CN114481201A - 一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法 - Google Patents

一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法 Download PDF

Info

Publication number
CN114481201A
CN114481201A CN202111653313.3A CN202111653313A CN114481201A CN 114481201 A CN114481201 A CN 114481201A CN 202111653313 A CN202111653313 A CN 202111653313A CN 114481201 A CN114481201 A CN 114481201A
Authority
CN
China
Prior art keywords
silver
zeolite
modified copper
solution
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111653313.3A
Other languages
English (en)
Other versions
CN114481201B (zh
Inventor
孙元元
李国辉
孙伟
刘文青
李冰鹏
王锦锦
闫灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN202111653313.3A priority Critical patent/CN114481201B/zh
Publication of CN114481201A publication Critical patent/CN114481201A/zh
Application granted granted Critical
Publication of CN114481201B publication Critical patent/CN114481201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/21Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于化工技术领域,具体涉及一种银修饰铜负载沸石Ag/Cu‑TS‑1的光驱动CO2还原方法。步骤1:采用一步水热法合成沸石TS‑1;步骤2:在步骤1的基础上制备Cu‑TS‑1;步骤3:将AgNO3溶于去离子水中,加入步骤2制备的Cu‑TS‑1的甲醇悬浮液中,制备得到银修饰铜负载沸石Ag/Cu‑TS‑1;步骤4:将步骤3制备的银修饰铜负载沸石Ag/Cu‑TS‑1溶于丙酮和水溶液中,制备得到碳纸涂层催化剂;步骤5:将碳纸涂层催化剂悬浮于KHCO3溶液中,将铂片和Ag/AgCl分别作为对电极和参考电极,将CO2气体鼓入到KHCO3溶液,打开氙灯,实现对CO2的光电化学还原。制备得到的催化剂Ag/Cu‑TS‑1具有超光吸收性能和光生成电荷的分离效率,实现了在紫外可见光下高效、稳定的催化CO2转化为CH3OH和C2H6OH。

Description

一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法
技术领域
本发明属于化工技术领域,具体涉及一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法。
背景技术
催化还原过量的CO2变成碳氢化合物,比如CH4,HCOOH,CH3OH,C2H5OH等化学燃料对可再生能源储存和环境保护具有重要意义。催化还原CO2的方法,包括热催化、光催化、电催化和新开发的光电催化。其中,利用半导体吸收太阳能,被认为是最有前途的清洁能源,可以实现二氧化碳在相对温和的反应条件下转化。
然而,由于光照利用率低和光生成的空穴-电子对复合率高,大多数光催化剂受到限制。近年来,光电催化技术可以指导光电子的迁移,并通过外部偏压促进光产生电荷的分离,显示出在光驱动催化还原CO2方面的独特优势。
Cu2O具有合适带隙宽度的,作为p型半导体,是一种很有前途的光驱动CO2减排材料。特别是CuO/Cu2O的复合材料可以有效地将CO2转化为液体燃料。例如,CuO-Cu2O纳米晶体阵列,该阵列在光催化CO2还原中对CH3OH表现出优异的选择性。石墨烯和CuO/Cu2O的复合材料,可以将CO2转化为CH3OH,CuO/Cu2O纳米棒的长度和Cu的氧化态都会影响催化剂的活性。然而,由于光生空穴的氧化,Cu2O是不稳定的,这极大地限制了Cu2O在光驱动CO2还原中的应用。
介孔分子筛封装Cu2O,为制备稳定的Cu2O催化剂提供了一个思路。一方面,沸石作为晶体孔隙材料,具有较高的比表面积和优良的离子交换性能,有利于分散金属氧化物。另一方面,由于独特的微介孔结构的限制作用,沸石也可以稳定金属氧化物。
此外,具有局部表面等离子体共振效应的金属颗粒(如Au、Ag、Cu等)在还原CO2方面表现出巨大的潜力,极大地提高了半导体的光吸收性能和光生电荷的分离效率。带宽隙的半导体可以看作是空穴收集体,在金属表面留下大量的热电子来还原CO2。而且,在金属和半导体界面上形成的肖特基结可以捕获光生电子,极大地促进了光生载流子的分离。但是现有的材料体系光电催化CO2效率低下,产物选择性低。
发明内容
针对上述存在的技术问题,本发明提供了一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,首先,通过一步水热法制备了具有典型微介孔结构的铜负载缺陷Cu-TS-1沸石;然后,银纳米颗粒通过原位光沉积过程分散到沸石Cu-TS-1中,以介孔结构的缺陷沸石Cu-TS-1为载体,可以很好地分散和稳定CuOx和Ag纳米颗粒,制备得到的催化剂Ag/Cu-TS-1具有超光吸收性能和光生成电荷的分离效率。这种新型催化剂Ag/Cu-TS-1可以在CO2光电化学还原过程中选择性地将CO2转化为CH3OH和C2H5OH。
为了实现上述目的,本发明所采用的技术方案如下:
一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,包括:
步骤1:采用一步水热法合成沸石TS-1;
步骤2:将Cu(NO3)2﹒3H2O溶于去离子水和四丙基氢氧化铵溶液中,加入步骤1制备的TS-1,80℃搅拌处理4h,然后干燥和除硝酸盐处理得到Cu-TS-1;
步骤3:将AgNO3溶于去离子水中,加入步骤2制备的Cu-TS-1的甲醇悬浮液中,经过搅拌和Xe灯照射,离心收集灰色粉,洗涤三次后,冷冻干燥24h,得到银修饰铜负载沸石Ag/Cu-TS-1;
步骤4:将步骤3制备的银修饰铜负载沸石Ag/Cu-TS-1溶于丙酮和水溶液中,超声分散混合悬浮液2h得到催化剂浆,然后将催化剂浆涂在碳化纸上,在80℃下干燥4h,得到碳纸涂层催化剂;
步骤5:将步骤4制备的碳纸涂层催化剂悬浮于KHCO3溶液中,将铂片和Ag/AgCl分别作为对电极和参考电极,将CO2气体鼓入到KHCO3溶液,打开氙灯,实现对CO2的光电化学还原。
优选地,所述步骤1的具体步骤包括:
步骤1.1:在去离子水中加入Na2CO3,然后加入纯度为25wt%的四丙基氢氧化铵,在40℃下恒磁搅拌4h,再缓慢加入H2SiO3
步骤1.2:将Ti(SO4)2和去离子水滴加到步骤1.1制备的溶液中,40℃下剧烈搅拌6h,然后将溶液转移到聚四氟乙烯高压釜中,150℃下保持12小时;
步骤1.3:将步骤1.2高压釜反应后的溶液离心分离,去离子水洗涤3次,100℃空气干燥8h;
步骤1.4:将步骤1.3得到的产物在550℃下煅烧处理4h,得到白色粉末沸石TS-1。
优选地,所述步骤1.1中,Na2CO3和离子水的比例为1g:80ml,四丙基氢氧化铵与Na2CO3的质量比为144:1,H2SiO3与Na2CO3的质量比为39:1。
优选地,所述步骤1.2中,Ti(SO4)2与步骤1.1中Na2CO3的质量比为2.4:1,Cu(NO3)2·3H2O与步骤1.1中Na2CO3的质量比为1:1,其中,Ti(SO4)2和去离子水的摩尔比为0.48:3。
优选地,所述步骤2中,Cu(NO3)2﹒3H2O、沸石TS-1、去离子水和四丙基氢氧化铵的质量比为0.5:0.3:20:1。
优选地,所述步骤3中,悬浮液搅拌的时间为30min,Xe灯照射的时间为30min。
优选地,步骤5中,所述KHCO3为0.1M。
与现有技术相比,本发明的有益效果是:
本发明以TS-1为载体,以半导体Cu2O/CuO为主催化剂,以Ag等离子效应为助催化剂的新型功能型光电催化剂Ag/Cu-TS-1的制备,对CO2还原表现出较好的光电催化活性和稳定性,并能很大程度抑制竞争性析氢反应。而且在PEC体系中,CO2会被还原为CH3OH和C2H6OH,表明光电偶联可以调节CO2还原产物的选择性。具有丰富Ti3+-Vo缺陷的介孔TS-1可以提高Cu2O/CuO物种的稳定性,有效提高PEC体系光电催化CO2为燃料的潜力。同时该催化剂为复合功能型催化剂的合成提供思路,为光电催化材料的开发提供指导。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1为本发明的方法流程图;
图2为样品Ag/Cu-TS-1的XRD;
图3为Cu-TS-1的低倍率透射电镜图像,(b)Ag/Cu-TS-1的TEM图像,(c)Ag/Cu-TS-1的暗场图像,(d)Ag/Cu-TS-1的HRTEM图像;
图4为Ag/Cu-TS-1样品的N2吸附/脱附等温线及相应的孔径分布曲线;
图5为光吸收曲线;
图6为Ag/Cu-TS-1在UV-vis光照射下不同电势CO2还原产物的产率。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,包括如下步骤:
步骤1:采用一步水热法合成铜负载沸石Cu-TS-1,具体包括如下:
步骤1.1:在8ml去离子水中加入0.1g Na2CO3,然后加入14.4g纯度为25wt%的四丙基氢氧化铵,在40℃下恒磁搅拌4h,再缓慢加入3.9g H2SiO3
步骤1.2:将0.24g的Ti(SO4)2和3ml去离子水滴加到步骤1.1制备的溶液中,40℃下剧烈搅拌6h,然后将溶液转移到50mL聚四氟乙烯高压釜中,150℃下保持24小时;
步骤1.3:将步骤1.2高压釜反应后的溶液离心分离,去离子水洗涤3次,100℃空气干燥8h,得到固体物质;
步骤1.4:将步骤1.3得到的固体物质在550℃下煅烧处理4h,得到白色粉末沸石TS-1。
步骤2:将0.5g的Cu(NO3)2﹒3H2O溶于20g去离子水和1g四丙基氢氧化铵溶液(25wt%)中,加入300mg步骤1制备的TS-1,80℃搅拌处理4h,经过离子交换,Cu替代部分阳离子,洗涤干燥重复3次,并在550℃下热处理4h去除硝酸盐处理得到Cu-TS-1;
步骤3:将AgNO3溶于去离子水中,加入步骤2制备的Cu-TS-1的甲醇悬浮液中,经过30min搅拌和15min的Xe灯照射,离心收集灰色粉,洗涤三次后,冷冻干燥24h,得到银修饰铜负载沸石Ag/Cu-TS-1;
步骤4:将步骤3制备的银修饰铜负载沸石Ag/Cu-TS-1溶于丙酮和水溶液中,其中丙酮和水的体积比为1:1,超声分散混合悬浮液2h得到催化剂浆,然后将催化剂浆涂在碳化纸上,在80℃下干燥4h,得到碳纸涂层催化剂;
步骤5:光催化CO2还原是在恒温的常压封闭的石英反应池中进行的,将步骤4制备的碳纸涂层催化剂悬浮于KHCO3溶液中,作为工作电极,将铂片和Ag/AgCl分别作为对电极和参考电极,将高纯度的CO2气体鼓入到0.1M KHCO3溶液中30min,打开300W氙灯,实现对CO2的光电化学还原,还原时间为2h。在光电化学还原CO2中,电化学电池被阴离子交换膜分离,以CO2-饱和0.1M KHCO3溶液作为阴极电解质(pH=6.8)。
每间隔1h时间,采用配备热导检测器(TCD)和火焰离子化检测器(FID)的气相色谱(Thermo Scientific TRACE 1300)对气体产物进行提取和分析,液相产物采用H-NMR(Bruker Ascend 500MHz)进行定量分析。
试验项目与结果:
1.试验项目:
采用透射电子显微镜(TEM,JEOL-2010F,200kV下操作),检测Ag-Cu-TS-1催化剂的表面形态和结构。
采用RigakuD/Max2200PC衍射仪和铜Kα辐射(40kV和40mA)对催化剂进行了晶体结构探测。
采用ASAP3020在-196℃上测试了催化剂的孔隙结构,分别采用布鲁诺尔-埃米特-泰勒(BET)和巴雷特-乔伊纳-哈伦达(BJH)方法分析了催化剂的比表面积和孔径分布。
采用岛津UV-2600光谱仪在200-800nm波段采集紫外-可见(UV-vis)漫反射光谱,以BaSO4为参比样品。
采用CHI660A电化学工作站对三电极系统的光电化学性能进行评价,其中Pt片和Ag/AgCl分别为对电极和参比电极。
2.试验结果:
2.1材料的晶体相和形貌
实施例制备的Ag/Cu-TS-1分子筛,在有机表面活性剂的作用下,Cu2+组分被原位还原为Cu+组分,煅烧后分子筛内仍留有大量的Cu2O。此外,由于杂原子Cu的负载,沸石TS-1中存在丰富的氧空位。最后,银纳米颗粒(0.24at.%)可以通过原位光沉积过程高度分散在Cu-TS-1上。
图2为样品Ag/Cu-TS-1的XRD谱图,可以看到,Ag/Cu-TS-1显示出典型的MFI结构,没有任何不纯相,进一步证实了分散良好的铜物种。此外,Ag沉积后沸石Cu-TS-1的MFI结构没有变化,而且在样品Ag/Cu-TS-1上没有观察到金属银的衍射峰,这与Ag含量低和分散良好有关。
图3为Cu-TS-1和Ag/Cu-TS-1的透射电镜图,图3(a)Cu-TS-1的低倍率透射电镜图像,显示沸石纳米晶体为200-400nm,在沸石表面没有明显观察到CuOx纳米颗粒,图3(b)为Ag/Cu-TS-1的低倍率透射电镜图像,图3(c)Ag/Cu-TS-1的暗场图像也表明存在孔隙结构,图3(b)-(d)显示,粒径为2-10nm的银纳米颗粒均匀沉积在沸石Cu-TS-1上。
2.2样品的孔径分布和N2吸附/脱附等温线
图4为Ag/Cu-TS-1样品的N2吸附/脱附等温线及相应的孔径分布曲线,可以清楚的看到,两个样品在0.45-0.90处出现滞后环,表明中孔的存在。Cu-TS-1和Ag/Cu-TS-1都表现出较高的BET比表面积(377~379cm2g-1)、较大的孔体积(0.20~0.21cm3g-1)和丰富的孔径分布(1.5~1.6,3.8nm)。如表1所示,这有利于反应剂的吸附和活性物种的分散,特别是典型的介孔结构的限制效应不仅可以高度浓缩CO2分子,也可以作为稳定铜种类的微反应器。
表1合成样品TS-1、TiO2/TS-1、Ag/TS-1和Ag-TiO2/TS-1的孔结构参数和Ti、Ag含量
Figure BDA0003445219860000091
2.3光学性能
图5所示Ag/Cu-TS-1的光吸附特性,由于Cu2O带隙窄,Cu-TS-1的吸收边扩展到可见光区。此外,样品Ag/Cu-TS-1具有较强的可见光吸收特性,这是因为Ag的表面等离子体共振(SPR)。
2.4光电化学二氧化碳还原
样品Ag/Cu-TS-1在CO2饱和0.1M KHCO3溶液中的光电化学(PEC)CO2还原活性。样品Ag/Cu-TS-1在PEC条件下的CO2还原产物。气相色谱除检测到微量CO和CH4外,还检测到少量H2(1.43-1.74mol cm-2h-1),H-NMR谱图中还检测到主要的CO2生成产物CH3OH和C2H5OH(图6)。在-0.6V时,CH3OH和C2H5OH的产率分别为5.64μmol cm-2h-1和2.62μmol cm-2h-1。这说明在PEC条件下,Ag/Cu-TS-1样品与H*中间体的键合强度较高,与CO*中间体的键合强度较低,调节了还原产物的选择性,促进了CO2向CH3OH和C2H5OH的转化。
综上所述,本发明在具有丰富Ti3+-Vo缺陷和典型微介孔结构的Cu-TS-1上沉积了Ag纳米颗粒,用于光驱动CO2还原。微孔和介孔孔道的限制作用不仅促进了CO2的吸附,而且稳定了Cu2O物种。此外,Vo缺陷引起的电子富集态对稳定Cu2O物种也有重要作用。样品Ag/Cu-TS-1表现出良好的光吸附和电子空穴对的有效分离,这与Cu2O/CuO的异质结构和金属Ag的SPR效应有关。
由Ag的SPR效应产生的热电子也可以参与CO2的还原。结果表明,样品Ag/Cu-TS-1在4h内对CO2还原为CO(6.93mol g-1)和CH4(0.88mol g-1)表现出较好的光催化活性和稳定性,并能完全抑制竞争性析氢。此外,在PEC体系中,CO2会被还原为CH3OH和C2H6OH,表明光电偶联可以调节CO2还原产物的选择性。通过丰富的Ti3+-Vo缺陷来稳定Cu2O/CuO物种,并进一步采用等离子体金属改性的介孔TS-1基催化剂在PECCO2还原应用中具有巨大的潜力。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:包括:
步骤1:采用一步水热法合成沸石TS-1;
步骤2:将Cu(NO3)2﹒3H2O溶于去离子水和四丙基氢氧化铵溶液中,加入步骤1制备的TS-1,80℃搅拌处理4h,然后干燥和除硝酸盐处理得到Cu-TS-1;
步骤3:将AgNO3溶于去离子水中,加入步骤2制备的Cu-TS-1的甲醇悬浮液中,经过搅拌和Xe灯照射,离心收集灰色粉,洗涤三次后,冷冻干燥24h,得到银修饰铜负载沸石Ag/Cu-TS-1;
步骤4:将步骤3制备的银修饰铜负载沸石Ag/Cu-TS-1溶于丙酮和水溶液中,超声分散混合悬浮液2h得到催化剂浆,然后将催化剂浆涂在碳化纸上,在80℃下干燥4h,得到碳纸涂层催化剂;
步骤5:将步骤4制备的碳纸涂层催化剂悬浮于KHCO3溶液中,将铂片和Ag/AgCl分别作为对电极和参考电极,将CO2气体鼓入到KHCO3溶液,打开氙灯,实现对CO2的光电化学还原。
2.根据权利要求1所述的一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:所述步骤1的具体步骤包括:
步骤1.1:在去离子水中加入Na2CO3,然后加入纯度为25wt%的四丙基氢氧化铵,在40℃下恒磁搅拌4h,再缓慢加入H2SiO3
步骤1.2:将Ti(SO4)2和去离子水滴加到步骤1.1制备的溶液中,40℃下剧烈搅拌6h,然后将溶液转移到聚四氟乙烯高压釜中,150℃下保持12小时;
步骤1.3:将步骤1.2高压釜反应后的溶液离心分离,去离子水洗涤3次,100℃空气干燥8h;
步骤1.4:将步骤1.3得到的产物在550℃下煅烧处理4h,得到白色粉末沸石TS-1。
3.根据权利要求2所述的一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:所述步骤1.1中,Na2CO3和离子水的比例为1g:80ml,四丙基氢氧化铵与Na2CO3的质量比为144:1,H2SiO3与Na2CO3的质量比为39:1。
4.根据权利要求3所述的一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:所述步骤1.2中,Ti(SO4)2与步骤1.1中Na2CO3的质量比为2.4:1,Cu(NO3)2·3H2O与步骤1.1中Na2CO3的质量比为1:1,其中,Ti(SO4)2和去离子水的摩尔比为0.48:3。
5.根据权利要求4所述的一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:所述步骤2中,Cu(NO3)2﹒3H2O、沸石TS-1、去离子水和四丙基氢氧化铵的质量比为0.5:0.3:20:1。
6.根据权利要求5所述的一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:所述步骤3中,悬浮液搅拌的时间为30min,Xe灯照射的时间为30min。
7.根据权利要求6所述的一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法,其特征在于:步骤5中,所述KHCO3为0.1M。
CN202111653313.3A 2021-12-30 2021-12-30 一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法 Active CN114481201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111653313.3A CN114481201B (zh) 2021-12-30 2021-12-30 一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111653313.3A CN114481201B (zh) 2021-12-30 2021-12-30 一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法

Publications (2)

Publication Number Publication Date
CN114481201A true CN114481201A (zh) 2022-05-13
CN114481201B CN114481201B (zh) 2023-12-12

Family

ID=81508579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111653313.3A Active CN114481201B (zh) 2021-12-30 2021-12-30 一种银修饰铜负载沸石Ag/Cu-TS-1的光驱动CO2还原方法

Country Status (1)

Country Link
CN (1) CN114481201B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
JP2003275599A (ja) * 2002-03-19 2003-09-30 National Institute Of Advanced Industrial & Technology 二酸化炭素還元用複合光触媒及びそれを用いた二酸化炭素光還元方法
US20120055804A1 (en) * 2010-09-02 2012-03-08 Ben-Gurion University Of The Negev Research And Development Authority Manufacturing carbon-based combustibles by electrochemical decomposition of co2
US20150118149A1 (en) * 2013-10-29 2015-04-30 China Petroleum & Chemical Corporation Titanium silicalite molecular sieve and its synthesis
JP2016073963A (ja) * 2014-10-09 2016-05-12 宇部興産株式会社 二酸化炭素光還元触媒及びその製造方法
CN106607090A (zh) * 2015-10-21 2017-05-03 中国石油化工股份有限公司 绿色氧化双功能催化剂及其制备方法与应用
CN111217712A (zh) * 2020-01-21 2020-06-02 江苏扬农化工集团有限公司 一种由苯胺制备邻苯二胺的方法
CN112604711A (zh) * 2020-11-24 2021-04-06 兰州理工大学 一种新型钛硅分子筛的制备方法及应用
CN116395709A (zh) * 2023-03-17 2023-07-07 海南师范大学 一种金属原子掺杂的缺陷态钛硅沸石及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
JP2003275599A (ja) * 2002-03-19 2003-09-30 National Institute Of Advanced Industrial & Technology 二酸化炭素還元用複合光触媒及びそれを用いた二酸化炭素光還元方法
US20120055804A1 (en) * 2010-09-02 2012-03-08 Ben-Gurion University Of The Negev Research And Development Authority Manufacturing carbon-based combustibles by electrochemical decomposition of co2
US20150118149A1 (en) * 2013-10-29 2015-04-30 China Petroleum & Chemical Corporation Titanium silicalite molecular sieve and its synthesis
JP2016073963A (ja) * 2014-10-09 2016-05-12 宇部興産株式会社 二酸化炭素光還元触媒及びその製造方法
CN106607090A (zh) * 2015-10-21 2017-05-03 中国石油化工股份有限公司 绿色氧化双功能催化剂及其制备方法与应用
CN111217712A (zh) * 2020-01-21 2020-06-02 江苏扬农化工集团有限公司 一种由苯胺制备邻苯二胺的方法
CN112604711A (zh) * 2020-11-24 2021-04-06 兰州理工大学 一种新型钛硅分子筛的制备方法及应用
CN116395709A (zh) * 2023-03-17 2023-07-07 海南师范大学 一种金属原子掺杂的缺陷态钛硅沸石及其制备方法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
PENG CAO等: "Zeolite-Encapsulated Cu Nanoparticles for the Selective Hydrogenation of Furfural to Furfuryl Alcohol", 《ACS CATAL.》, vol. 11, pages 10246 *
周天辰;何川;张亚男;赵国华;: "CO_2的光电催化还原", 化学进展, no. 10, pages 1897 - 1905 *
周继承, 王祥生: "催化新材料――钛硅分子筛合成及应用研究", 化学进展, no. 04, pages 381 - 394 *
徐杰;周慧;宋广亮;朱红军;: "Cu/TS-1催化苯甲醇选择性氧化制苯甲醛", 应用化工, no. 07, pages 1331 - 1335 *
李国辉: "二硫化锡基和钛基材料的改性及其光催化还原二氧化碳性能研究", 《CNKI博士学位论文全文库》, pages 1 - 145 *
王瑞璞, 郭新闻, 王祥生, 郝敬泉, 李英武: "不同沉淀剂制备的Ag/TS-1催化丙烯直接气相氧化合成环氧丙烷", 催化学报, no. 01, pages 55 - 59 *
陈英红, 刘育, 李树本, 薛锦珍: "一氧化碳催化还原消除氮氧化物的研究进展", 分子催化, no. 05, pages 392 - 399 *

Also Published As

Publication number Publication date
CN114481201B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
Wei et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets
Bafaqeer et al. Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels
Tahir La-modified TiO2/carbon nanotubes assembly nanocomposite for efficient photocatalytic hydrogen evolution from glycerol-water mixture
Wang et al. MoS 2/CQDs obtained by photoreduction for assembly of a ternary MoS 2/CQDs/ZnIn 2 S 4 nanocomposite for efficient photocatalytic hydrogen evolution under visible light
CN109331883B (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
Liu et al. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels
Akhter et al. Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas
Guo et al. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: The role of microporous amorphous/crystalline composite structure
Ha et al. Morphology-controlled synthesis of SrTiO 3/TiO 2 heterostructures and their photocatalytic performance for water splitting
US9776162B2 (en) CuO—TiO2 nanocomposite photocatalyst for hydrogen production, process for the preparation thereof
Yao et al. Photocatalytic activity of CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation
Cao et al. An amorphous nickel boride-modified Zn x Cd 1− x S solid solution for enhanced photocatalytic hydrogen evolution
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
CN113634258B (zh) 一种用于光催化还原二氧化碳生成乙烯的催化剂及其制备方法
CN109395749B (zh) 卤氧铋纳米材料、其制备方法和应用
CN106984337B (zh) CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂
Wan et al. Synthesis and characterization of direct Z-scheme Bi 2 MoO 6/ZnIn 2 S 4 composite photocatalyst with enhanced photocatalytic oxidation of NO under visible light
CN113058617B (zh) 一种光催化剂及其制备方法和应用
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Mohamed et al. Innovative approach for the production of carbon nanotubes (CNTs) and carbon nanosheets through highly efficient photocatalytic water splitting into hydrogen using metal organic framework (MOF)-nano TiO 2 matrices as novel catalysts
Luo et al. Ultrathin ZIS nanosheets encapsulated in metal–organic-framework-derived CNCo-Fe 3 O 4 as an efficient functional photocatalyst for hydrogen evolution
CN113976110B (zh) 一种用于光催化醇水体系产氢的催化剂及其制备方法
Zhang et al. Design of inorganic–organic hybrid photocatalytic systems for enhanced CO2 reduction under visible light
Sahoo et al. Solar fuels from CO2 photoreduction over nano-structured catalysts
CN114931949B (zh) 一种用于二氧化碳还原的光催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant