CN114480923B - 一种溶解速度可控的可溶金属密封圈及其制备工艺 - Google Patents

一种溶解速度可控的可溶金属密封圈及其制备工艺 Download PDF

Info

Publication number
CN114480923B
CN114480923B CN202210094409.9A CN202210094409A CN114480923B CN 114480923 B CN114480923 B CN 114480923B CN 202210094409 A CN202210094409 A CN 202210094409A CN 114480923 B CN114480923 B CN 114480923B
Authority
CN
China
Prior art keywords
sealing ring
aluminum alloy
base member
composite coating
soluble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210094409.9A
Other languages
English (en)
Other versions
CN114480923A (zh
Inventor
王小红
蒋焰罡
刘涛
徐仕磊
李子硕
林元华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202210094409.9A priority Critical patent/CN114480923B/zh
Publication of CN114480923A publication Critical patent/CN114480923A/zh
Application granted granted Critical
Publication of CN114480923B publication Critical patent/CN114480923B/zh
Priority to US18/097,705 priority patent/US11821518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0818Flat gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0881Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by plastic deformation of the packing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及一种溶解速度可控的可溶金属密封圈及其制备工艺,其结构包括圆环状的高塑性铝合金密封圈基体及其外表面包覆的标准电极电位高于‑0.3V的复合涂层;其制备工艺包括如下步骤:(1)制备高塑性铝合金;(2)机加工制备铝合金密封圈基体;(3)对密封圈铝合金基体退火处理;(4)按比例准备涂层原料并混匀;(5)在铝合金密封圈基体外表面制备复合涂层;(6)制备微孔。本发明所得可溶金属密封圈通过坐封后复合涂层与铝合金密封圈基体之间的电偶腐蚀现象来加速铝合金密封圈基体的溶解速率,解决了现有可溶密封圈产品中存在的良好密封性能与良好溶解性能难以兼得的问题,具有密封性能好、溶解速率可控、不会堵塞等优点。

Description

一种溶解速度可控的可溶金属密封圈及其制备工艺
技术领域
本发明属于井下工具技术领域,具体为一种溶解速度可控的可溶金属密封圈及其制备工艺。
背景技术
可溶桥塞是一种应用在油气井中起临时封隔作用的井下工具,主要包括接头、卡瓦、锥体、密封圈等部分,其中密封圈是保证桥塞封堵效果的关键部件。使用时,将桥塞下放至井下套管内目标位置,然后通过一定手段施加压力,使桥塞中密封圈的直径增大,最终,密封圈的外表面紧贴在套管内壁上,从而将套管封堵。密封圈良好的密封性能是保证压裂作业成功的关键。根据压裂工况,通常要求密封圈的延伸率大于35%以上,且各方向的延伸率要基本相等,极差小于5%,以实现密封圈良好的密封性能。压裂作业后,需要包括密封圈在内的可溶桥塞整体在7-30天内完全溶解,目前可溶桥塞除密封圈外的其他部件常用可溶镁合金制备,可以在要求的时间内完全溶解。
目前国内外常用的可溶桥塞密封圈主要是可溶高分子材料密封圈,但可溶高分子材料密封圈耐温、耐压性能差,在压裂施工时易因地层温度高或承压不足导致密封失效;同时高分子材料密封圈在地下水中的溶解产物呈絮状,极易导致套管的堵塞。采用可溶金属密封圈代替可溶高分子材料密封圈,可有效解决可溶高分子材料密封圈承压不足、耐温性能差,溶解产物易堵塞的问题。目前常见的可溶金属主要是镁基合金和铝基合金,但是镁基合金的塑性变形能力较差,延伸率通常为10%-20%,不能满足密封圈的塑性要求;其次,镁基合金密封圈通常以镁合金挤压棒材为原料,采用机加工按照设定的厚度将挤压棒材切成片状,然后将切片后的棒材内部挖空形成密封圈,这种成形工艺导致镁基密封圈具有明显的各向异性,压裂时各方向受力变形不均匀,导致密封不严或局部缩颈断裂。
铝为面心立方结构,具有较好的塑性,通过调整合金成分,其延伸率可达到35%以上,但铝合金因其表面覆盖有致密氧化膜而导致溶解性能较差。因此本发明采用高塑性的铝合金制备密封圈基体,在铝合金密封圈基体表面设计了一层腐蚀电位极高的表面覆盖涂层,在桥塞坐封前,表面覆盖涂层具有良好的耐蚀性,可以保护密封圈不受腐蚀;坐封时,高塑性的铝合金密封圈基体产生极大的塑性变形,但铝合金密封圈基体表面的覆盖涂层变形能力差,会产生大量微裂纹,使表面覆盖涂层与大塑性变形后的铝合金基体之间形成大量“大阴极-小阳极”结构的电偶腐蚀,加速铝合金密封圈基体的腐蚀。
发明内容
针对现有技术的不足,本发明提供一种溶解速度可控的可溶金属密封圈及其制备工艺,该密封圈不但具有延伸率大且各方向延伸率几乎相等的特点,还可通过调整表面覆盖涂层的成分、孔隙率来调整密封圈的溶解速度,具有延伸率大、溶解速率可控、成本低等优点。
为实现上述目的,本发明通过以下技术方案予以实现:一种溶解速度可控的可溶金属密封圈及其制备工艺,其结构包括高塑性的铝合金密封圈基体及其外表面包覆的复合涂层。
进一步地,所述高塑性的铝合金主要成分为铝、铜、镁,其中铜的含量为0.03%-0.80%、镁的含量为0.03%-0.40%,硅含量为0.20%,铁含量为0.25%,锰含量为0.03%,锌含量为0.04%,钛含量为0.03%,其余为铝。
进一步地,所述铝合金密封圈基体在作为一个整体的基础上分为密封圈基体上层、密封圈基体中层和密封圈基体下层,内径相同,密封圈基体下层外直径最大,密封圈基体中层外直径最小。
进一步地,所述复合涂层的厚度为5-50μm,标准电极电位高于-0.3V,包含石墨组元及一种或一种以上标准电极电位高于-0.3V的金属组元。
进一步地,优选的复合涂层厚度在8-30μm之间。
进一步地,所述复合涂层的组元,可以是石墨和镍两种组元。
进一步地,所述包含镍和石墨两种组元且标准电极电位高于-0.3V的复合涂层中,石墨的体积分数为10%-35%,金属镍的体积分数为65%-90%。
进一步地,复合涂层上制备有若干数量的直径小于0.5mm的微孔。
本发明提供一种溶解速度可控的可溶金属密封圈及其制备工艺,其制备工艺包括如下步骤:
步骤一:根据高塑性铝合金的化学成分熔炼铝合金并浇注成铝合金锭,然后将铝合金锭均匀化处理后,轧制成板材。
步骤二:根据设计的几何尺寸,从铝合金轧制板材上下料,并用机加工的方式进一步加工出所需形状及尺寸的铝合金密封圈基体;
步骤三:对铝合金密封圈基体进行退火处理,退火温度为300-400℃,热处理时间为25-40min,以此消除铝合金密封圈基体因为铝合金原始板材内轧制织构带来的各向异性,使其各个方向的延伸率几乎相等;
步骤四:根据复合涂层组分要求,确定复合涂层原料的组分种类及百分含量,按照设计的比例混合均匀;
步骤五:对铝合金密封圈基体进行表面喷砂处理;
步骤六:采用火焰喷涂或等离子喷涂的方式,在铝合金密封圈基体外表面制备复合涂层并采用机械或化学方式在涂层表面加工若干个直径小于0.5mm的微孔。
进一步地,在所述步骤四中,复合涂层以镍包石墨粉末为原料,原料包含石墨和镍两种组分,其中石墨体积分数为10%-35%、金属镍的体积分数为65%-90%。
本发明的有益效果:
针对现有技术的缺陷以及压裂作业对可溶桥塞密封圈的密封性、溶解性及承压能力的要求,本发明结合合金成分设计、结构设计及电偶腐蚀原理,创造性地设计了一种溶解速度可控的可溶金属密封圈及其制备工艺。本发明以高塑性铝合金制备密封圈基体,并通过退火处理消除铝合金密封圈基体的各向异性,使其各方向的延伸率几乎相等,保证了密封圈的密封性能;通过将铝合金密封圈基体设计为内径相等,但密封圈基体下层外直径最大,密封圈基体中层外直径最小的几何结构保证了密封圈的承压能力;在此基础上,通过在铝合金密封圈基体外表面上包覆一层标准电极电位高于-0.3V的复合涂层,通过坐封时复合涂层表面产生的微裂纹或局部磨损与铝合金密封圈基体形成大量“大阴极-小阳极”结构的电偶腐蚀对来加速铝合金密封圈基体的溶解速率,通过调整涂层上预制的微孔数量来调控铝合金密封圈基体的溶解速度,从而解决了现有产品中存在的可溶密封圈良好密封性能与良好溶解性能难以兼得的问题。本发明所述的可溶金属密封圈具有密封性能好、承压能力强、耐温性能好、溶解速率可控、制备简单、成本低等优点,同时本发明所述的可溶金属密封圈溶解产物为溶于水的金属离子,铝合金密封圈基体表面的复合涂层在其依附的铝合金密封圈基体溶解后会分离成直径极小的微块,随返排液排出,不会造成堵塞现象。
附图说明
图1为本发明结构示意图。
图2为本发明结构剖面图。
图3为本发明实施例1中组装的可溶桥塞工装示意图。
附图标记1、中心轴;2、上接头;3、可溶卡瓦;4、卡瓦牙;5、可溶金属密封圈;6、可溶球座;7、下接头;8、铝合金密封圈基体;81、密封圈基体上层;82、密封圈基体中层;83、密封圈基体下层;9、复合涂层。
具体实施方式
为了使本发明的目的、技术方案以及优点更加清楚明白,下面结合附图及实施例,对本发明做进一步详细说明。需要强调,此处描述的具体实施例仅用于更好的阐述本发明,为本发明部分实施例,而非全部实施例,所以并不用作限定本发明。
如图1和图2所示,一种溶解速度可控的可溶金属密封圈及其制备工艺,其结构包括圆环状的铝合金密封圈基体8,所述铝合金密封圈基体8包括密封圈基体上层81、密封圈基体中层82和密封圈基体下层83,所述铝合金密封圈基体8外表面包覆有复合涂层9。
如图1和图2所示,铝合金密封圈基体8的主要成分为铝、铜、镁,其中铜的含量为0.28%、镁的含量为0.08%,硅含量为0.20%,铁含量为0.25%,锰含量为0.03%,锌含量为0.04%,钛含量为0.03%,其余为铝。
如图1和图2所示,铝合金密封圈基体8为一个整体,密封圈基体上层81、密封圈基体中层82和密封圈基体下层83,此三者内径相同;密封圈基体下层83外直径最大,密封圈基体中层82外直径最小,为密封圈基体下层83外直径的94%,密封圈基体上层81外直径居中,为密封圈基体下层83外直径的97%。该结构可以减少坐封时所需外力并提高密封圈的承压能力。
如图1和图2所示,复合涂层9标准电极电位高于-0.3V,包含石墨和镍两种组元,且复合涂层9中石墨的体积分数为20%,金属镍的体积分数为80%,复合涂层9的厚度为20μm。
如图1和图2所示,复合涂层9上均匀分布着100个直径为0.4mm的微孔。
本发明提供一种溶解速度可控的可溶金属密封圈及其制备工艺,其制备工艺包括如下步骤:
步骤一:根据高塑性铝合金的化学成分熔炼铝合金并浇注成铝合金锭,然后将铝合金锭均匀化处理后,轧制成板材;
步骤二:根据设计的几何尺寸,从铝合金轧制板材上下料,并用机加工的方式进一步加工出图1和图2所示形状的铝合金密封圈基体8。
步骤三:对铝合金密封圈基体8进行退火处理,退火温度为340℃,退火时间为30min,退火后铝合金密封圈基体8各个方向的延伸率几乎相等且均在35%以上;
步骤四:确定复合涂层9原料为镍包石墨粉,其中石墨体积分数为20%、金属镍的体积分数为80%,按照比例混合均匀;
步骤五:对铝合金密封圈基体进行表面喷砂处理;
步骤六:采用火焰喷涂或等离子喷涂的方式,在铝合金密封圈基体外表面制备复合涂层9并采用机械加工方式在复合涂层9表面加工100个直径为0.4mm的微孔。
下面结合具体实施例对本发明作进一步说明。
作为本发明的一个实施例:将所得可溶金属密封圈5安装在可溶桥塞工装上,其结构如图3所示。
如图3所示,一种溶解速度可控的可溶金属密封圈组装在可溶桥塞工装的示意图,包括中心轴1,所述中心轴1上安装有上接头2,所述上接头2下方安装有可溶卡瓦3,所述可溶卡瓦3上嵌有卡瓦牙4,所述可溶卡瓦3下方安装有可溶金属密封圈5,所述可溶金属密封圈5下方安装有可溶球座6,所述可溶球座1下方安装有下接头7。
如图3所示,此可溶桥塞工装中除卡瓦牙4和可溶金属密封圈5外,其他部分均由可溶镁合金制备,其中卡瓦牙4由高硬度陶瓷材料制备,可溶金属密封圈5包括铝合金密封圈基体8和复合涂层9。
如图3所示,此可溶桥塞工装为现有技术中的常见结构,在此主要对可可溶金属密封圈5的相关实施方式进行详细描述。
如图3所示,当坐封开始时,在可溶桥塞工装上施加20MPa的轴向压力,使可溶金属密封圈5受到轴向的压力并沿着可溶球座6滑动,使轴向压力转化为径向压力,进而使可溶金属密封圈5发生向外扩张的塑性变形,最后可溶金属密封圈5的外表面紧贴在套管内壁上,塑性变形后的可溶金属密封圈5填充了可溶金属密封圈5与套管内壁之间的空隙,达到密封的效果。
如图3所示,可溶金属密封圈5受到外力作用时,主要由铝合金密封圈基体8发生塑性变形,其中密封圈基体下层83优先发生变形,进而带动密封圈基体中层82和密封圈基体上层81发生变形,使得铝合金密封圈基体8沿着可溶球座6滑动而向外部扩张,铝合金密封圈基体8外直径不断变大,直到可溶金属密封圈5外表面抵住套管内壁,完成坐封。
如图3所示,铝合金密封圈基体8外表面的复合涂层9延伸率较低,在坐封过程中密封圈铝合金基体8发生大塑性变形,导致铝合金密封圈基体8外表面的复合涂层9产生大量微裂纹;同时大塑性变形的铝合金密封圈基体8外侧与套管接触,发生摩擦,铝合金密封圈基体8外侧表面的复合涂层9局部位置发生磨损。复合涂层9表面的微裂纹、局部磨损及预制的微孔处裸露的铝合金标准电极电位低、面积小,其周围涂层中的镍、石墨标准电极电位高、面积大,在井下含有氯离子的地层水以及地层温度条件下,形成“大阴极-小阳极”结构的电偶腐蚀,加速铝合金密封圈基体8的溶解,溶解产物随返排液排出。
在井下含有氯离子的地层水以及地层温度条件下,由于复合涂层9厚度仅20μm,且分布着100个微孔及大量微裂纹,因此当铝合金密封圈基体8溶解后,依附在铝合金密封圈基体8表面的复合涂层9会分离成小块,随着返排液排出,不会造成堵塞现象。
在本发明的描述中,需要说明的是,术语、“下方”、“向外”、“轴向”、“径向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;上述术语在本发明中的具体含义对于本领域的普通技术人员而言,可以具体情况理解。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种溶解速度可控的可溶金属密封圈,其特征在于,所述可溶金属密封圈(5)包括高塑性的铝合金密封圈基体(8)及其外表面包覆的复合涂层(9),所述铝合金密封圈基体(8)所用材料为在300-400℃下退火25-40分钟的铝合金;所述复合涂层(9)厚度为5-50μm、由石墨及一种或一种以上标准电极电位高于-0.3V的金属组元组成;
所述铝合金的成分为:铜的含量为0.03%-0.80%、镁的含量为0.03%-0.40%,硅含量为0.20%,铁含量为0.25%,锰含量为0.03%,锌含量为0.04%,钛含量为0.03%,其余为铝;
所述铝合金密封圈基体(8)包括密封圈基体上层(81)、密封圈基体中层(82)和密封圈基体下层(83),所述密封圈基体上层(81)、密封圈基体中层(82)和密封圈基体下层(83)为一个整体,内径相同,密封圈基体下层(83)外直径最大,密封圈基体中层(82)外直径最小,为密封圈基体下层(83)直径的94%,密封圈基体上层(81)外直径为密封圈基体下层(83)直径的97%。
2.根据权利要求1所述的一种溶解速度可控的可溶金属密封圈,其特征在于,所述复合涂层(9)为石墨和镍两种组元,其中石墨的体积分数为10%-35%,金属镍的体积分数为65%-90%。
3.根据权利要求1所述的一种溶解速度可控的可溶金属密封圈,其特征在于,所述复合涂层(9)表面有用机械或化学方式加工的若干个直径小于0.5mm的微孔。
4.根据权利要求1所述的一种溶解速度可控的可溶金属密封圈,其特征在于,所述复合涂层(9)采用火焰喷涂或等离子喷涂的方式制备。
CN202210094409.9A 2022-01-26 2022-01-26 一种溶解速度可控的可溶金属密封圈及其制备工艺 Active CN114480923B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210094409.9A CN114480923B (zh) 2022-01-26 2022-01-26 一种溶解速度可控的可溶金属密封圈及其制备工艺
US18/097,705 US11821518B2 (en) 2022-01-26 2023-01-17 Soluble metal sealing ring with controllable dissolution rate and preparation process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210094409.9A CN114480923B (zh) 2022-01-26 2022-01-26 一种溶解速度可控的可溶金属密封圈及其制备工艺

Publications (2)

Publication Number Publication Date
CN114480923A CN114480923A (zh) 2022-05-13
CN114480923B true CN114480923B (zh) 2022-11-08

Family

ID=81477065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210094409.9A Active CN114480923B (zh) 2022-01-26 2022-01-26 一种溶解速度可控的可溶金属密封圈及其制备工艺

Country Status (2)

Country Link
US (1) US11821518B2 (zh)
CN (1) CN114480923B (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213032A (ja) * 2006-01-10 2007-08-23 Hitachi Chemical Dupont Microsystems Ltd ポジ型感光性樹脂組成物、パターン形成方法及び電子部品
DE102007017754A1 (de) * 2007-04-16 2008-10-23 Innovaris Gmbh & Co. Kg Trägermaterial zur Herstellung von Werkstücken
US7900696B1 (en) * 2008-08-15 2011-03-08 Itt Manufacturing Enterprises, Inc. Downhole tool with exposable and openable flow-back vents
CN103732853A (zh) * 2011-08-05 2014-04-16 贝克休斯公司 控制井下制品中腐蚀速率的方法和具有受控的腐蚀速率的井下制品
JP2017160532A (ja) * 2016-03-07 2017-09-14 スズキ株式会社 アルミニウム系部材の表面構造
CN108222881A (zh) * 2017-11-08 2018-06-29 中国石油天然气股份有限公司 可溶解桥塞及其材料制备方法
CN109256499A (zh) * 2018-11-01 2019-01-22 中澳科创(深圳)新材料有限公司 一种铝壳动力电池电极极柱玻璃封接的密封组件及其封接方法
CN109797361A (zh) * 2019-03-05 2019-05-24 北京科技大学 一种可溶镁合金表面高耐蚀耐磨涂层的制备方法
CN210087983U (zh) * 2019-05-28 2020-02-18 苏州松之叶精密机械配件有限公司 一种新型复合密封圈
CN111349830A (zh) * 2018-12-20 2020-06-30 中国石油化工股份有限公司 一种铝基复合材料及其制备方法
US10815748B1 (en) * 2017-05-19 2020-10-27 Jonathan Meeks Dissolvable metal matrix composites
CN111878032A (zh) * 2020-08-20 2020-11-03 四川省威沃敦化工有限公司 一种无胶筒金属密封可溶桥塞
CN111946821A (zh) * 2020-08-08 2020-11-17 南通实创电子科技有限公司 一种耐热耐压铝制垫片及其加工工艺
CN112861393A (zh) * 2021-01-13 2021-05-28 西南石油大学 一种构建高温高压封隔器性能信封曲线的方法
CN113025857A (zh) * 2021-02-10 2021-06-25 北京科技大学 一种用于全金属桥塞胶筒的可溶镁合金材料及其制备方法
CN113106515A (zh) * 2021-04-06 2021-07-13 长沙理工大学 一种金属材料表面耐腐蚀涂层的制备方法及其产品和应用
CN113154158A (zh) * 2021-02-02 2021-07-23 余其林 一种磁合压紧型双层防水硅胶密封圈
CN113416871A (zh) * 2021-06-21 2021-09-21 青岛艾斯达特智能焊接设备有限公司 一种可溶性铝镁合金及其制备方法、可溶性铝镁合金管材及其制备方法和应用
CN113529094A (zh) * 2021-07-13 2021-10-22 西安众海石油科技有限公司 油井井底内悬挂牺牲阳极与内挤涂层相复合的防腐系统及方法
CN214697790U (zh) * 2021-05-24 2021-11-12 陕西海格瑞恩实业有限公司 一种新型密封横开槽镁锂合金a型可溶球座
CN214697789U (zh) * 2021-05-24 2021-11-12 陕西海格瑞恩实业有限公司 一种新型密封横开槽镁锂合金b型可溶球座
CN113667871A (zh) * 2021-08-10 2021-11-19 郑州轻研合金科技有限公司 一种高延展性可溶镁锂合金及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US8211247B2 (en) * 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US10316616B2 (en) * 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
CN102031323B (zh) * 2006-05-24 2013-06-19 樊显理 一种天然气裂解氢冶金方法及设备
CN103614687B (zh) * 2013-11-22 2016-04-27 西峡龙成特种材料有限公司 一种连铸结晶器铜板表面金属陶瓷涂层的制备工艺
CN103924130B (zh) * 2014-04-16 2016-02-17 同济大学 一种铝合金/316l不锈钢涂层复合材料及其制备方法
CA2998846A1 (en) * 2015-11-18 2017-05-26 Michael L. Fripp Sharp and erosion resistance degradable material for slip buttons and sliding sleeve baffles
US10724321B2 (en) * 2017-10-09 2020-07-28 Baker Hughes, A Ge Company, Llc Downhole tools with controlled disintegration
CN110306189A (zh) * 2019-05-09 2019-10-08 中国地质大学(北京) 一种耐腐蚀涂层强化钻杆及其制备方法
CN110512123A (zh) * 2019-09-25 2019-11-29 青岛大地新能源技术研究院 一种高强度可溶铝合金及其制备方法与应用
NO346335B1 (en) * 2019-11-15 2022-06-13 Marwell As A device comprising a dissolvable material for use in a wellbore

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213032A (ja) * 2006-01-10 2007-08-23 Hitachi Chemical Dupont Microsystems Ltd ポジ型感光性樹脂組成物、パターン形成方法及び電子部品
DE102007017754A1 (de) * 2007-04-16 2008-10-23 Innovaris Gmbh & Co. Kg Trägermaterial zur Herstellung von Werkstücken
US7900696B1 (en) * 2008-08-15 2011-03-08 Itt Manufacturing Enterprises, Inc. Downhole tool with exposable and openable flow-back vents
CN103732853A (zh) * 2011-08-05 2014-04-16 贝克休斯公司 控制井下制品中腐蚀速率的方法和具有受控的腐蚀速率的井下制品
JP2017160532A (ja) * 2016-03-07 2017-09-14 スズキ株式会社 アルミニウム系部材の表面構造
US10815748B1 (en) * 2017-05-19 2020-10-27 Jonathan Meeks Dissolvable metal matrix composites
CN108222881A (zh) * 2017-11-08 2018-06-29 中国石油天然气股份有限公司 可溶解桥塞及其材料制备方法
CN109256499A (zh) * 2018-11-01 2019-01-22 中澳科创(深圳)新材料有限公司 一种铝壳动力电池电极极柱玻璃封接的密封组件及其封接方法
CN111349830A (zh) * 2018-12-20 2020-06-30 中国石油化工股份有限公司 一种铝基复合材料及其制备方法
CN109797361A (zh) * 2019-03-05 2019-05-24 北京科技大学 一种可溶镁合金表面高耐蚀耐磨涂层的制备方法
CN210087983U (zh) * 2019-05-28 2020-02-18 苏州松之叶精密机械配件有限公司 一种新型复合密封圈
CN111946821A (zh) * 2020-08-08 2020-11-17 南通实创电子科技有限公司 一种耐热耐压铝制垫片及其加工工艺
CN111878032A (zh) * 2020-08-20 2020-11-03 四川省威沃敦化工有限公司 一种无胶筒金属密封可溶桥塞
CN112861393A (zh) * 2021-01-13 2021-05-28 西南石油大学 一种构建高温高压封隔器性能信封曲线的方法
CN113154158A (zh) * 2021-02-02 2021-07-23 余其林 一种磁合压紧型双层防水硅胶密封圈
CN113025857A (zh) * 2021-02-10 2021-06-25 北京科技大学 一种用于全金属桥塞胶筒的可溶镁合金材料及其制备方法
CN113106515A (zh) * 2021-04-06 2021-07-13 长沙理工大学 一种金属材料表面耐腐蚀涂层的制备方法及其产品和应用
CN214697790U (zh) * 2021-05-24 2021-11-12 陕西海格瑞恩实业有限公司 一种新型密封横开槽镁锂合金a型可溶球座
CN214697789U (zh) * 2021-05-24 2021-11-12 陕西海格瑞恩实业有限公司 一种新型密封横开槽镁锂合金b型可溶球座
CN113416871A (zh) * 2021-06-21 2021-09-21 青岛艾斯达特智能焊接设备有限公司 一种可溶性铝镁合金及其制备方法、可溶性铝镁合金管材及其制备方法和应用
CN113529094A (zh) * 2021-07-13 2021-10-22 西安众海石油科技有限公司 油井井底内悬挂牺牲阳极与内挤涂层相复合的防腐系统及方法
CN113667871A (zh) * 2021-08-10 2021-11-19 郑州轻研合金科技有限公司 一种高延展性可溶镁锂合金及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
可溶桥塞缓蚀助溶剂先导性试验与应用;刘虎等;《天然气技术与经济》;20191228(第06期);第52-56+67页 *
模拟油田井液环境中高速电弧喷涂涂层的腐蚀行为研究;陈健飞等;《机电信息》;20151225(第36期);第177-178页 *
水平井分段压裂用桥塞研究现状及发展趋势;钟诗宇等;《新疆石油科技》;20180915(第03期);第39-42页 *
钢铁表面电弧喷涂耐蚀铝涂层性能的研究;直妍等;《热加工工艺》;20180309(第04期);第154-156页 *

Also Published As

Publication number Publication date
US20230265923A1 (en) 2023-08-24
CN114480923A (zh) 2022-05-13
US11821518B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
CN105950930B (zh) 一种可溶挤压态镁合金及其制备方法
US9833838B2 (en) Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
EP2509734B1 (en) Method of making a nanomatrix powder metal compact
AU2012294758B2 (en) Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
CA2783241C (en) Nanomatrix powder metal compact
EP2509730B1 (en) Coated metallic powder and method of making the same
US9643250B2 (en) Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
CA2783346C (en) Engineered powder compact composite material
US20150259263A1 (en) Material and Method of Manufacture for Engineered Reactive Matrix Composities
CN107849907A (zh) 顶部坐放的可降解的井筒隔离装置
CN104805438B (zh) 可分解压裂球座表面耐蚀膜层及球座及球座制备方法
CN113025857B (zh) 一种用于全金属桥塞胶筒的可溶镁合金材料及其制备方法
NO348013B1 (en) Protective coating for a substrate
CN114480923B (zh) 一种溶解速度可控的可溶金属密封圈及其制备工艺
CN105908038A (zh) 一种用于制造压裂分隔工具的可溶合金及其制备方法
CN104722753B (zh) 一种射孔弹药型罩用钨铜粉末制备方法
US4787228A (en) Making molds with rectangular or square-shaped cross section
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法
CN113737039B (zh) 一种井下暂堵工具用高强快速溶解镁合金的3dp制备工艺
CN219969064U (zh) 一种碳化钛纳米颗粒合金复合高防腐钢板
CN207161484U (zh) 一种双层复合螺栓
CN206174920U (zh) 用于桥塞的单流阀以及桥塞
AU2014329957B2 (en) Downhole flow inhibition tool and method of unplugging a seat
CN112901476A (zh) 一种高熵合金保护层压裂泵柱塞及其制备方法
GB2481399A (en) A component coated with tungsten carbide, zinc and PTFE

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant