CN114149253A - 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法 - Google Patents

一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法 Download PDF

Info

Publication number
CN114149253A
CN114149253A CN202111364389.4A CN202111364389A CN114149253A CN 114149253 A CN114149253 A CN 114149253A CN 202111364389 A CN202111364389 A CN 202111364389A CN 114149253 A CN114149253 A CN 114149253A
Authority
CN
China
Prior art keywords
printing
photocuring
ceramic core
shrinkage
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111364389.4A
Other languages
English (en)
Inventor
梁静静
李乔磊
李金国
周亦胄
孙晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111364389.4A priority Critical patent/CN114149253A/zh
Publication of CN114149253A publication Critical patent/CN114149253A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63456Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明是关于一种光固化3D打印低烧结收缩率陶瓷型芯及其制备方法,其中,所述光固化3D打印低烧结收缩率陶瓷型芯的制备方法,包括如下步骤:将混合粉体和光固化树脂预聚液配制成光固化3D打印陶瓷型芯浆料;其中,混合粉体包括骨架粉体、填料和收缩补偿剂;其中,收缩补偿剂为Al粉、Cr粉中的一种或两种;对光固化3D打印陶瓷型芯浆料进行光固化3D打印处理,得到光固化3D打印陶瓷型芯素坯;对光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印低烧结收缩率陶瓷型芯;其中,收缩补偿剂在所述脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。本发明主要用于降低陶瓷型芯在制备过程中的烧结收缩率,以提高陶瓷型芯的尺寸精度。

Description

一种光固化3D打印低烧结收缩率陶瓷型芯及其制备方法
技术领域
本发明涉及一种增材制造技术领域,特别是涉及一种光固化3D打印低烧结收缩率陶瓷型芯及其制备方法。
背景技术
涡轮空心叶片是航空涡轮发动机中承受环境最恶劣、温度最高、应力最复杂的核心部件。随着涡前温度的不断升高,涡轮空心叶片气膜冷却技术高速发展,精密铸造中用于制备空心叶片冷却流道的陶瓷型芯结构更加复杂,对其尺寸精度和高温性能的要求也不断提高。
传统制备陶瓷型芯的工艺是热压注工艺,但是,随着陶瓷型芯结构越来越复杂,其生产越来越受限。而光固化3D打印陶瓷型芯技术由于具有无需模具、直接利用数值模型逐层成型后转化为三维实体的特点,从而为制备更复杂结构的陶瓷型芯提供了一种可靠的工艺。
但是,光固化3D打印陶瓷型芯在制备过程中会产生烧结收缩,以及在后续的定向凝固过程中还会产生铸造收缩。由于逐层成型的型芯材料存在各向异性和异形突变结构、脱脂-烧结过程中热受力分布不均等因素,使得陶瓷型芯的收缩率也表现出各向异性,进而产生收缩变形。
在陶瓷型芯的制备和材料设计中,需综合考虑陶瓷型芯的铸造收缩和烧结收缩。目前,涡轮叶片型芯(陶瓷型芯)和蜡模模具的设计方法主要是采用单一或几个轴向数值来表征收缩率,从而造成陶瓷型芯的局部尺寸精度差。
因此,为了使陶瓷型芯具有高尺寸精度,降低陶瓷型芯的收缩率成为拓宽光固化3D打印陶瓷型芯技术需要解决的首要问题。现阶段主要是利用粒度级配、纤维改性、晶须改性以及烧结制度调整等方法,来降低陶瓷型芯的收缩率,提高陶瓷型芯的尺寸精度。但上述方法普遍存在制造成本高、成型工艺性差、调节范围有限、机械性能损失严重等问题。
发明内容
有鉴于此,本发明提供一种光固化3D打印低烧结收缩率陶瓷型芯及其制备方法,主要目的在于能降低陶瓷型芯在制备过程中的烧结收缩率,以提高陶瓷型芯的尺寸精度。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明的实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其包括如下步骤:
配制光固化3D打印陶瓷型芯浆料步骤:将混合粉体和光固化树脂预聚液配制成光固化3D打印陶瓷型芯浆料;其中,所述混合粉体包括骨架粉体、填料和收缩补偿剂;其中,所述收缩补偿剂为Al粉、Cr粉中的一种或两种;
光固化3D打印处理步骤:对所述光固化3D打印陶瓷型芯浆料进行光固化3D打印处理,得到光固化3D打印陶瓷型芯素坯;
脱脂、烧结处理步骤:对所述光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印低烧结收缩率陶瓷型芯;其中,所述收缩补偿剂在所述脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。
优选的,以重量份计,所述光固化3D打印陶瓷型芯浆料包括:60-70重量份的骨架粉体、10-20重量份的填料、1-5重量份的收缩补偿剂、20-30重量份的光固化树脂预混液。
优选的,所述配制光固化3D打印陶瓷型芯浆料步骤,包括:
1)先将骨架粉体、填料、收缩补偿剂混合,再向其中加入无水乙醇,进行混合搅拌、干燥后得到混合粉体;
2)将所述混合粉体和光固化树脂预聚液混合后,进行搅拌处理,得到光固化3D打印陶瓷型芯浆料;
优选的,在所述步骤1)中:无水乙醇的加入量为所述骨架粉体、填料、收缩补偿剂总质量的10-15%;
优选的,在所述步骤1)中:所述混合搅拌的时间为2-3h;
优选的,在所述步骤2)中:混合搅拌的温度为80-120℃、混合搅拌的时间为8-12h。
优选的,所述收缩补偿剂选用粒径为0.1-5μm的球形粉体。
优选的,所述骨架粉体为Al2O3、SiO2中的一种或两种。
优选的,所述骨架粉体选用粒径为50-100μm的粉体。
优选的,所述填料为ZrO2、Y2O3、ZrSiO4中的一种或几种。
优选的,所述填料选用粒径为10-80nm的粉体,优选的,所述填料选用粒径为20-80nm的粉体。
优选的,所述光固化树脂预混液包括光敏树脂和稀释剂;其中,所述光敏树脂的体积分数为70-80%、稀释剂的体积分数为20-30%;优选的,光敏树脂为聚氨酯丙烯酸酯、聚酯丙烯酸酯、甲基丙烯酸酯的一种或多种;优选的,稀释剂为1,6-己二醇二丙烯酸酯。
优选的,在所述光固化3D打印处理步骤中,所述光固化3D打印工艺参数设置如下:
固化厚度设置为50-150μm、固化功率设置为25-45nW/cm2、单层固化时间设置为5-20s。
优选的,在所述脱脂处理的步骤中:脱脂处理的温度为550-600℃,脱脂处理的时间为120-180min,脱脂处理的气氛为由N2和O2组成的混合气氛;其中,N2的体积分数为50-80%,O2的体积分数为20-50%;优选的,在脱脂处理过程中,以60-100℃/h的升温速率升温至550-600℃,保温120-180min后,以60-100℃/h的降温速率降温。
优选的,在所述烧结处理的步骤中:烧结处理的温度为1300-1500℃,烧结处理的时间为180-300min,烧结处理的气氛为由N2和O2组成的混合气氛;其中,N2的体积分数为50-80%,O2的体积分数为20-50%;优选的,在烧结处理过程中,以60-120℃/h的升温速率升温至1300-1500℃,保温180-300min后,以60-120℃/h的降温速率降温。
另一方面,本发明实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯,其中,所述光固化3D打印低烧结收缩率陶瓷型芯的烧结收缩率小于2%;优选的,所述光固化3D打印低烧结收缩率陶瓷型芯是由上述任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法制备而成。
与现有技术相比,本发明的光固化3D打印低烧结收缩率陶瓷型芯及其制备方法至少具有下列有益效果:
本发明实施例提供的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,通过在光固化3D打印陶瓷型芯浆料中添加了Al粉和/或Cr粉作为收缩补偿剂,且在脱脂、烧结处理的过程中,收缩补偿剂逐渐全部被氧化成氧化物(Al2O3、Cr2O3),该过程伴随着体积的膨胀,增加了陶瓷颗粒之间的间距,能显著抑制陶瓷型芯的烧结收缩率,甚至实现烧结零收缩。在此,收缩补偿剂需在脱脂、烧结过程中全部氧化成氧化物(即,将Al、Cr有害相全部转化成Al2O3、Cr2O3有益相)。
进一步地,本发明实施例提供的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,对脱脂处理、烧结处理的具体气氛、时间及温度进行相应的控制,以使收缩补偿剂在脱脂、烧结处理的过程中,逐渐全部转化成相应的氧化物。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明的实施例提供的一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法的流程图。
图2是本发明的实施例1制备低烧结收缩率陶瓷型芯的SEM图像和EDS元素分布结果。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明申请的具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
针对光固化3D打印陶瓷型芯技术,本发明设计了掺杂金属元素的陶瓷浆料配方,利用金属元素在脱脂-烧结的过程中氧化成氧化物时会伴随体积的膨胀,来部分抵消由于树脂挥发而导致的体积收缩,从而实现降低陶瓷型芯的烧结收缩率。
本发明的具体方案如下:
一方面,如图1所示,本发明实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其包括如下步骤:
1)配制光固化3D打印陶瓷型芯浆料步骤:将混合粉体和光固化树脂预聚液配制成光固化3D打印陶瓷型芯浆料;其中,混合粉体包括骨架粉体、填料和收缩补偿剂;其中,收缩补偿剂为Al粉、Cr粉中的一种或两种。
在该步骤中:以重量份计,光固化3D打印陶瓷型芯浆料包括:60-70重量份的骨架粉体、10-20重量份的填料、1-5重量份的收缩补偿剂、20-30重量份的光固化树脂预混液。
该步骤具体为:向骨架粉体、填料和收缩补偿剂中加入无水乙醇,进行混合搅拌2-3h,干燥得到混合粉体。将上述得到的混合粉体加入光固化树脂预混液中,在80-120℃的温度下,进行保温搅拌8-12h,得到光固化3D打印陶瓷型芯浆料。其中,无水乙醇的加入量为所述骨架粉体、填料、收缩补偿剂总质量的10-15%。
较佳地,收缩补偿剂选用粒径为0.1-5μm的球形粉体。在此,粒径和形状的主要是为了易于氧化和收缩补偿效果最佳。
较佳地,填料为ZrO2、Y2O3、ZrSiO4中的一种或几种;填料选用粒径为20-80nm的粉体。
较佳地,骨架粉体为Al2O3、SiO2中的一种或两种。骨架粉体选用粒径为50-100μm的粉体。
较佳地,光固化树脂预混液由光敏树脂和稀释剂组成;其中,所述光敏树脂的体积分数为70-80%、稀释剂的体积分数为20-30%;优选的,光敏树脂为聚氨酯丙烯酸酯、聚酯丙烯酸酯、甲基丙烯酸酯的一种或多种;优选的,稀释剂为1,6-己二醇二丙烯酸酯。
2)光固化3D打印处理步骤:对光固化3D打印低烧结收缩率陶瓷型芯浆料进行光固化3D打印处理,得到光固化3D打印低烧结收缩率陶瓷型芯素坯。
其中,所述光固化3D打印工艺参数设置如下:固化厚度设置为50-150μm、固化功率设置为25-45nW/cm2、单层固化时间设置为5-20s。
3)脱脂、烧结处理步骤:对光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印低烧结收缩率陶瓷型芯;其中,收缩补偿剂在脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。
在此,为了使收缩补偿剂能在脱脂、烧结处理的过程中会全部氧化成氧化物:对脱脂、烧结处理的气氛、温度及时间设计成如下:
脱脂处理的温度为550-600℃,脱脂处理的时间为120-180min,脱脂处理的气氛为由N2和O2组成的混合气氛;其中,N2的体积分数为50-80%,O2的体积分数为20-50%。该步骤具体为:以60-100℃/h的升温速率升温至550-600℃,保温120-180min后,以60-100℃/h的降温速率降温。
烧结处理的温度为1300-1500℃,烧结处理的时间为180-300min,烧结处理的气氛为由N2和O2组成的混合气氛;其中,N2的体积分数为50-80%,O2的体积分数为20-50%;该步骤具体为:以60-120℃/h的升温速率升温至1300-1500℃,保温180-300min后,以60-120℃/h的降温速率降温。
本发明实施例提供的上述光固化3D打印低烧结收缩率陶瓷型芯的制备方法,通过在光固化3D打印陶瓷型芯浆料中添加了Al粉和/或Cr粉作为收缩补偿剂,且在脱脂、烧结处理的过程中,收缩补偿剂逐渐全部被氧化成氧化物(Al2O3、Cr2O3),该过程伴随着体积的膨胀,增加了陶瓷颗粒之间的间距,能显著抑制陶瓷型芯的烧结收缩率,甚至实现烧结零收缩。在此,收缩补偿剂需在脱脂、烧结过程中全部氧化成氧化物,因为Al、Cr对于陶瓷型芯属于有害相,而Al2O3、Cr2O3属于有益相。
另外,Al粉、Cr粉在陶瓷型芯中被引入,可作为塑性相;同时它们对氧具有极强的亲和力,能促进光敏树脂的分解,改善型芯的脱脂效率。
下面通过具体实验实施例进一步对本发明说明,但本发明的保护范围并不限于所述内容:
实施例1
本实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其中,所用的原料及其重量分数如下:骨架粉体69重量份,填料10重量份,收缩补偿剂1重量份,光固化树脂预混液20重量份。
其中,以体积分数计,光固化树脂预聚液包括80%的光敏树脂、20%的稀释剂。光敏树脂为体积比按照3:2混合的聚氨酯丙烯酸酯和聚酯丙烯酸酯;稀释剂为1,6-己二醇二丙烯酸酯。骨架粉体选用粒径为80μm的Al2O3粉末和粒径50μm的SiO2粉末,其中,Al2O3粉末和SiO2粉末的质量比为3:1。填料选用粒径为20nm的ZrO2粉末;收缩补偿剂选用粒径为0.1μm的Al粉(球形粉末颗粒)和1μm的Cr粉(球形粉末颗粒),Al粉和Cr粉的质量比为2:1。
具体包括以下步骤:
配制光固化3D打印陶瓷型芯浆料步骤:将骨架粉体、填料、收缩补偿剂混合后,再向其中加入无水乙醇(其中,无水乙醇的加入量的质量为骨架粉体、填料及收缩补偿剂质量总和的10%),进行混合搅拌2h、干燥后得到混合粉体;将混合粉体加入光固化树脂预混液中,在80℃的温度下保温搅拌12h,得到光固化3D打印陶瓷型芯浆料。
光固化3D打印处理步骤:设置光固化3D打印参数,具体为:固化厚度为100μm、固化功率为35nW/cm2、单层固化时间为5s;通过光固化3D打印设备对光固化3D打印陶瓷型芯浆料进行固化,得到光固化3D打印低陶瓷型芯素坯。
脱脂、烧结处理步骤:对光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印低烧结收缩率陶瓷型芯;其中,所述收缩补偿剂在所述脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。其中,
其中,脱脂处理的气氛为:由N2和O2组成的混合气氛;其中,N2的体积分数为50%,O2的体积分数为50%。该步骤具体为:以60℃/h的升温速率升温至600℃,保温180min后,以60℃/h的降温速率降温。
烧结处理的气氛为:由N2和O2组成的混合气氛;其中,N2的体积分数为50%,O2的体积分数为50%。该步骤具体为:以120℃/h的升温速率升温至1300℃,保温240min后,以120℃/h的降温速率降温。
图2为本实施例制备的光固化3D打印低烧结收缩率陶瓷型芯的SEM图像和EDS元素分布结果。从图2可以看出:陶瓷型芯中的Al元素和O元素分布区域重合,说明添加的Al元素已经全部氧化为氧化铝,通过SEM图像可以观察到Al富集区周围并没有明显的裂纹产生。
实施例2
本实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其中,所用的原料及其重量分数如下:骨架粉体60重量份,填料15重量份,收缩补偿剂5重量份,光固化树脂预混液20重量份。
其中,以体积分数计,光固化树脂预聚液包括70%的光敏树脂、30%的稀释剂。光敏树脂为甲基丙烯酸酯;稀释剂为1,6-己二醇二丙烯酸酯。骨架粉体选用粒径为50μm的Al2O3粉末和粒径100μm的SiO2粉末,其中,Al2O3粉末和SiO2粉末的质量比为1:7。填料选用粒径为10nm的ZrSiO4粉末;收缩补偿剂选用粒径为1μm的Al粉(球形粉末颗粒)。
具体包括以下步骤:
配制光固化3D打印陶瓷型芯浆料步骤:将骨架粉体、填料、收缩补偿剂混合后,再向其中加入无水乙醇(其中,无水乙醇的加入量的质量为骨架粉体、填料及收缩补偿剂质量总和的15%),依次进行混合搅拌3h,干燥后得到混合粉体;将混合粉体加入光固化树脂预混液中,在120℃的温度下保温搅拌8h,得到光固化3D打印陶瓷型芯浆料。
光固化3D打印处理步骤:设置光固化3D打印参数,具体为:固化厚度为150μm、固化功率为40nW/cm2、单层固化时间为10s;通过光固化3D打印设备对光固化3D打印陶瓷型芯浆料进行固化,得到光固化3D打印低陶瓷型芯素坯。
脱脂、烧结处理步骤:对光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印低烧结收缩率陶瓷型芯;其中,所述收缩补偿剂在所述脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。其中,
其中,脱脂处理的气氛为:由N2和O2组成的混合气氛;其中,N2的体积分数为60%,O2的体积分数为40%。该步骤具体为:以100℃/h的升温速率升温至550℃,保温120min后,以100℃/h的降温速率降温。
烧结处理的气氛为:由N2和O2组成的混合气氛;其中,N2的体积分数为60%,O2的体积分数为40%。该步骤具体为:以60℃/h的升温速率升温至1500℃,保温180min后,以60℃/h的降温速率降温。
实施例3
本实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,与实施例1的区别在于,本实施例所用的原料包括3重量份的收缩补偿剂;其中,收缩补偿剂选用粒径为0.3μm的Al粉(球形粉末颗粒)和5μm的Cr粉(球形粉末颗粒),Al粉和Cr粉的质量比为2:1。
其他步骤及参数完全一致。
实施例4
本实施例提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,与实施例2的区别在于,本实施例的收缩补偿剂选用粒径为1μm的Cr粉(球形粉末颗粒)。
其他步骤及参数完全一致。
对比例1
对比例1提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,与上述实施例的区别在于,对比例1所用的原料不包括收缩补偿剂。
具体地,对比例1所用的原料及其重量分数如下:骨架粉体69重量份,填料10重量份,光固化树脂预混液20重量份。
其中,以体积分数计,光固化树脂预聚液包括80%的光敏树脂、20%的稀释剂。光敏树脂为体积比按照3:2混合的聚氨酯丙烯酸酯和聚酯丙烯酸酯;稀释剂为1,6-己二醇二丙烯酸酯。骨架粉体选用粒径为80μm的Al2O3粉末和粒径50μm的SiO2粉末,其中,Al2O3粉末和SiO2粉末的质量比为3:1。填料选用粒径为20nm的ZrO2粉末;具体包括以下步骤:
配制光固化3D打印陶瓷型芯浆料步骤:将骨架粉体、填料混合后,再向其中加入无水乙醇(其中,无水乙醇的加入量的质量为骨架粉体、填料的质量总和的10%),进行混合搅拌2h、干燥后得到混合粉体;将混合粉体加入光固化树脂预混液中,在80℃的温度下保温搅拌12h,得到光固化3D打印陶瓷型芯浆料。
光固化3D打印处理步骤:设置光固化3D打印参数,具体为:固化厚度为100μm、固化功率为35nW/cm2、单层固化时间为5s;通过光固化3D打印设备对光固化3D打印陶瓷型芯浆料进行固化,得到光固化3D打印低陶瓷型芯素坯。
脱脂、烧结处理步骤:对光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印陶瓷型芯;其中,所述收缩补偿剂在所述脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。其中,
其中,脱脂处理的气氛为N2;该步骤具体为:以60℃/h的升温速率升温至600℃,保温180min后,以60℃/h的降温速率降温。
烧结处理的气氛为N2;该步骤具体为:以120℃/h的升温速率升温至1300℃,保温240min后,以120℃/h的降温速率降温。
对比例2
对比例2提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,与实施例1的区别在于,对比例2的脱脂、烧结处理条件如下:
其中,脱脂处理的气氛为N2;该步骤具体为:以60℃/h的升温速率升温至600℃,保温180min后,以60℃/h的降温速率降温。
烧结处理的气氛为N2;该步骤具体为:以120℃/h的升温速率升温至1300℃,保温240min后,以120℃/h的降温速率降温。
其他步骤及参数与实施例1一致。
对比例3
对比例3提供一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,与实施例1的区别在于,对比例3的脱脂、烧结处理条件如下:
脱脂处理的气氛为:由N2和O2组成的混合气氛;其中,N2的体积分数为60%,O2的体积分数为40%。该步骤具体为:以100℃/h的升温速率升温至550℃,保温120min后,以100℃/h的降温速率降温。
烧结处理的气氛为N2;该步骤具体为:以120℃/h的升温速率升温至1300℃,保温240min后,以120℃/h的降温速率降温。
其他步骤及参数与实施例1一致。
对上述实施例1-4、对比例1-3所制备的光固化3D打印低烧结收缩率陶瓷型芯的室温抗弯强度、开孔隙率、烧结质量损失率、溶失率等指标进行了测试,测试数据参见表1所示。
表1
检测项目 平均烧结收缩率
实施例1 1.8%
实施例2 1.2%
实施例3 0.9%
实施例4 1.4
对比例1 4.3%
对比例2 4.1%
对比例3 3.2%
注:表中平均烧结收缩率为烧成型芯X、Y和Z三个方向的平均烧结收缩率。
从表1的数据可以看出:本发明实施例制备的光固化3D打印陶瓷型芯通过烧结收缩补偿剂与脱脂-烧结气氛相协同,使收缩补偿剂逐渐全部氧化成氧化物,极大的降低了光固化3D打印陶瓷型芯的烧结收缩率,极大提高的光固化3D打印陶瓷型芯的精度。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,其包括如下步骤:
配制光固化3D打印陶瓷型芯浆料步骤:将混合粉体和光固化树脂预聚液配制成光固化3D打印陶瓷型芯浆料;其中,所述混合粉体包括骨架粉体、填料和收缩补偿剂;其中,所述收缩补偿剂为Al粉、Cr粉中的一种或两种;
光固化3D打印处理步骤:对所述光固化3D打印陶瓷型芯浆料进行光固化3D打印处理,得到光固化3D打印陶瓷型芯素坯;
脱脂、烧结处理步骤:对所述光固化3D打印陶瓷型芯素坯依次进行脱脂处理、烧结处理,得到光固化3D打印低烧结收缩率陶瓷型芯;其中,所述收缩补偿剂在所述脱脂、烧结处理的过程中会逐渐全部氧化成氧化物。
2.根据权利要求1所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,以重量份计,所述光固化3D打印陶瓷型芯浆料包括:60-70重量份的骨架粉体、10-20重量份的填料、1-5重量份的收缩补偿剂、20-30重量份的光固化树脂预混液。
3.根据权利要求1或2所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,所述配制光固化3D打印陶瓷型芯浆料步骤,包括:
1)先将骨架粉体、填料、收缩补偿剂混合,再向其中加入无水乙醇,进行混合搅拌、干燥后得到混合粉体;
2)将所述混合粉体和光固化树脂预聚液混合后,进行搅拌处理,得到光固化3D打印陶瓷型芯浆料;
优选的,在所述步骤1)中:无水乙醇的加入量为所述骨架粉体、填料、收缩补偿剂总质量的10-15%;
优选的,在所述步骤1)中:所述混合搅拌的时间为2-3h;
优选的,在所述步骤2)中:混合搅拌的温度为80-120℃、混合搅拌的时间为8-12h。
4.根据权利要求1-3任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,所述收缩补偿剂选用粒径为0.1-5μm的球形粉体。
5.根据权利要求1-4任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,所述骨架粉体为Al2O3、SiO2中的一种或两种;和/或
所述骨架粉体选用粒径为50-100μm的粉体;和/或
所述填料为ZrO2、Y2O3、ZrSiO4中的一种或几种;和/或
所述填料选用粒径为10-80nm的粉体,优选的,所述填料选用粒径为20-80nm的粉体。
6.根据权利要求1-5任一项所的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,所述光固化树脂预混液包括光敏树脂和稀释剂;其中,所述光敏树脂的体积分数为70-80%、稀释剂的体积分数为20-30%;
优选的,光敏树脂为聚氨酯丙烯酸酯、聚酯丙烯酸酯、甲基丙烯酸酯的一种或多种;
优选的,稀释剂为1,6-己二醇二丙烯酸酯。
7.根据权利要求1-6任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,在所述光固化3D打印处理步骤中,所述光固化3D打印工艺参数设置如下:
固化厚度设置为50-150μm、固化功率设置为25-45nW/cm2、单层固化时间设置为5-20s。
8.根据权利要求1-7任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,在所述脱脂处理的步骤中:
脱脂处理的温度为550-600℃,脱脂处理的时间为120-180min,脱脂处理的气氛为由N2和O2组成的混合气氛;其中,N2的体积分数为50-80%,O2的体积分数为20-50%;
优选的,在脱脂处理过程中,以60-100℃/h的升温速率升温至550-600℃,保温120-180min后,以60-100℃/h的降温速率降温。
9.根据权利要求1-8任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法,其特征在于,在所述烧结处理的步骤中:
烧结处理的温度为1300-1500℃,烧结处理的时间为180-300min,烧结处理的气氛为由N2和O2组成的混合气氛;其中,N2的体积分数为50-80%,O2的体积分数为20-50%;
优选的,在烧结处理过程中,以60-120℃/h的升温速率升温至1300-1500℃,保温180-300min后,以60-120℃/h的降温速率降温。
10.一种光固化3D打印低烧结收缩率陶瓷型芯,其特征在于,所述光固化3D打印低烧结收缩率陶瓷型芯的烧结收缩率小于2%;优选的,所述光固化3D打印低烧结收缩率陶瓷型芯是由权利要求1-9任一项所述的光固化3D打印低烧结收缩率陶瓷型芯的制备方法制备而成。
CN202111364389.4A 2021-11-17 2021-11-17 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法 Pending CN114149253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111364389.4A CN114149253A (zh) 2021-11-17 2021-11-17 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111364389.4A CN114149253A (zh) 2021-11-17 2021-11-17 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法

Publications (1)

Publication Number Publication Date
CN114149253A true CN114149253A (zh) 2022-03-08

Family

ID=80456543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111364389.4A Pending CN114149253A (zh) 2021-11-17 2021-11-17 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法

Country Status (1)

Country Link
CN (1) CN114149253A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894051A (zh) * 2022-11-30 2023-04-04 贵阳航发精密铸造有限公司 一种硅基陶瓷型芯专用烧结收缩调节剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151253A (ja) * 1994-11-24 1996-06-11 Kyocera Corp アルミナ質焼結体およびその製法
CN107540352A (zh) * 2017-09-20 2018-01-05 吴江中瑞机电科技有限公司 3d打印氧化铝增韧陶瓷浆料的制备及应用
CN109400177A (zh) * 2018-10-30 2019-03-01 西安点云生物科技有限公司 用于3d光固化成型打印的陶瓷材料及陶瓷制件的制备方法
CN110451940A (zh) * 2019-08-29 2019-11-15 西安交通大学 一种整体式陶瓷铸型分步烧结收缩控制方法
CN111348906A (zh) * 2020-02-10 2020-06-30 中国科学院金属研究所 一种熔模铸造用光固化硅基陶瓷型芯素坯脱脂方法
CN112430103A (zh) * 2020-11-19 2021-03-02 中国科学院金属研究所 一种光固化3d打印多级孔陶瓷材料及其制备方法
CN112537948A (zh) * 2020-12-19 2021-03-23 西北工业大学 一种氧化铝基陶瓷型芯的光固化3d打印制造方法
CN113563059A (zh) * 2021-08-23 2021-10-29 上海大学 一种3d打印用陶瓷型芯浆料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151253A (ja) * 1994-11-24 1996-06-11 Kyocera Corp アルミナ質焼結体およびその製法
CN107540352A (zh) * 2017-09-20 2018-01-05 吴江中瑞机电科技有限公司 3d打印氧化铝增韧陶瓷浆料的制备及应用
CN109400177A (zh) * 2018-10-30 2019-03-01 西安点云生物科技有限公司 用于3d光固化成型打印的陶瓷材料及陶瓷制件的制备方法
CN110451940A (zh) * 2019-08-29 2019-11-15 西安交通大学 一种整体式陶瓷铸型分步烧结收缩控制方法
CN111348906A (zh) * 2020-02-10 2020-06-30 中国科学院金属研究所 一种熔模铸造用光固化硅基陶瓷型芯素坯脱脂方法
CN112430103A (zh) * 2020-11-19 2021-03-02 中国科学院金属研究所 一种光固化3d打印多级孔陶瓷材料及其制备方法
CN112537948A (zh) * 2020-12-19 2021-03-23 西北工业大学 一种氧化铝基陶瓷型芯的光固化3d打印制造方法
CN113563059A (zh) * 2021-08-23 2021-10-29 上海大学 一种3d打印用陶瓷型芯浆料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894051A (zh) * 2022-11-30 2023-04-04 贵阳航发精密铸造有限公司 一种硅基陶瓷型芯专用烧结收缩调节剂及其制备方法

Similar Documents

Publication Publication Date Title
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
CN103240418B (zh) 一种具有中空内部结构增压涡轮的近终成形方法
CN110590387A (zh) 一种无机纤维复合硅基陶瓷型芯及其制备方法
CN107021771B (zh) 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法
CN108275979B (zh) 一种用于光固化3d打印的陶瓷材料、陶瓷件及其制备方法
CN110803915A (zh) 一种陶瓷光固化材料及其制备方法
CN101733402B (zh) 一种高比重合金的凝胶注模成型方法
CN105131508A (zh) 一种粉末注射成型用粘结剂、制备方法及其应用方法
CN113754430B (zh) 一种3d打印用级配氧化锆膏料及其制备方法和应用
CN110451940B (zh) 一种整体式陶瓷铸型分步烧结收缩控制方法
CN108002843B (zh) 一种基于膏体的高精度多孔氮化硅复杂形状件的制备方法
CN112916868B (zh) 一种光固化3d打印金属件及其制备方法
CN110963788A (zh) 一种陶瓷浆料的制备方法和陶瓷器件
CN113563059A (zh) 一种3d打印用陶瓷型芯浆料及其制备方法和应用
CN114149253A (zh) 一种光固化3d打印低烧结收缩率陶瓷型芯及其制备方法
CN112390633A (zh) 一种ZrB2纳米粉体增强氧化硅基陶瓷型芯及其制备方法
CN100383081C (zh) 采用纳米二氧化硅的复合陶瓷型芯材料
CN112159498A (zh) 一种用于陶瓷3d打印的粉煤灰水基浆料及其制备方法
CN114082896B (zh) 一种光固化3d打印铝基陶瓷型芯及其制备方法
CN112895238B (zh) 一种近净成形空心金属结构件的方法
CN114082895B (zh) 一种光固化3d打印复合陶瓷型芯及其制备方法
CN114524676A (zh) 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
CN110860647A (zh) 一种用于球墨铸铁的高性能易脱模的树脂砂的制备方法
CN112916850B (zh) 一种掺金属氧化物的光固化3d打印金属件及其制备方法
KR20180076355A (ko) 티타늄 합금 주조용 주형 제조방법 및 이에 의해 제조된 티타늄 합금 주조용 주형

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220308

RJ01 Rejection of invention patent application after publication