CN106984337B - CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂 - Google Patents

CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂 Download PDF

Info

Publication number
CN106984337B
CN106984337B CN201710287251.6A CN201710287251A CN106984337B CN 106984337 B CN106984337 B CN 106984337B CN 201710287251 A CN201710287251 A CN 201710287251A CN 106984337 B CN106984337 B CN 106984337B
Authority
CN
China
Prior art keywords
tio
cdo
moo
porous
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710287251.6A
Other languages
English (en)
Other versions
CN106984337A (zh
Inventor
刘雷雷
杜记民
余彩霞
王慧鸣
杨梦可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Normal University
Original Assignee
Anyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Normal University filed Critical Anyang Normal University
Priority to CN201710287251.6A priority Critical patent/CN106984337B/zh
Publication of CN106984337A publication Critical patent/CN106984337A/zh
Application granted granted Critical
Publication of CN106984337B publication Critical patent/CN106984337B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及TiO2光催化剂,具体涉及一种CdS‑MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂及其制备方法和光分解水产氢性能研究,属半导体材料领域。本发明首先合成多孔的MoO3‑CdO‑TiO2,在乙二胺的支撑作用下进行氢化,得到黑色的MoO3‑CdO‑TiO2,然后在溶剂热条件下原位硫化黑色的MoS2‑CdS‑TiO2。由于CdS能吸收可见光,MoS2能有效传输光生载流子,黑色的TiO2能有效提高光电转化效率,所以该催化剂呈现优异的光催化分解水产氢的性能,分解水产氢的速度达到4527 umol·h·‑1·g‑1。从而为可见光下新型光催化剂的制备提供新的途径。

Description

CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂
技术领域
本发明涉及TiO2光催化剂,具体涉及一种CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂及其制备方法和光分解水产氢性能研究,属半导体材料领域。
背景技术
二氧化钛作为半导体材料因其低成本、亲水性良好、催化活性较高以及无毒、无污染而备受关注。但是,二氧化钛的带隙较宽(3.2eV),光谱响应范围较窄仅能吸收占太阳光4%的紫外光,光生载流子传速慢导致光生电子-空穴复合率较高,这些缺陷极大地限制了二氧化钛的光催化应用。因此,许多科研工作者为了改善二氧化钛的光催化活性,开展了大量的研究工作提高其催化活性,如金属离子掺杂、稀土离子掺杂、贵金属沉积、金属氧化物及硫化物半导体复合等。在众多改善二氧化钛活性的方法中,金属硫化物半导体复合二氧化钛的方法是一个非常有效的方法,因为硫化物一般具有窄带隙,能吸收更多的太阳光,同时金属硫化物能有效传输光生载流子,减少光生空穴-电子的复合,从而提高其光分解水的性能。近年研究结果表明,黑色多孔TiO2表面缺陷态能有效提高光电转换效率从而提高其光催化性能引起科学家浓厚的兴趣。光催化剂体系常用的一种改性方法为通过贵金属助催化剂沉积来提高光催化活性。例如,Ru,Rh,Pd,Pt,Au 和Ag广泛作为光催化产氢的有效助催化剂。Cui等人通过合成不同暴露面的 Pt/TiO2,实验结果表明Pt{111}/TiO2催化剂展现出较高的产氢活性,在可见光下产氢速率约为200μmol·h-1(Cui,E.;Lu,G.J.Phys.Chem.C2013,117, 26415-26425)。Shi等人制备了三维阵列核壳状的Au-TiO2,特定的三维结构有利于增强其光催化活性,与Au-TiO2相比,产氢活性提高了3.5倍左右,在可见光下产氢速率约为128μmol·h-1(Shi,X.;Lou,Z.;Zhang,P.;Fujitsuka,M.;Majima,T. ACSAppl.Mater.Interfaces 2016,8,31738-31745)。Priebe等人通过浸渍法、沉积沉淀法、光沉积、溶胶固化法合成了不同含量的Au-TiO2复合材料,其中通过沉积沉淀法合成的样品活性较高,在可见光下Au含量为0.93wt%时产氢活性可达 2400μmol·h-1·g-1(Priebe,J.B.;Radnik,J.;Lennox,A.J.J.;Pohl,M.M.;Karnahl,M.; Hollmann,D.;Grabow,K.;Bentrup,U.;Junge,H.;Beller,M.;Brückner,A.ACS Catal.2015,5,2137-2148)。相比较于Pt和Au而言,略微廉价的Ag也可以负载在 TiO2上从而提高光催化活性。例如,Choi等人制备了Ag/TiO2复合材料,并探究了硫氰酸盐对其产氢活性的影响,结果表明在λ>320nm时,在硫氰酸盐的存在下,反应10h后产氢量可达310μmol(Choi,Y.;Kim,H.I.;Moon,G.H.;Jo,S.;Choi, W.ACS Catal.2016,6,821-828)。但原位制备CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂并研究其光催化分解水的性能还没有报道。
发明内容
本发明目的在于提供一种CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂;另一目的在于提供一种原位制备该光催化剂的方法和及其应用。
为实现本发明目的,本发明首先合成多孔的MoO3-CdO-TiO2,在乙二胺的支撑作用下进行氢化,得到黑色的MoO3-CdO-TiO2,然后在溶剂热条件下原位硫化黑色的MoS2-CdS-TiO2。由于CdS能吸收可见光,MoS2能有效传输光生载流子,黑色的TiO2能有效提高光电转化效率,所以该催化剂呈现优异的光催化分解水产氢的性能,分解水产氢的速度达到4527umol·h-1·g-1。从而为可见光下新型光催化剂的制备提供新的途径。
具体技术方案如下:本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂通过如下制备方法得到:(1)制备多孔的MoO3-CdO-TiO2中间产物:将钛酸四丁酯加入到含有冰醋酸、去离子水和乙醇溶液中,并使其形成溶胶。然后将聚苯乙烯球、醋酸镉和仲钼酸铵加入到上述溶胶凝胶中,并促使其再一次形成溶胶凝胶,然后将新制备的溶胶凝胶在通氧气的条件下400-450℃煅烧,即可得到多孔的MoO3-CdO-TiO2中间产物;(2)制备乙二胺改性的多孔MoO3-CdO-TiO2中间产物:将得到的MoO3-CdO-TiO2中间产物加入到含有硼氢化钠、乙二胺的水溶液中,在250-270℃恒温反应,然后自然冷却到室温,离心洗涤烘干得到乙二胺改性的多孔MoO3-CdO-TiO2中间产物;(3)制备黑色多孔MoO3-CdO-TiO2中间产物:将制备的乙二胺改性的MoO3-CdO-TiO2中间产物置于管式炉中,在氢气氛围中并在540-550℃恒温反应,然后自然冷却到室温,得到黑色多孔 MoO3-CdO-TiO2中间产物;(4)原位生成CdS-MoS2纳米颗粒共同掺杂黑色多孔 TiO2光催化剂:将黑色MoO3-CdO-TiO2中间产物转移到含有硫脲的水溶液中,然后转移到反应釜中,在220-230℃恒温反应,得到本发明所述的CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂。
优选:钛酸四丁酯、醋酸镉和仲钼酸铵摩尔比为:100:3:3。
优选:CdS掺杂量占该光催化剂摩尔含量的3%,MoS2掺杂量占该光催化剂摩尔含量的3%。
本发明公开的CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂在可见光下分解水具有较高的催化活性,光分解水产氢的速度达到4527umol·h-1·g-1
本发明所提供的CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂表征如下:通过场发射扫描电镜(SEM)、X-射线衍射仪(XRD)、比表面及孔隙度分析仪 (BET)、紫外-可见图谱分析(UV-Vis)等检测结果表明,制备的样品是具有大孔结构,其平均孔直径约为300nm。比表面积分析(BET)分析结果表明:样品具有较窄孔径分布,其相应的最可几分布在5.10nm处,孔隙度较高,紫外-可见图谱分析(UV-Vis)分析表明所有经过硫化物复合的样品的紫外可见吸收光谱显示出红移和可见光范围内的吸收。
本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂,其粉末 XRD表征衍射峰2θ位于25.28,38.58,48.05,53.89,55.06,62.12,68.76,70.31和 75.03°处的衍射峰分别归属于锐钛矿TiO2(JCPDS No,21-1272)(101),(112), (200),(105),(211),(204),(116),(220)和(215)晶面。同时,在2θ为 24.80,26.50,28.18,43.68,47.83,51.82,66.77和75.47°处相对较弱的衍射峰可归属于六方晶系CdS(JCPDS No,41-1049),(100),(002),(101),(110),(103), (112),(203)和(105)晶面。然而,没有明确的衍射峰对应于MoS2晶面,这由于MoS2结构无序所致。
结合图2本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂的 SEM表征可知,CdS纳米颗粒和MoS2纳米片在多孔TiO2基底上均匀生长。所制备样品的孔径约500nm,这与PS球的尺寸相一致。在图中可以观察到CdS纳米颗粒为50-100nm的三角棱柱结构,MoS2纳米片的平均直径为80nm,厚度为10nm。此外,一部分孔结构存在收缩或相连,这归因于在煅烧过程中PS模板的分解和蒸发。这种多孔异质结构不仅有利于CdS纳米颗粒和MoS2纳米片的生长,而且能增大样品的比表面积,更有利于光激发载流子迁移从而提高样品的光催化活性。
本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂由TEM表征,样品在低倍下的TEM图像如图3所示,从图中可以清楚地看出,CdS的不规则三角棱柱纳米颗粒和MoS2的纳米片在多孔TiO2底物中高度单分散,这种异质结构可以使样品的界面紧密接触。在高倍数下的TEM图像,样品的晶格间距为 0.352nm对应于锐钛矿TiO2的(101)晶面;此外,晶面间距为0.335nm和0.615nm 分别接近六方晶系CdS的(002)晶面和六方晶系MoS2的(002)晶面。从晶格结构可以确认MoS2-CdS-TiO2异质结构成功制备。此外,这些紧密相连的异质结构导致电子-空穴对更容易分离和电子的快速转移,从而可有效提高样品的光催化性能。
本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂由X射线光电子能谱(XPS)表征,结果如图4所示。从XPS图谱中可以看出,样品由Ti,O, Cd,Mo,S和C元素组成。结合能为459.0和464.5eV处的吸收峰对应于Ti 2p3/2和 Ti 2p1/2表示Ti离子价态为Ti4+氧化态。结合能为530.4eV处出现的不对称峰为O1s的吸收峰,这对应于TiO2中Ti-O晶格中的氧,而结合能为532.2eV处出现的轻微的吸收峰归因于样品表面少量的羟基。结合能在405.4和412.1eV的吸收峰对应于 CdS中Cd2+的Cd 3d5/2和3d3/2。结合能在232.2和229.0eV处的结合能对应MoS2中 Mo2+的Mo 3d3/2和Mo3d 5/2。此外,结合能为161.7eV(161.6和162.8eVS 2p3/2和S 2p1/2)处S 2p吸收峰的出现证明了S2-氧化态的存在。通过XRD和XPS分析表明CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂成功制备。
本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂通过Brunauer-Emmett-Teller(BJH)氮气等温吸附-脱吸表征所制备样品的比表面积,和孔径分布如图5所示。图5为样品氮等温吸附-脱附曲线及其孔径分布图,根据 IUPAC类型为IV型吸附,这表明样品具有中孔结构。样品有相对较窄的分布,大多分布在5.1nm处。此外,样品的吸附曲线具有H2型的迟滞回线,这应归因于纳米颗粒的堆积发生了毛细管凝聚现象。样品具有63.39m2/g的比表面积和 0.1184cm 3/g的孔体积,样品具有较大的比表面积和较多的孔道结构能提供更多的表面活性位点,电荷载体的快速分离,从而改善光催化产H2性能。
本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂由紫外-可见漫反射表征,结果如图6所示。可知,位于380nm,510nm和600nm的吸收峰,分别归属于TiO2,CdS和MoS2。这说明,CdS和MoS2的引入影响了MoS2-CT纳米复合材料光催化剂在可见光范围的吸收光学性能,增强了可见光吸收的吸收范围和吸收边带的红移。
将本发明所述CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂在可见光下光分解水,H2的产率达到最大值4527umol·h-1·g-1。产氢速率的增强是由于引入的MoS2具有独特的催化活性,如MoS2纳米片拥有多的活性位点,高稳定性和导电性。此外,MoS2和CdS形成的p-n结对光催化活性也起着重要作用, MoS2和CdS可以增加样品的可见光吸收范围;同时MoS2有利于电子的快速传输,电子和空穴的分离,从而呈现优异的可见光下分解水产氢的性能。
本发明创新点及优点在于:以自制的聚苯乙烯(PS)为模板,采用溶胶-凝胶法和水热法原位合成了三角锥状CdS和纳米片状MoS2共掺杂多孔TiO2纳米复合材料,研究了不同的MoS2掺杂比例对样品光催化产氢活性的影响。其中, 3%MoS2掺杂的三元复合材料在可见光下的产氢速率可高达4527umol·h-1·g-1,且性能可代替贵重金属。该催化剂具有优异的光催化分解水产氢性能,从而为可见光下新型光催化剂的制备提供新的途径。
附图说明
图1为CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂XRD图。
图2为CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂SEM图,图中,a- 放大2.0um,b-放大500nm。
图3为CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂TEM图,图中,a- 放大200nm,b-放大5nm,b图中,1-MoS2晶面间距(0.615nm);2-CdS晶面间距(0.335nm)。
图4为CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂XPS图。
图5为CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂BET图。
图6为CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂UV-Vis图。
具体实施方式
为对本发明进行更好的说明,举实施例如下:
实施例1摩尔比为3%CdS-3%MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂的合成:
将1.5mL的钛酸四丁酯加入到含有1.5mL冰醋酸、3mL去离子水和10mL乙醇溶液中,将上述溶液在60℃恒温12h使其形成溶胶。将300mg的聚苯乙烯球、 35.2mg醋酸镉和23.3mg仲钼酸铵加入到上述溶胶凝胶中,并搅拌30min后转移到反应釜中,在70℃恒温12h促使其再一次形成溶胶凝胶,然后将新制备的溶胶凝胶在通氧气的条件下450℃煅烧6h,即可得到多孔的3%MoO3-3%CdO-TiO2中间产物;将制备的3%MoO3-3%CdO-TiO2中间产物加入到含有300mg的硼氢化钠、 30mL的乙二胺的水溶液中,超声30min后转移到反应釜中,在270℃恒温40h,自然冷却到室温,离心洗涤烘干得到乙二胺改性的多孔3%MoO3-3%CdO-TiO2中间产物;将制备的乙二胺改性的3%MoO3-3%CdO-TiO2中间产物置于管式炉中,通入氢气并在550℃恒温6h,自然冷却到室温,得到黑色多孔3%MoO3-3%CdO-TiO2中间产物;将黑色3%MoO3-3%CdO-TiO2中间产物转移到含有90.4mg的硫脲的水溶液中,搅拌30min,然后转移到反应釜中在230℃恒温40h,将得到的产物进行离心分离后,真空干燥,得到3%MoS2-3%CdS纳米颗粒共同掺杂黑色多孔TiO2光催化剂。
实施例2
按照实施例1所述方法制备,得到不同MoS2-CdS掺杂量的黑色多孔TiO2光催化剂,产氢率结果见表1。
表1
编号 样品(MoS<sub>2</sub>的摩尔比例) 产氢率(umol·h<sup>-1</sup>·g<sup>-1</sup>)
1 0%MoS<sub>2</sub>-3%CdS-TiO<sub>2</sub> 0
2 3%MoS<sub>2</sub>-0%CdS-TiO<sub>2</sub> 0
3 1%MoS<sub>2</sub>-3%CdS-TiO<sub>2</sub> 2495
4 3%MoS<sub>2</sub>-3%CdS-TiO<sub>2</sub> 4527
5 5%MoS<sub>2</sub>-3%CdS-TiO<sub>2</sub> 2206
6 7%MoS<sub>2</sub>-3%CdS-TiO<sub>2</sub> 1811
7 9%MoS<sub>2</sub>-3%CdS-TiO<sub>2</sub> 895
实施例3 MoS2-CdS纳米颗粒共同掺杂黑色多孔TiO2光催化剂配合物的表征
(1)X-射线粉末衍射(XRD)表征
采用德国Bruker公司生产的D8ADVANCE型X射线衍射仪进行XRD 测试。测试条件为:Cu靶激发的Kα辐射为射线源,Ni滤光片,光源波长λ为 0.15406nm,工作电压为40kV,电流为40mA,扫描范围为20-80°,扫描速度为4°/min。
(2)扫描电子显微镜(SEM)表征
主要用来观察实验中所制备的光催化材料的微观形貌和粒径大小。采用德国 LEO公司生产的LEO1530VP型场发射扫描电子显微镜进行测试。仪器参数:分辨率:1nm(20kV);放大倍率:20X-900,000X;加速电压:0.1-30kV。由于样品导电性较差,制样后需要采用等离子体溅射法对样品表面进行镀金处理以便观察。
(3)透射电子显微镜(TEM)表征
采用日本电子公司(JEOL)制造的JEM-2010F型透射电子显微镜测试,测试条件:加速电压为200kV,放大倍率10-20万倍。透射电镜观测试样的制样方法如下:取少量待测样品超声分散于无水乙醇中,得到均一的催化剂悬浊液,然后用移液枪吸取100μL涂覆于镀有碳膜的铜网上,自然晾干后进行TEM检测。
(4)紫外-可见漫反射光谱分析(UV-DRS)
利用日本日立(Hitachi)公司生产的型号为U-3010双光束紫外-可见分光光度计,测试时采用BaSO4作为漫反射分析时的参比标准白板,采集步长为1nm,采集速度为300nm/min,波长范围为200-800nm。
(5)X-射线光电子能谱分析(XPS)
光催化剂的表面化学组成及各元素的化学态使用英国Kratos公司生产的 AxisUltraDLD型多功能光电子能谱仪(XPS)进行分析。仪器主要参数:分辨率为0.48eV,X光源为Al-Kα射线(能量为1486.6eV),测量厚度为2-3nm,工作电压是15kV,工作电流为10mA;真空度低于3.5×10-7Pa。采用污染碳 C1s电子结合能(284.4eV)对样品光谱峰位进行校正。
(6)低温氮气吸脱附(BET)
使用美国Micromeritics公司生产的ASAP-2020M型全自动物理吸附仪测定光催化剂的比表面积和孔结构参数。测试前,先将样品在120℃下脱气预处理3h。采用液氮作为吸附质,吸附温度为77K。测定时采用相对压力范围在0.05-0.3Pa 之间的吸附脱附数据定量,平均孔体积和孔径大小测定是在相对压力为0.994Pa 下的氮气吸附容量来计算。
(7)光催化分解水产氢活性评价
使用300W的氙灯(PLS-SXE-300UV,北京畅拓科技有限公司)作为光催化反应的光源。实验过程中在磁力搅拌机的不停搅拌下,将光催化剂分散在Na2S, Na2SO3和水的混合液中。实验中采用Na2S,Na2SO3作为牺牲试剂以消耗光生空穴,抑制其与光生电子的复合,帮助改善催化剂的光催化产氢活性。反应体系中的真空环境主要由循环水真空泵来实现,而反应温度则由低温恒温水槽通过反应器的冷阱循环流动冷却水进行循环,以维持反应溶液温度恒定不变。各项操作完成后,将反应系统抽真空阀门关闭并在氙灯光源光照下进行光催化活性评价测试。测试过程中,每隔2h在线取样分析一次,产生的氢气通过六通阀的定量环送入由上海科创色谱仪器有限公司生产的气相色谱仪中分析检测,色谱仪的型号为:GC9800,热导池检测器(TCD),色谱填充柱为TDX-01,氮气作为载气。
以上表征结果如附图1-5。

Claims (2)

1.CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂,其特征在于,通过如下制备方法得到:(1)制备多孔的MoO3-CdO-TiO2中间产物:将钛酸四丁酯加入到含有冰醋酸、去离子水和乙醇溶液中,并使其形成溶胶,然后将聚苯乙烯球、醋酸镉和仲钼酸铵加入到上述溶胶凝胶中,并促使其再一次形成溶胶凝胶;然后将上述制备的溶胶凝胶在通氧气的条件下400-450oC煅烧,得到多孔的MoO3-CdO-TiO2中间产物;(2)制备乙二胺改性的多孔MoO3-CdO-TiO2中间产物:将得到的MoO3-CdO-TiO2中间产物加入到含有硼氢化钠、乙二胺的水溶液中,在250-270 oC恒温反应,然后自然冷却到室温,离心洗涤烘干得到乙二胺改性的多孔MoO3-CdO-TiO2中间产物;(3)制备黑色多孔MoO3-CdO-TiO2中间产物:将制备的乙二胺改性的MoO3-CdO-TiO2中间产物置于管式炉中,在氢气氛围中并在540-550 oC恒温反应, 然后自然冷却到室温,得到黑色多孔MoO3-CdO-TiO2中间产物;(4)原位生成CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂:将黑色MoO3-CdO-TiO2中间产物转移到含有硫脲的水溶液中,然后转移到反应釜中,在220-230oC恒温反应,得到CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂;
CdS掺杂量占该光催化剂摩尔含量的3%,MoS2掺杂量占该光催化剂摩尔含量的3%。
2.制备权利要求1所述的CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂的方法,其特征在于,通过如下制备方法实现:(1)制备多孔的MoO3-CdO-TiO2中间产物:将钛酸四丁酯加入到含有冰醋酸、去离子水和乙醇溶液中,并使其形成溶胶,然后将聚苯乙烯球、醋酸镉和仲钼酸铵加入到上述溶胶凝胶中,并促使其再一次形成溶胶凝胶;然后将上述制备的溶胶凝胶在通氧气的条件下400-450oC煅烧,得到多孔的MoO3-CdO-TiO2中间产物;(2)制备乙二胺改性的多孔MoO3-CdO-TiO2中间产物:将得到的MoO3-CdO-TiO2中间产物加入到含有硼氢化钠、乙二胺的水溶液中,在250-270 oC恒温反应, 然后自然冷却到室温,离心洗涤烘干得到乙二胺改性的多孔MoO3-CdO-TiO2中间产物;(3)制备黑色多孔MoO3-CdO-TiO2中间产物:将制备的乙二胺改性的MoO3-CdO-TiO2中间产物置于管式炉中,在氢气氛围中并在540-550 oC恒温反应, 然后自然冷却到室温,得到黑色多孔MoO3-CdO-TiO2中间产物;(4)原位生成CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂:将黑色MoO3-CdO-TiO2中间产物转移到含有硫脲的水溶液中,然后转移到反应釜中,在220-230oC恒温反应,得到CdS-MoS2纳米颗粒共同掺杂黑色多孔TiO2光催化剂。
CN201710287251.6A 2017-04-27 2017-04-27 CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂 Expired - Fee Related CN106984337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710287251.6A CN106984337B (zh) 2017-04-27 2017-04-27 CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710287251.6A CN106984337B (zh) 2017-04-27 2017-04-27 CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂

Publications (2)

Publication Number Publication Date
CN106984337A CN106984337A (zh) 2017-07-28
CN106984337B true CN106984337B (zh) 2019-05-17

Family

ID=59417770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710287251.6A Expired - Fee Related CN106984337B (zh) 2017-04-27 2017-04-27 CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂

Country Status (1)

Country Link
CN (1) CN106984337B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570159A (zh) * 2017-09-22 2018-01-12 江苏科来材料科技有限公司 一种制备高性能黑色TiO2光催化剂的方法
CN111924800A (zh) * 2019-05-13 2020-11-13 南京理工大学 提高TiO2纳米棒阵列光电水分解效率的方法
CN110052278B (zh) * 2019-06-12 2021-05-04 河南大学 核壳结构ZnS@C@MoS2催化剂的制备方法及其应用
CN112811523A (zh) * 2020-12-14 2021-05-18 南昌航空大学 一种纳米复合材料氧掺杂二硫化钼/二氧化钛纳米管阵列的制备方法及其应用
CN115318310B (zh) * 2022-07-18 2023-08-22 西安交通大学 一种制备C掺杂MoS2@TiO2气凝胶催化剂的方法
CN115569656B (zh) * 2022-09-29 2023-07-14 陕西师范大学 一种单点Mo-S物种修饰TiO2光催化剂的制备方法
CN116899611B (zh) * 2023-09-12 2023-12-01 德州新景环境科技有限公司 一种VOCs治理用低温催化剂及其制备工艺和其治理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309267A (ja) * 1992-05-11 1993-11-22 Japan Storage Battery Co Ltd 光触媒体
CN106582721A (zh) * 2016-11-25 2017-04-26 上海师范大学 取代贵金属Pt片析氢的MoS2/TiO2NTs异质结光电催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309267A (ja) * 1992-05-11 1993-11-22 Japan Storage Battery Co Ltd 光触媒体
CN106582721A (zh) * 2016-11-25 2017-04-26 上海师范大学 取代贵金属Pt片析氢的MoS2/TiO2NTs异质结光电催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method;Na Qin et al.;《Applied Catalysis B:Environmental》;20160920;第202卷;第374-380页
Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation;Xu Zong et al.;《J.Phys.Chem.C》;20100111;第114卷(第4期);第1963-1968页
Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange;Kun Hong Hu et al.;《J Mater Sci》;20100127;第45卷(第10期);第2640-2648页

Also Published As

Publication number Publication date
CN106984337A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
CN106984337B (zh) CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂
Tian et al. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
Xiong et al. In situ synthesis of a C-doped (BiO) 2 CO 3 hierarchical self-assembly effectively promoting visible light photocatalysis
Samsudin et al. Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water
Liang et al. The improvement of photocatalytic performance for hydrogen evolution over mesoporous gC 3 N 4 modified with nitrogen defects
Liu et al. Water reduction and oxidation on Pt–Ru/Y 2 Ta 2 O 5 N 2 catalyst under visible light irradiation
Luo et al. Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN106390986B (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
CN113634258B (zh) 一种用于光催化还原二氧化碳生成乙烯的催化剂及其制备方法
Gao et al. Facile synthesis of monodisperse meso-microporous Ta 3 N 5 hollow spheres and their visible light-driven photocatalytic activity
Sarwar et al. Synergistic effect of photo-reduced Ni–Ag loaded g-C3N4 nanosheets for efficient visible Light‐Driven photocatalytic hydrogen evolution
Wang et al. In situ growth of Au nanoparticles on 3D Bi 2 O 2 CO 3 for surface plasmon enhanced visible light photocatalysis
Wu et al. Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction
CN109908959A (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
Chen et al. Enhanced photocatalytic CO 2 reduction by constructing an In 2 O 3–CuO heterojunction with CuO as a cocatalyst
Liang et al. ZIF-L-derived C-doped ZnO via a two-step calcination for enhanced photocatalytic hydrogen evolution
Yu et al. Superstructure Ta 2 O 5 mesocrystals derived from (NH 4) 2 Ta 2 O 3 F 6 mesocrystals with efficient photocatalytic activity
Wang et al. Few-layer porous carbon nitride anchoring Co and Ni with charge transfer mechanism for photocatalytic CO2 reduction
Ding et al. Ag-modified α-Fe2O3 spherical particles interspersed on hierarchical flower-like NiAl-LDH microspheres with Z-scheme for significantly enhanced CO2 photoreduction into CO
Zhang et al. Metal-organic framework-derived nitrogen-doped carbon-coated hollow tubular In2O3/CdZnS heterojunction for efficient photocatalytic hydrogen evolution
Singh et al. CO 2 reduction to methanol using a conjugated organic–inorganic hybrid TiO 2–C 3 N 4 Nano-assembly
Lim et al. H 2 production under visible light irradiation from aqueous methanol solution on CaTiO 3: Cu prepared by spray pyrolysis
CN113976110B (zh) 一种用于光催化醇水体系产氢的催化剂及其制备方法
Guan et al. Engineering tandem double pn heterostructured CeO2@ CdS-Cu8S5 hollow spheres for remarkable photocatalytic CO2 reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190517

Termination date: 20200427

CF01 Termination of patent right due to non-payment of annual fee