A (ko) 항복강도가 우수한 오스테나이트계 저온용 강판 및 그 제조 방법
KR101455469B1 (ko) 후판 및 그 제조 방법
KR101344610B1 (ko) 강판 및 그 제조 방법
KR101412428B1 (ko) 극후물 판재의 제어압연 방법 및 이를 이용하여 제조된 극후물 강재

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination