CN114478049A - 一种高厚度高强度光固化氮化硅陶瓷及其制备方法 - Google Patents

一种高厚度高强度光固化氮化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN114478049A
CN114478049A CN202011272964.3A CN202011272964A CN114478049A CN 114478049 A CN114478049 A CN 114478049A CN 202011272964 A CN202011272964 A CN 202011272964A CN 114478049 A CN114478049 A CN 114478049A
Authority
CN
China
Prior art keywords
powder
silicon nitride
ceramic
strength
nitride ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011272964.3A
Other languages
English (en)
Inventor
潘欢
卢秉恒
鲍崇高
刘荣臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute Corp of Additive Manufacturing Xian
Original Assignee
National Institute Corp of Additive Manufacturing Xian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Corp of Additive Manufacturing Xian filed Critical National Institute Corp of Additive Manufacturing Xian
Priority to CN202011272964.3A priority Critical patent/CN114478049A/zh
Publication of CN114478049A publication Critical patent/CN114478049A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高厚度高强度光固化氮化硅陶瓷及其制备方法,制备过程中采用向陶瓷膏料中低温造孔剂PEG,使得在后期的脱脂过程,氮化硅陶瓷的最大脱脂厚度提高至8mm,且脱脂时间仅需60h,脱脂率可达99%以上。本发明通过将PEG在200‑300℃挥发并且留下球形孔洞的特点,首先在氩气气氛下进行高分子的裂解及低温造孔剂的脱除,其中后者可在300℃几乎全部脱除,为后续小分子的逸出提供通道。该过程在陶瓷生坯脱脂过程中预先在坯体中留下通道,利于后续光敏树脂的高温脱出(避免开裂变形,提高极限脱脂厚度)。

Description

一种高厚度高强度光固化氮化硅陶瓷及其制备方法
【技术领域】
本发明属于增材制造技术领域,涉及一种高厚度高强度光固化氮化硅陶瓷及其制备方法。
【背景技术】
氮化硅陶瓷部件在机械、化工和汽车等领域均有着广泛的应用,例如:氮化硅陶瓷齿轮、涡轮转子、切削刀具和轴承等。目前,氮化硅陶瓷部件的成型方法包括:冷等静压成型、干压成型、注浆成型以及热压铸成型等。其中,干压成型的方法虽然效率较高,但成型产品存在密度差异、显微结构不均匀的问题,同时不易成型复杂形状和异形产品;冷等静压成型方法可得到高密度和高均匀性的成型坯体,但仍难以成型形状复杂的陶瓷零部件,且成型效率低和手工操作多;注浆成型虽可成型异形产品,达到近净尺寸,但成型坯体易产生密度不均和成分偏析,以及成型尺寸精度低和产品可靠性下降等问题,此外该成型方法需手工操作,坯体干燥效率低;现有技术中,氮化硅陶瓷坯体主要存在着:成品不均匀、烧结后产品尺寸精度差、制备成本高及高度依赖成型模具的技术缺陷,限制了异形氮化硅陶瓷结构件的制备。
采用光固化成型氮化硅陶瓷精度较高且无需模具,可轻松实现结构的个性化定制,但由于光固化打印生坯中含有一定体积分数的固化后的光敏树脂,由于其具有较大的内应力,需要进行热脱脂,即通过加热坯体使粘结剂组分挥发或分解而从坯体中脱除的方法。热脱脂时由于粘结剂组分受热软化,坯体在重力和热应力的作用下易产生粘性流动变形,因此脱脂速率太慢、耗时长。热脱脂工艺中炉温的控制也非常严格,要和组分的挥发、热解有一致性。同时,热脱脂有尺寸厚度的限制,适合比较小的精密陶瓷部件。在热脱脂过程中容易发生热胀使得坯体发生开裂变形,并且限制了高厚度陶瓷生坯的脱脂烧结。
如附图1所示的光固化氮化硅样品,为现有技术中常见的样品,其尺寸为80mm×20mm(端部)×2.5mm,其生坯脱脂厚度仅为2.5mm,且最大抗弯强度仅为333MPa左右。
【发明内容】
本发明的目的在于克服上述现有技术的缺点,提供一种高厚度高强度光固化氮化硅陶瓷及其制备方法,以克服现有技术中光固化氮化硅陶瓷在通过脱脂烧结方法制备的过程中存在问题。
为达到上述目的,本发明采用以下技术方案予以实现:
一种高厚度高强度光固化氮化硅陶瓷的制备方法,包括以下步骤:
步骤1,混合Si3N4粉末、Y2O3粉末、Al2O3粉末和SiO2粉末,形成混合粉末A;在混合粉末A中加入硬脂酸后干磨改性,得到混合粉末B;向混合粉末B中加入分散剂9063和硅烷偶联剂KH560,进行湿磨改性,得到浆料C,将浆料C烘干后过筛得到预混粉体;
步骤2,混合聚氨酯、双酚A、IBOMA、HDDA、TPGDA、TMPTA、DPHA和芴基丙烯酸及其复合胶,搅拌后得到混合树脂D,在混合树脂D中加入TPO,然后分若干次加入预混粉体,直至预混粉体被混合树脂D完全湿润,再加入聚乙二醇400,然后通过三个阶段的混料进行混合,得到陶瓷膏料;
步骤3,将陶瓷膏料真空除泡后加入至打印机中,打印后生成陶瓷生坯;
步骤4,将陶瓷生坯进行裂解、除碳和烧结后,得到氮化硅陶瓷。
本发明的进一步改进在于:
优选的,步骤1中,混合粉末A中Si3N4粉末的质量分数为67%,Y2O3粉末的质量分数为5%,Al2O3粉末的质量分数为3%,SiO2粉末的质量分数为25%。
优选的,步骤1中,加入的硬脂酸为混合粉末A质量的3%,加入的分散剂9063为混合粉末B质量的3%,加入的硅烷偶联剂KH560为混合粉末B质量的8%。
优选的,步骤1中,干磨时间为20h,湿磨时间为20h,浆料C的烘干温度为75℃。
优选的,步骤2中,混合树脂D中,聚氨酯的质量分数为3.7%、双酚A的质量分数为8.65%、IBOMA的质量分数为3.7%、HDDA的质量分数为6.71%、TPGDA的质量分数为5.05%、TMPTA的质量分数为22.34%、DPHA的质量分数为22.61%、芴基丙烯酸及其复合胶的质量分数为27.24%;
TPO的加入量为混合树脂D质量的5%,预混粉体与混合树脂D的混合质量比为3:1;聚乙二醇400加入后,陶瓷膏料的粘度≥500Pa·s。
优选的,步骤2中,三个阶段的混料过程参数依次为:第一阶段的转速为1000-1500rpm,第一阶段的时间为10-15s,第二阶段的转速为1800-2200rpm,第二阶段的时间为15-25s,第三阶段的转速为2200-2800rpm,第三阶段的时间为25-35s。
优选的,裂解过程的加热参数为:在200℃维持180min,在200℃维持60min,在300℃维持200min,在300℃维持120min,在350℃维持100min,在350℃维持180min,在410℃维持200min,在410℃维持240min,在450℃维持200min,在450℃维持240min,在500℃维持100min,在500℃维持240min,在550℃维持100min,在550℃维持180min,在600℃维持50min,在600℃维持100min,在800℃维持200min,在800℃维持60min。
优选的,除碳过程的加热参数为:300min内将坯体的温度升温至600℃,然后在600℃保持200min,然后在100min内将坯体的温度升温至800℃,将坯体在800℃保存100min,然后缓冷至室温。
优选的,烧结工艺的过程为:5℃/min室温升至1200℃,4℃/mim升温至1750℃,1750℃保温2h后随炉冷却。
一种通过上述制备方法制得的光固化氮化硅陶瓷,其特征在于,所述光固化陶瓷在室温三点弯曲强度最大为480MPa,压缩强度最大为540MPa;所述光固化氮化硅陶瓷在1400℃的三点弯曲强度为110MPa。
与现有技术相比,本发明具有以下有益效果:
本发明公开了一种高厚度高强度光固化氮化硅陶瓷的制备方法,制备过程中采用向陶瓷膏料中低温造孔剂PEG,使得在后期的脱脂过程,氮化硅陶瓷的最大脱脂厚度提高至8mm,且脱脂时间仅需60h,脱脂率可达99%以上。本发明通过将PEG在200-300℃挥发并且留下球形孔洞的特点,首先在氩气气氛下进行高分子的裂解及低温造孔剂的脱除,其中后者可在300℃几乎全部脱除,为后续小分子的逸出提供通道。该过程在陶瓷生坯脱脂过程中预先在坯体中留下通道,利于后续光敏树脂的高温脱出(避免开裂变形,提高极限脱脂厚度)。一般用于陶瓷膏料的光敏树脂在激光下和光引发剂的作用下发生交联反应而固化,在此过程中生坯内部积累了大量的内应力,脱脂便要将此应力释放的前提下除去上述树脂,若直接进行脱脂,固化后的光敏树脂会急剧裂解氧化而时陶瓷生坯发生开裂变形,故采用先裂解、再氧化的方法进行两步脱脂,此外,在裂解过程中,由于PEG的任何分解产物都是挥发性的,不会生成硬壳状或秸泥状的沉积物,且在300℃可完全挥发,故非常适合作为低温造孔剂预先在陶瓷生坯中留下通道,方便固化的光敏树脂的脱除而不发生变形开裂。该制备过程在陶瓷膏料的配制过程中,为了提高粉体与树脂的均匀性,采用向树脂溶液中逐次添加陶瓷粉体的方法,也可避免由于单次加入粉体量太多在转动过程中产生的热量难以排出而使得膏料发生部分热固化,通过分若干次加入预混粉体,使得预混粉体能够被充分的湿润。
进一步的,该混料过程分多次,使得混料更加均匀,此外,向混合树脂中添加陶瓷粉体的次数区间为4-6次。
本发明还公开了一种通过上述制备方法制得的高厚度高强度的光固化氮化硅陶瓷,该陶瓷光固化陶瓷在室温三点弯曲强度最大为480MPa,压缩强度最大为540MPa;所述光固化氮化硅陶瓷在1400℃的三点弯曲强度为110MPa。
【附图说明】
图1为现有技术中制备出的氮化硅样品图;
其中,(a)图为实物图;(b)图为尺寸样品图;
图2为本发明低温造孔剂PEG的作用原理图;
图3为脱脂工艺过程图;其中,(a)图为裂解工艺图;(b)图为除碳工艺图;
图4为氮化硅烧结工艺的过程图;
图5为制备出的氮化硅陶瓷实物图;
其中,(a)图为打印生坯图;(b)图为烧结体图;(c)图为厚度8mm烧结体;
图6为氮化硅SLA打印生坯在氩气下的TG-DSC曲线。
【具体实施方式】
下面结合附图对本发明做进一步详细描述:
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明公开了一种高厚度高强度光固化氮化硅陶瓷及其制备方法,具体包括以下步骤:
步骤1,粉体两步改性。
混合Si3N4粉末、Y2O3粉末、Al2O3粉末和SiO2粉末,形成混合粉末A,其中Si3N4粉末的质量分数为67%,Y2O3粉末的质量分数为5%,Al2O3粉末的质量分数为3%,SiO2粉末的质量分数为25%;Si3N4粉末由颗粒尺寸分别为0.7μm和2μm两种粒径的Si3N4粉末按照体积比1:1混合而成。
向上述混合粉末A中添加其质量为3wt%的硬脂酸(硬脂酸的粒径大于100目),进行干磨改性,干磨过程中,球料比为1.5倍,转速为320rpm,干磨时间为20h,将干磨后的粉体通过80目过筛,得到混合粉末B,干磨加入球磨介质-酒精,干磨的目的是打破陶瓷颗粒团聚并将氮化硅粉与烧结助剂等粉混合均匀并包覆硬脂酸。然后向上述混合粉末B中添加混合粉末B质量的3wt%分散剂9063,和混合粉末B质量的8wt%硅烷偶联剂KH560,进行湿磨改性,湿磨目的是对陶瓷粉末进行偶联改性,提高其与树脂间的相容性,湿磨过程中的球料比为1.5倍,转速为320rpm,时间为20h,制得浆料C,将浆料C于75℃烘箱中烘干4h,然后80目过筛,得到预混粉体。
步骤2,预混液及陶瓷膏料配制:
1)将不同类型的树脂按照不同的质量分数加入至均质机罐子中,其中聚氨酯3.7wt%,双酚A 8.65wt%,IBOMA3.7wt%,HDDA 6.71wt%,TPGDA 5.05wt%,TMPTA22.34wt%,DPHA-22.61wt%,芴基丙烯酸及其复合胶27.24wt%,用不锈钢棒搅拌均匀后得到混合树脂D,在混合树脂D中加入其质量5wt%的TPO,搅拌后分批次加入预混粉体,预混粉体与混合树脂D的混合质量比为3:1,因为预混粉体中氮化硅粉不易分散,故需要逐次将其加入至混合树脂D中,向混合树脂D中添加预混粉体的次数区间为4-6次,直至完全被树脂润湿,称重后将均质机的质量配重调至与前者相同,在最后一步中加入聚乙二醇400(PEG),PEG所加入量为陶瓷膏料的4.8wt%,PEG是一种润湿剂,其加入越多,陶瓷膏料粘度越低,判定标准为加入后粘度不可低于500Pa·s(陶瓷打印机平台为开放式,膏料粘度过低会在打印过程中流出打印平面)。将上述陶瓷粉与树脂充分混合后,选择所需混料程序,启动设备。程序中第一步转速区间为1000-1500rpm,时间为10-15s,第二步转速区间为1800-2200rpm,时间为15-25s,第三步转速区间为2200-2800rpm,时间为25-35s。
上述芴基丙烯酸及其复合胶为市购产品,其产品名称为A-BPEF胶-40,产品外观为无色或浅黄色透明粘稠状液体,其粘度≤20000(mPa·s,30℃),在20℃的折光率为1.6010-1.6030,其酸值≤0.5mgKOH/g。
步骤3,打印过程:
1)将配制好的陶瓷膏料置于真空除泡机中,真空度抽至-0.1MPa,除泡时间为30min;
2)将打印贴纸粘至磁纸上,然后将磁纸用胶水粘至打印平台不锈钢板上,将陶瓷膏料加入料仓中,调节刮刀与平台的间隙(调平);
3)将打印模型(stl格式)导入至打印机自带的电脑中,设置参数后开始打印。激光波长:355nm;激光功率:91mW;扫描速度:1600mm/s;扫描路径:chess(该路径为陶瓷打印机CERAMAKER系统自带的打印扫描策略),打印后生成陶瓷生坯
步骤4,脱脂烧结
将陶瓷打印生坯进行脱脂烧结,脱脂工艺如图3所示;本发明的脱脂包括两个步骤,第一步骤为裂解工艺,采用管式炉裂解的方法,参见图3(a)为裂解工艺的具体步骤,该裂解工艺,根据图6设置,裂解过程的具体工艺参数为:20℃→180min-200℃→60min-200℃→200min-300℃→120min-300℃→100min-350℃→180min-350℃→200min-410℃→240min-410℃→200min-450℃→240min-450℃→100min-500℃→240min-500℃→100min-550℃→180min-550℃→50min-600℃→100min-600℃→200min-800℃→60min-800℃,裂解过程的氩气流速为3L/min,此处裂解是指陶瓷打印生坯中固化的树脂在惰性气氛(氩气)下发生的热裂解,从工艺步骤中可以看出,裂解过程升温缓慢,通过缓慢的裂解过程使得包括长链分子的断裂并释放小分子物质,并残留部分玻璃碳的过程。在300℃时,PEG完全脱出,留下介孔孔洞,在800℃时,固化树脂沿着上述孔洞均匀脱出,并伴随体积的收缩和少量玻璃碳。
裂解后进行除碳,图3(b)为在马弗炉中进行除碳具体的除碳工艺,其具体流程为,300min内将坯体的温度升温至600℃,然后在600℃保持200min,然后在100min内将坯体的温度升温至800℃,将坯体在800℃保存100min,然后缓冷至室温。除碳过程即将上述高温裂解后的生坯中的残余玻璃碳在空气气氛下氧化脱出。除碳过程后生坯体积不发生明显变化,玻璃碳被完全脱出。
图4所示为氮化硅烧结工艺,其中氮气气压为3MPa,烧结过程的具体工艺参数为:5℃/min室温升至1200℃,4℃/mim升温至1750℃,1750℃保温2h,随炉冷却。得到氮化硅陶瓷烧结体。完成脱脂过程的氮化硅生坯进行气压烧结,烧结过程中发生α-Si3N4向β-Si3N4的相转变,坯体发生20%的线收缩,即完成陶瓷的致密化过程。
常见脱脂工艺是将生坯直接置于空气或氧气气氛下进行脱脂,同时发生了树脂的裂解和残碳的氧化,而本发明为了防止生坯在脱脂过程中发生开裂将上述工艺分为两步,故需要除碳过程。本发明后处理过程的裂解原理如图2所示,陶瓷打印生坯由陶瓷颗粒、固化树脂和PEG组成,陶瓷颗粒在固化树脂的网状结构中,其中PEG均匀的分散在上述体系中;经过裂解过程的200-300℃的低温脱脂,陶瓷生坯发生少量体积收缩,PEG被脱除并且留下介孔孔洞,并伴随少量固化树脂的裂解,经过800℃高温脱脂后,体系中剩余具有一定密度的陶瓷颗粒堆积体和少量树脂留下的残碳(玻璃碳);因此裂解后形成带有介孔孔洞的坯体,最后经过后续的脱碳(800℃空气气氛,图3(b))过程,即可完成脱脂过程。
氮化硅SLA打印生坯的极限脱脂厚度为8mm,氮化硅烧结体的室温三点弯曲强度最大为480MPa,压缩强度最大为540MPa,高温(1400℃)三点弯曲强度为110MPa。
实施例1:
步骤1,粉体两步改性。
混合Si3N4粉末、Y2O3粉末、Al2O3粉末和SiO2粉末,形成混合粉末A,其中Si3N4粉末的质量分数为67%,Y2O3粉末的质量分数为5%,Al2O3粉末的质量分数为3%,SiO2粉末的质量分数为25%;Si3N4粉末由颗粒尺寸分别为0.7μm和2μm两种粒径的Si3N4粉末按照体积比1:1混合而成。
向上述混合粉末A中添加其质量为3wt%的硬脂酸(硬脂酸的粒径大于100目),进行干磨改性,干磨过程中,球料比为1.5倍,转速为320rpm,干磨时间为20h,将干磨后的粉体通过80目过筛,得到混合粉末B。然后向上述混合粉末B中添加混合粉末B质量的3wt%分散剂9063,和混合粉末B质量的8wt%硅烷偶联剂KH560,进行湿磨改性,湿磨过程中的球料比为1.5倍,转速为320rpm,时间为20h,制得浆料C,将浆料C于75℃烘箱中烘干4h,然后80目过筛,得到预混粉体。
步骤2,预混液及陶瓷膏料配制:
将不同类型的树脂按照不同的质量分数加入至均质机罐子中,其中聚氨酯3.7wt%,双酚A8.65wt%,IBOMA-单官能团3.7wt%,HDDA-双官能团6.71wt%,TPGDA-双官能团5.05wt%,TMPTA-三官能团22.34wt%,DPHA-六官能团22.61wt%,芴基丙烯酸及其复合胶27.24wt%,,用不锈钢棒搅拌均匀后得到混合树脂D,在混合树脂D中加入其质量5wt%的TPO,搅拌后加入陶瓷粉体,直至完全被树脂润湿,称重后将均质机的质量配重调至与前者相同,在最后一步中加入聚乙二醇400(PEG),具体加入量可按所需量添加。将上述陶瓷粉与树脂充分混合后,选择所需混料程序,启动设备。程序中第一步转速为1300rpm,时间为13s,第二步转速区间为2000rpm,时间为20s,第三步转速区间为2500rpm,时间为30s。
步骤3,打印过程
将配制好的陶瓷膏料置于真空除泡机中,真空度抽至-0.1MPa,除泡时间为30min;将打印贴纸粘至磁纸上,然后将磁纸用胶水粘至打印平台不锈钢板上,将陶瓷膏料加入料仓中,调节刮刀与平台的间隙(调平);将打印模型(stl格式)导入至打印机自带的电脑中,设置参数后开始打印。激光波长:355nm;激光功率:91mW;扫描速度:1600mm/s;扫描路径:chess。打印出生坯。
步骤4,脱脂烧结
将打印完成的氮化硅生坯进行脱脂烧结,脱脂工艺如图3所示,图3(a)为裂解工艺,采用管式炉裂解的方法,其中氩气流速为3L/min,图3(b)为除碳工艺。图4所示为氮化硅烧结工艺,其中氮气气压为3MPa。
经过氩气气氛脱脂后,陶瓷生坯中树脂裂解留下的玻璃碳通过空气炉脱除。采用上述脱脂方法,可将氮化硅陶瓷打印生坯的最大脱脂厚度提高至8mm,如图5所示。尺寸为50mm*8mm*8mm的氮化硅烧结体未出现开裂变形,致密性较好,根据三点弯曲试验和压缩试验,氮化硅烧结体的三点弯曲强度和压缩强度分别为480MPa和540MPa。
实施例2
步骤2中的混料程序中第一步转速为1000rpm,时间为15s,第二步转速区间为1800rpm,时间为25s,第三步转速区间为2200rpm,时间为35s。其余未涉及部分均与实施例1相同。
实施例3
步骤2中的混料程序中第三步转速为1500rpm,时间为10s,第二步转速区间为2200rpm,时间为15s,第三步转速区间为2800rpm,时间为255s。其余未涉及部分均与实施例1相同。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1,混合Si3N4粉末、Y2O3粉末、Al2O3粉末和SiO2粉末,形成混合粉末A;在混合粉末A中加入硬脂酸后干磨改性,得到混合粉末B;向混合粉末B中加入分散剂9063和硅烷偶联剂KH560,进行湿磨改性,得到浆料C,将浆料C烘干后过筛得到预混粉体;
步骤2,混合聚氨酯、双酚A、IBOMA、HDDA、TPGDA、TMPTA、DPHA和芴基丙烯酸及其复合胶,搅拌后得到混合树脂D,在混合树脂D中加入TPO,然后分若干次加入预混粉体,直至预混粉体被混合树脂D完全湿润,再加入聚乙二醇400,然后通过三个阶段的混料进行混合,得到陶瓷膏料;
步骤3,将陶瓷膏料真空除泡后加入至打印机中,打印后生成陶瓷生坯;
步骤4,将陶瓷生坯进行裂解、除碳和烧结后,得到氮化硅陶瓷。
2.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,步骤1中,混合粉末A中Si3N4粉末的质量分数为67%,Y2O3粉末的质量分数为5%,Al2O3粉末的质量分数为3%,SiO2粉末的质量分数为25%。
3.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,步骤1中,加入的硬脂酸为混合粉末A质量的3%,加入的分散剂9063为混合粉末B质量的3%,加入的硅烷偶联剂KH560为混合粉末B质量的8%。
4.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,步骤1中,干磨时间为20h,湿磨时间为20h,浆料C的烘干温度为75℃。
5.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,步骤2中,混合树脂D中,聚氨酯的质量分数为3.7%、双酚A的质量分数为8.65%、IBOMA的质量分数为3.7%、HDDA的质量分数为6.71%、TPGDA的质量分数为5.05%、TMPTA的质量分数为22.34%、DPHA的质量分数为22.61%、芴基丙烯酸及其复合胶的质量分数为27.24%;
TPO的加入量为混合树脂D质量的5%,预混粉体与混合树脂D的混合质量比为3:1;聚乙二醇400加入后,陶瓷膏料的粘度≥500Pa·s。
6.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,步骤2中,三个阶段的混料过程参数依次为:第一阶段的转速为1000-1500rpm,第一阶段的时间为10-15s,第二阶段的转速为1800-2200rpm,第二阶段的时间为15-25s,第三阶段的转速为2200-2800rpm,第三阶段的时间为25-35s。
7.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,裂解过程的加热参数为:在200℃维持180min,在200℃维持60min,在300℃维持200min,在300℃维持120min,在350℃维持100min,在350℃维持180min,在410℃维持200min,在410℃维持240min,在450℃维持200min,在450℃维持240min,在500℃维持100min,在500℃维持240min,在550℃维持100min,在550℃维持180min,在600℃维持50min,在600℃维持100min,在800℃维持200min,在800℃维持60min。
8.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,除碳过程的加热参数为:300min内将坯体的温度升温至600℃,然后在600℃保持200min,然后在100min内将坯体的温度升温至800℃,将坯体在800℃保存100min,然后缓冷至室温。
9.根据权利要求1所述的一种高厚度高强度光固化氮化硅陶瓷的制备方法,其特征在于,烧结工艺的过程为:5℃/min室温升至1200℃,4℃/mim升温至1750℃,1750℃保温2h后随炉冷却。
10.一种通过权利要求1-9任意一项制备方法制得的光固化氮化硅陶瓷,其特征在于,所述光固化陶瓷在室温三点弯曲强度最大为480MPa,压缩强度最大为540MPa;所述光固化氮化硅陶瓷在1400℃的三点弯曲强度为110MPa。
CN202011272964.3A 2020-11-13 2020-11-13 一种高厚度高强度光固化氮化硅陶瓷及其制备方法 Pending CN114478049A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011272964.3A CN114478049A (zh) 2020-11-13 2020-11-13 一种高厚度高强度光固化氮化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011272964.3A CN114478049A (zh) 2020-11-13 2020-11-13 一种高厚度高强度光固化氮化硅陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN114478049A true CN114478049A (zh) 2022-05-13

Family

ID=81490482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011272964.3A Pending CN114478049A (zh) 2020-11-13 2020-11-13 一种高厚度高强度光固化氮化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114478049A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624764A (zh) * 2020-12-30 2021-04-09 巴中意科碳素股份有限公司 一种防止等静压石墨烧结开裂的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467102A (zh) * 2013-08-30 2013-12-25 盐城工学院 一种氮化硅多孔陶瓷及其制备方法
WO2017092012A1 (zh) * 2015-12-03 2017-06-08 广东工业大学 一种层状陶瓷的制备方法
CN108675798A (zh) * 2018-08-03 2018-10-19 广东工业大学 一种氮化硅陶瓷及其制备方法
CN108863780A (zh) * 2017-12-08 2018-11-23 武汉轻工大学 一种固载杂多酸催化剂在制备芴基丙烯酸酯的应用
CN109400177A (zh) * 2018-10-30 2019-03-01 西安点云生物科技有限公司 用于3d光固化成型打印的陶瓷材料及陶瓷制件的制备方法
CN109467438A (zh) * 2019-01-09 2019-03-15 北京理工大学 一种碳化硅陶瓷光固化成型方法
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467102A (zh) * 2013-08-30 2013-12-25 盐城工学院 一种氮化硅多孔陶瓷及其制备方法
WO2017092012A1 (zh) * 2015-12-03 2017-06-08 广东工业大学 一种层状陶瓷的制备方法
CN108863780A (zh) * 2017-12-08 2018-11-23 武汉轻工大学 一种固载杂多酸催化剂在制备芴基丙烯酸酯的应用
CN108675798A (zh) * 2018-08-03 2018-10-19 广东工业大学 一种氮化硅陶瓷及其制备方法
CN109400177A (zh) * 2018-10-30 2019-03-01 西安点云生物科技有限公司 用于3d光固化成型打印的陶瓷材料及陶瓷制件的制备方法
CN109467438A (zh) * 2019-01-09 2019-03-15 北京理工大学 一种碳化硅陶瓷光固化成型方法
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624764A (zh) * 2020-12-30 2021-04-09 巴中意科碳素股份有限公司 一种防止等静压石墨烧结开裂的方法
CN112624764B (zh) * 2020-12-30 2022-07-29 巴中意科碳素股份有限公司 一种防止等静压石墨烧结开裂的方法

Similar Documents

Publication Publication Date Title
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
US6974656B2 (en) Paste filled with metal powder and metal products obtained with same
CN107098714A (zh) 一种基于3dp增材制造技术的碳化硅基陶瓷零件制造方法
CN105563616A (zh) 氧化锆陶瓷制品的成型方法
CN110449586B (zh) 一种低压注射成型制备金属蜂窝材料的方法
CN110803915A (zh) 一种陶瓷光固化材料及其制备方法
CN107377970B (zh) 一种低成本金属3d打印方法
CN112500143A (zh) 一种硅基陶瓷型芯浆料及其应用
CN109553420A (zh) 一种高孔隙率碳化硅基多孔陶瓷材料的制备方法
CN113754430B (zh) 一种3d打印用级配氧化锆膏料及其制备方法和应用
CN114478049A (zh) 一种高厚度高强度光固化氮化硅陶瓷及其制备方法
CN108516730A (zh) 一种基于粘结剂喷射3d打印的组合物、制备及其应用
CN112916867B (zh) 一种光固化3d打印纳米颗粒增强金属件及其制备方法
CN109734450A (zh) 一种用于光固化增材制造的光敏陶瓷液的制备方法
CN113860889A (zh) 一种氧化铝陶瓷素坯的低温快速脱脂烧结方法
CN114524676B (zh) 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
CN114082895B (zh) 一种光固化3d打印复合陶瓷型芯及其制备方法
Yin et al. Influence of debinding parameter and nano-ZrO2 particles on the silica-based ceramic cores fabricated by stereolithography-based additive manufacturing
An et al. Compositional optimization of high-solid-loading ceramic cores via 3D printing
CN112916850B (zh) 一种掺金属氧化物的光固化3d打印金属件及其制备方法
CN116283254A (zh) 一种耐高温硅基陶瓷型芯及其制备方法和应用
CN115536401B (zh) 一种基于放电等离子烧结的光固化成形陶瓷及其制备方法
CN115180965B (zh) 一种聚碳硅烷增强氧化铝陶瓷浆料的制备方法和3d打印光固化成型工艺
CN114149253A (zh) 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法
CN113979780A (zh) 多孔氧化锆陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination